The present invention relates to surgical devices and, in particular, to devices and methods for repair or fixation of soft tissue to bone without the need for knots.
Surgical constructs, systems, and techniques for knotless soft tissue repair and fixation, such as fixation of soft tissue (ligament, tendon, graft, etc.) to bone are disclosed.
A surgical construct includes a tensionable construct in the form of a multi-limb locking construct formed through a single splice. A flexible strand is split into a plurality of limbs that are shuttled back through a flexible strand, to create a locking splice construct that is tensionable after insertion in bone. A surgical construct allows attached tissue to be brought proximate to bone and does not require tying of any knots. A flexible strand may be fixed to a fixation device and split into a plurality of limbs that are shuttled back through a flexible strand, to create a locking splice construct that is tensionable after insertion in bone.
In an embodiment, a surgical construct includes an anchor, a suture that is attached to the anchor and that splits into two or more limbs, and a suture shuttle with a looped end. A suture can be fixed within the anchor by a knot or similar construct. A suture shuttle is inserted into a center of a single suture with a plurality of suture limbs, to shuttle the suture limbs back through the suture, creating a multi-limb locking mechanism through a single locking splice.
Surgical constructs, systems, and techniques for knotless soft tissue repair and fixation, such as fixation of soft tissue (ligament, tendon, graft, etc.) to bone are disclosed.
The surgical constructs comprise tensionable knotless anchors that are inserted into bone and are provided with a multi-limb suture locking mechanism through single splice (tensionable construct). The tensionable knotless anchor may be formed essentially of suture or suture-like material (i.e., a soft anchor without a solid body) or may be attached to a fixation device.
The multi-limb suture locking mechanism through single splice is formed of a flexible strand (a suture) and a shuttle/pull device (a suture passing instrument) attached to the flexible strand. A flexible strand includes an unsplit region or end (a single main limb of suture or main strand) and a plurality of limbs attached to the unsplit region (main strand). A shuttle/pull device attached to the unsplit region allows passing of the plurality of limbs through the tissue and then spliced back through the unsplit region. In this manner, multiple locking limbs with variable loop lengths are locked through just one splice. If a fixation device (such as a solid anchor, for example) is employed, a splice may be formed outside the body of the fixation device or inside the body of the fixation device. A multi-limb suture locking mechanism through single splice may be employed for tissue repairs.
In an embodiment, a flexible strand (for example, suture) is split into multiple strands or limbs. The strands are passed through the tissue and then spliced back through the single main limb of suture. The individual limbs can slide with variable tension and all could lock within the jacket.
In an embodiment, a surgical construct includes an anchor, a suture that is fixed to the anchor and that splits into two or more limbs, and a suture shuttle with a looped end. A suture can be fixed within the anchor by a knot at the end of the suture. A suture shuttle is inserted into a center of the single suture, and is designed to help shuttle the suture limbs back through the suture, creating a single locking splice. A locking splice may be formed outside an anchor body or inside an anchor body.
In another embodiment, a surgical construct comprises (i) a suture or suture-like material that has at least two regions: a first region or unsplit region; and a second region or split region that splits into two or more limbs; and (ii) a suture shuttle with a looped end. A suture shuttle can be pre-assembled to the first region of the suture or suture-like material. A suture shuttle may be inserted into a center of the first region (unsplit region) of the suture or suture-like material. A suture shuttle shuttles the suture limbs back through the suture or suture-like material, creating a single locking splice in the first region (unsplit region) and a plurality of multiple adjustable closed loops. Multiple adjustable closed loops may have adjustable perimeters, and the perimeters may be all similar or different, or at least one perimeter of one loop different than a perimeter of another loop. A surgical construct may consist essentially of (i) a suture or suture-like material that has at least two regions: a first region or unsplit region; and a second region or split region that splits into two or more limbs; and (ii) a suture shuttle with a looped end.
In another embodiment, a surgical construct includes (i) an anchor; (ii) a suture that is fixed to the anchor and that has at least two regions: a first region or unsplit region; and a second region or split region that splits into two or more limbs; and (iii) a suture shuttle with a looped end. A suture can be fixed within the anchor by a knot at the end of the suture. A suture shuttle can be pre-assembled to the first region of the suture. A suture shuttle may be inserted into a center of the first region (unsplit region) of the suture. A suture shuttle shuttles the suture limbs back through the suture, creating a single locking splice in the first region (unsplit region).
In an embodiment, a surgical system for tissue repairs includes a fixation device comprising a body, a longitudinal axis, a proximal end, and a distal end; and a tensionable construct pre-loaded on the fixation device. A tensionable construct may include a flexible strand with a plurality of limbs, and a shuttling device attached to the flexible strand. A flexible strand may have one end which terminates in a knot, and another end which is split into multiple flexible limbs.
Methods of soft tissue repair which do not require tying of knots and allow adjustment of both the tension of the suture and the location of the tissue with respect to the bone are also disclosed. An exemplary method of tissue repair comprises (i) installing a fixation device in bone, the fixation device comprising a body, a flexible strand split into a plurality of multiple flexible limbs, the flexible strand extending through at least a portion of the body of the fixation device, and a passing device attached to the flexible strand; and (ii) forming, with the multiple flexible limbs of the flexible strand and with the passing device, multiple knotless closed loops having adjustable perimeters, after the step of installing the fixation device in bone.
In one embodiment, two or more suture limbs extending from the split suture are passed through soft tissue. The limbs are then inserted into the suture shuttle loop. The tail of the suture shuttle is pulled, advancing the shuttle loop and two or more suture limbs through the locking splice. The ends of each of the two or more suture limbs are then independently advanced until the desired tension is achieved, creating simple stitches along the soft tissue.
In another embodiment, two or more suture limbs, as well as the suture shuttle loop and tail, are all passed through soft tissue. The limbs are then inserted into the suture shuttle loop. The suture shuttle loop and the two or more suture limbs loaded onto it are advanced through the locking splice by pulling the suture shuttle tail. The two or more suture limbs are then independently advanced until the desired tension is achieved, creating a mattress stitch on the soft tissue.
Another exemplary method of soft tissue repair comprises inter alia: (i) inserting a fixation device of a surgical construct into bone, the surgical construct comprising a fixation device (for example, an anchor) with a flexible strand (for example, suture) that is attached to the fixation device and that is split into multiple strands/limbs, and with a shuttle/pull device (a suture passing instrument) attached to the flexible strand; (ii) passing the multiple strands/limbs around or through tissue to be fixated (or reattached) to bone, and then through an eyelet/loop of the shuttle/pull device; and (iii) subsequently, pulling on the shuttle/pull device to allow the multiple strands/limbs to pass through the flexible strand and to form a locking splice. In an embodiment, individual multiple strands/limbs are each advanced until desired tension is achieved creating simple stitches along the tissue. In an embodiment, individual multiple strands/limbs may be sequentially advanced through the flexible strand.
According to another embodiment, a method of soft tissue repair comprises inter alia: (i) inserting a fixation device of a surgical construct into bone, the surgical construct comprising a fixation device (for example, an anchor) with a flexible strand (for example, suture) that is attached to the fixation device and that is split into multiple strands/limbs, and with a shuttle/pull device (a suture passing instrument) attached to the flexible strand; (ii) passing the multiple strands/limbs together with the shuttle/pull device around or through tissue to be fixated (or reattached) to bone; (iii) subsequently, passing the multiple strands/limbs through an eyelet/loop of the shuttle/pull device; and (iv) subsequently, pulling on the shuttle/pull device to allow the multiple strands/limbs to pass through the flexible strand and to form a locking splice. In an embodiment, individual multiple strands/limbs are each advanced until the desired tension is achieved creating a mattress stitch on the tissue. In an embodiment, individual multiple strands/limbs may be sequentially advanced through the flexible strand.
Referring now to the drawings, where like elements are designated by like reference numerals,
In an exemplary embodiment, fixation device 10 is a tensionable knotless anchor having a solid anchor body 11 provided with a longitudinal axis 11a, a proximal end 13, a distal end 12, and a plurality of ribs or ridges 15 extending circumferentially around body 11. Cannulation 11b extends along the body 11 to allow passage of flexible strand 30 and of a suture passing device, as detailed below. Proximal end 13 of the anchor 10 may contain a socket 19 (
In an exemplary embodiment, fixation device 10 is an anchor 10 which may be a screw-in anchor or a push-in style anchor. Anchor 10 may be formed of metal, biocompatible plastic such as PEEK, or a bioabsorbable PLLA material. Socket 19 at the distal end 13 of the anchor 10 may have any shape adapted to receive a driver tip for pushing tap-in or screw-in style anchors. Anchor 10 may be made of one or more pieces (a multi-piece construct), or may be provided as an integrated device (a unitary device). Anchor 10 may have various sizes (various diameters and/or lengths) and may be formed of biocompatible materials such as PEEK, biocomposite materials, metals and/or metal alloys, or combination of such materials, among others.
In an embodiment, construct 99 (tensionable construct 99) may be formed of flexible strand 30 (flexible material, suture, or tie down suture 30) and shuttle/pull device 40 (suture passing instrument such as FiberLink™ 40, wire loop 40, or nitinol loop 40) attached to the flexible strand 30. In an exemplary embodiment, the flexible strand 30 is a suture strand 30 and the shuttle/pull device 40 is a suture passing device 40. The flexible strand 30 includes an end 32 (unsplit end, unsplit region, or unsplit suture 32) which terminates in knot 31, and another end which is split into multiple limbs 33a, 33b . . . 33n (where “n” may be any number greater than 2). For simplicity,
Suture 30, which is typically braided or multi-filament or tape, may be preloaded onto the anchor by tying static knot 31 which prevents suture 30 from passing through distal blind hole 12a. The suture may also be preloaded by insert molding or by any other means known in the art. Suture 30 passes through cannulation 11b and terminates in limbs 33a, 33b exiting proximal end 13 of body 11. Tensionable knotless anchor 10 is loaded onto a driver (not shown in
Prior to the fastening of the anchor 10 to the driver, suture passing device 40 (for example, a FiberLink™, a wire loop, or a nitinol loop) is threaded through suture 30 (i.e., attached to a center of the suture 30 through splice region 39 of unsplit end or region 32), as shown in
Once limbs 33a, 33b have been fully passed through suture 30, each of the limbs 33a, 33b may be pulled to reduce the perimeter of loops 88a, 88b and until tissue 50 has been moved to the desired location, such as near a drilled hole in bone 80. Once the desired tension and location is achieved, ends of limbs 33a, 33b may be clipped off to complete the soft tissue repair or fixation 200.
Surgical construct 100 with the knotless anchor 10 and tensionable construct 99 may be employed in following exemplary repairs:
1) Used in subscapularis repair for simple partial tears: place anchor 10, pass sutures, shuttle using FiberLoop® (Arthrex, Inc., Naples, Fla.), and tighten.
2) Full rotator cuff (RC) tears (subscapularis, supraspinatus, infraspinatus).
3) Partial Articular-sided Supraspinatus Tendon Avulsion (PASTA) Repair:
4) A tape such as FiberTape® could be incorporated into anchor 10:
5) InternalBrace™—preferably employed with tape. InternalBrace™ may be employed with anchor 10 and interlock anchors across a joint. This would allow a surgeon to “dial in” how much tension to place on the construct. Instead of trying to fix the tension with the initial fixation with the proper length of the FiberTape® (Arthrex, Inc., Naples, Fla.), this technique would allow a surgeon to tighten sequentially. Any external ligament reconstruction or repair like medial collateral ligament (MCL), medial patella-femoral ligament (MPFL), lateral collateral ligament (LCL), anterior cruciate (AC), ankle, etc. would be appropriate. Any internal reconstruction or repair like anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) could potentially be internally braced with this anchor as well.
6) Any use of a SwiveLock® would be appropriate usage of anchor 10 in lieu of a free suture and vented SwiveLock® (VSL).
Although tensionable knotless anchor 10 has been depicted above having ridges 15, and thus designed to be pushed into bone 80, it could instead be fabricated with threads and thereby designed to be twisted or screwed into bone.
Surgical system 100 of
The knotless suture constructs and systems detailed above may be used in conjunction with any knotless fixation devices which can allow a flexible strand and attached suture passing device to form a single locking splice with attached multiple adjustable loops formed by multiple suture limbs. The knotless suture constructs and systems detailed above may be used in conjunction with any additional fixation devices (which may be similar to or different from construct 100) depending on the characteristics of the repair site.
A flexible strand may be a suture strand, a tape such as suture tape, or any suture-like material known in the art that could pass through tissue. A flexible strand may include a high-strength suture, such as an ultrahigh molecular weight polyethylene (UHMWPE) suture. High strength suture may be a FiberWire® suture (Arthrex). FiberWire® suture is formed of an advanced, high-strength fiber material, namely ultrahigh molecular weight polyethylene (UHMWPE), sold under the tradenames Spectra® (Honeywell International Inc., Colonial Heights, Va.) and Dyneema® (DSM N. V., Heerlen, the Netherlands), braided with at least one other fiber, natural or synthetic, to form lengths of suture material.
A flexible strand may be also formed of TigerWire® suture, or suture chain (such as FiberChain® disclosed in U.S. Pat. No. 7,803,173), or suture tape (such as FiberTape® disclosed in U.S. Pat. No. 7,892,256), the disclosures of which are all incorporated in their entireties herein.
At least one of a flexible strand and a shuttle/pull device may be made of any known suture material, such as UHMWPE material or the FiberWire® suture. The UHWMPE suture may be without a core to permit ease of splicing. The shuttle/pull device may be a shuttle/pull suture device such as a FiberLink™ or a Nitinol loop.
The limbs may also be formed of a flexible material, a stiff material, or combination of stiff and flexible materials, depending on the intended application. Both the limbs and the splice region may be also coated and/or provided in different colors. The knotless anchors of the present invention can be used with any type of flexible material or suture that forms a splice and a loop.
Number | Name | Date | Kind |
---|---|---|---|
330087 | Binns | Nov 1885 | A |
2698986 | Brown | Jan 1955 | A |
3176316 | Bodelll | Apr 1965 | A |
4099750 | McGrew | Jul 1978 | A |
4187558 | Dahlen et al. | Feb 1980 | A |
4301551 | Dore et al. | Nov 1981 | A |
4400833 | Kurland | Aug 1983 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4790850 | Dunn et al. | Dec 1988 | A |
4792336 | Hlavacek et al. | Dec 1988 | A |
4851005 | Hunt et al. | Jul 1989 | A |
4863471 | Mansat | Sep 1989 | A |
4917700 | Aikins | Apr 1990 | A |
4932972 | Dunn et al. | Jun 1990 | A |
5024669 | Peterson et al. | Jun 1991 | A |
5026398 | May et al. | Jun 1991 | A |
5062344 | Gerker | Nov 1991 | A |
5129902 | Goble et al. | Jul 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5171274 | Fluckiger et al. | Dec 1992 | A |
5211647 | Schmieding | May 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5263984 | Li et al. | Nov 1993 | A |
5266075 | Clark et al. | Nov 1993 | A |
5306301 | Graf et al. | Apr 1994 | A |
5320626 | Schmieding | Jun 1994 | A |
5397357 | Schmieding et al. | Mar 1995 | A |
5517542 | Huq | May 1996 | A |
5534011 | Greene, Jr. et al. | Jul 1996 | A |
5562669 | McGuire | Oct 1996 | A |
5575819 | Amis | Nov 1996 | A |
5628756 | Barker et al. | May 1997 | A |
5643266 | Li | Jul 1997 | A |
5645588 | Graf et al. | Jul 1997 | A |
5690676 | DiPoto et al. | Nov 1997 | A |
5699657 | Paulson | Dec 1997 | A |
5931869 | Boucher et al. | Aug 1999 | A |
5961520 | Beck et al. | Oct 1999 | A |
5964764 | West, Jr. et al. | Oct 1999 | A |
6056752 | Roger | May 2000 | A |
6099530 | Simonian et al. | Aug 2000 | A |
6099568 | Simonian et al. | Aug 2000 | A |
6110207 | Eichhorn et al. | Aug 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6193754 | Seedhom | Feb 2001 | B1 |
6203572 | Johnson et al. | Mar 2001 | B1 |
6283996 | Chervitz et al. | Sep 2001 | B1 |
6296659 | Foerster | Oct 2001 | B1 |
6325804 | Wenstrom et al. | Dec 2001 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6533802 | Bojarski et al. | Mar 2003 | B2 |
6592609 | Bonutti | Jul 2003 | B1 |
6991636 | Rose | Jan 2006 | B2 |
7097654 | Freedland | Aug 2006 | B1 |
7217279 | Reese et al. | May 2007 | B2 |
7261716 | Strobel et al. | Aug 2007 | B2 |
7320701 | Haut et al. | Jan 2008 | B2 |
7494506 | Brulez et al. | Feb 2009 | B2 |
7686838 | Wolf et al. | Mar 2010 | B2 |
7713286 | Singhatat | May 2010 | B2 |
7749250 | Stone et al. | Jul 2010 | B2 |
7776039 | Bernstein et al. | Aug 2010 | B2 |
7803173 | Burkhart et al. | Sep 2010 | B2 |
7819898 | Stone et al. | Oct 2010 | B2 |
7828855 | Ellis et al. | Nov 2010 | B2 |
7875052 | Kawaura et al. | Jan 2011 | B2 |
7875057 | Cook et al. | Jan 2011 | B2 |
7892256 | Grafton et al. | Feb 2011 | B2 |
7905903 | Stone et al. | Mar 2011 | B2 |
7914539 | Stone et al. | Mar 2011 | B2 |
7938847 | Fanton et al. | May 2011 | B2 |
8029536 | Sorensen et al. | Oct 2011 | B2 |
8088130 | Kaiser et al. | Jan 2012 | B2 |
8109965 | Stone et al. | Feb 2012 | B2 |
8118836 | Denham et al. | Feb 2012 | B2 |
8162997 | Struhl | Apr 2012 | B2 |
8206446 | Montgomery | Jun 2012 | B1 |
8231654 | Kaiser et al. | Jul 2012 | B2 |
8277484 | Barbieri et al. | Oct 2012 | B2 |
8460322 | Van Der Burg et al. | Jun 2013 | B2 |
8460340 | Sojka et al. | Jun 2013 | B2 |
8652171 | Stone et al. | Feb 2014 | B2 |
8652172 | Denham et al. | Feb 2014 | B2 |
8721684 | Denham et al. | May 2014 | B2 |
8758406 | Fanton et al. | Jun 2014 | B2 |
8771315 | Lunn et al. | Jul 2014 | B2 |
8814905 | Sengun et al. | Aug 2014 | B2 |
8821543 | Hernandez et al. | Sep 2014 | B2 |
8821545 | Sengun | Sep 2014 | B2 |
8932331 | Kaiser et al. | Jan 2015 | B2 |
8936621 | Denham et al. | Jan 2015 | B2 |
9017381 | Kaiser et al. | Apr 2015 | B2 |
9107653 | Sullivan | Aug 2015 | B2 |
20010041938 | Hein | Nov 2001 | A1 |
20020052629 | Morgan et al. | May 2002 | A1 |
20020161439 | Strobel et al. | Oct 2002 | A1 |
20030114929 | Knudsen et al. | Jun 2003 | A1 |
20040015171 | Bojarski et al. | Jan 2004 | A1 |
20040059415 | Schmieding | Mar 2004 | A1 |
20040073306 | Eichhorn et al. | Apr 2004 | A1 |
20040243235 | Goh et al. | Dec 2004 | A1 |
20040267360 | Huber | Dec 2004 | A1 |
20050004670 | Gebhardt et al. | Jan 2005 | A1 |
20050033363 | Bojarski et al. | Feb 2005 | A1 |
20050065533 | Magen et al. | Mar 2005 | A1 |
20050070906 | Clark et al. | Mar 2005 | A1 |
20050137704 | Steenlage | Jun 2005 | A1 |
20050149187 | Clark et al. | Jul 2005 | A1 |
20050171603 | Justin et al. | Aug 2005 | A1 |
20050203623 | Steiner et al. | Sep 2005 | A1 |
20050261766 | Chervitz et al. | Nov 2005 | A1 |
20060067971 | Story et al. | Mar 2006 | A1 |
20060095130 | Caborn et al. | May 2006 | A1 |
20060142769 | Collette | Jun 2006 | A1 |
20060265064 | Re et al. | Nov 2006 | A1 |
20070021839 | Lowe | Jan 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070118217 | Brulez et al. | May 2007 | A1 |
20070156148 | Fanton et al. | Jul 2007 | A1 |
20070162123 | Whittaker et al. | Jul 2007 | A1 |
20070162125 | LeBeau et al. | Jul 2007 | A1 |
20070179531 | Thornes | Aug 2007 | A1 |
20070185494 | Reese et al. | Aug 2007 | A1 |
20070203508 | White et al. | Aug 2007 | A1 |
20070225805 | Schmieding | Sep 2007 | A1 |
20070239209 | Fallman | Oct 2007 | A1 |
20070239275 | Willobee | Oct 2007 | A1 |
20070250163 | Cassani | Oct 2007 | A1 |
20070270857 | Lombardo et al. | Nov 2007 | A1 |
20080009904 | Bourque et al. | Jan 2008 | A1 |
20080046009 | Albertorio et al. | Feb 2008 | A1 |
20080109037 | Steiner et al. | May 2008 | A1 |
20080140092 | Stone et al. | Jun 2008 | A1 |
20080177302 | Shurnas | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080188936 | Ball et al. | Aug 2008 | A1 |
20080208252 | Holmes | Aug 2008 | A1 |
20080215150 | Koob et al. | Sep 2008 | A1 |
20080228271 | Stone et al. | Sep 2008 | A1 |
20080234819 | Schmieding et al. | Sep 2008 | A1 |
20080243248 | Stone et al. | Oct 2008 | A1 |
20080255613 | Kaiser et al. | Oct 2008 | A1 |
20080275553 | Wolf et al. | Nov 2008 | A1 |
20080275554 | Iannarone et al. | Nov 2008 | A1 |
20080300683 | Altman et al. | Dec 2008 | A1 |
20080312689 | Denham et al. | Dec 2008 | A1 |
20090018654 | Schmieding et al. | Jan 2009 | A1 |
20090030516 | Imbert | Jan 2009 | A1 |
20090054982 | Cimino | Feb 2009 | A1 |
20090062854 | Kaiser et al. | Mar 2009 | A1 |
20090069847 | Hashiba et al. | Mar 2009 | A1 |
20090082805 | Kaiser et al. | Mar 2009 | A1 |
20090187244 | Dross | Jul 2009 | A1 |
20090192546 | Schmieding et al. | Jul 2009 | A1 |
20090216326 | Hirpara et al. | Aug 2009 | A1 |
20090228017 | Collins | Sep 2009 | A1 |
20090234451 | Manderson | Sep 2009 | A1 |
20090265003 | Re et al. | Oct 2009 | A1 |
20090275950 | Sterrett et al. | Nov 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20090306784 | Blum | Dec 2009 | A1 |
20090312776 | Kaiser et al. | Dec 2009 | A1 |
20100049258 | Dougherty | Feb 2010 | A1 |
20100049319 | Dougherty | Feb 2010 | A1 |
20100100182 | Barnes et al. | Apr 2010 | A1 |
20100145384 | Stone et al. | Jun 2010 | A1 |
20100145448 | Montes De Oca Balderas et al. | Jun 2010 | A1 |
20100211075 | Stone | Aug 2010 | A1 |
20100211173 | Bardos et al. | Aug 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100268273 | Albertorio et al. | Oct 2010 | A1 |
20100268275 | Stone et al. | Oct 2010 | A1 |
20100274355 | McGuire et al. | Oct 2010 | A1 |
20100274356 | Fening et al. | Oct 2010 | A1 |
20100292733 | Hendricksen et al. | Nov 2010 | A1 |
20100292792 | Stone et al. | Nov 2010 | A1 |
20100305709 | Metzger et al. | Dec 2010 | A1 |
20100312341 | Kaiser et al. | Dec 2010 | A1 |
20100318188 | Linares | Dec 2010 | A1 |
20100324676 | Albertorio et al. | Dec 2010 | A1 |
20100331975 | Nissan et al. | Dec 2010 | A1 |
20110022083 | DiMatteo | Jan 2011 | A1 |
20110040380 | Schmieding et al. | Feb 2011 | A1 |
20110046734 | Tobis et al. | Feb 2011 | A1 |
20110054609 | Cook et al. | Mar 2011 | A1 |
20110071545 | Pamichev et al. | Mar 2011 | A1 |
20110087283 | Donnelly et al. | Apr 2011 | A1 |
20110087284 | Stone et al. | Apr 2011 | A1 |
20110098727 | Kaiser et al. | Apr 2011 | A1 |
20110112640 | Amis et al. | May 2011 | A1 |
20110112641 | Justin et al. | May 2011 | A1 |
20110118838 | Delli-Santi et al. | May 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110184227 | Altman et al. | Jul 2011 | A1 |
20110196432 | Griffis, III | Aug 2011 | A1 |
20110196490 | Gadikota et al. | Aug 2011 | A1 |
20110218625 | Berelsman et al. | Sep 2011 | A1 |
20110238179 | Laurencin et al. | Sep 2011 | A1 |
20110270278 | Overes et al. | Nov 2011 | A1 |
20110276137 | Seedhom et al. | Nov 2011 | A1 |
20110288635 | Miller et al. | Nov 2011 | A1 |
20110301707 | Buskirk et al. | Dec 2011 | A1 |
20110301708 | Stone et al. | Dec 2011 | A1 |
20120046746 | Konicek | Feb 2012 | A1 |
20120046747 | Justin et al. | Feb 2012 | A1 |
20120053627 | Sojka et al. | Mar 2012 | A1 |
20120053630 | Denham et al. | Mar 2012 | A1 |
20120065732 | Roller et al. | Mar 2012 | A1 |
20120089143 | Martin et al. | Apr 2012 | A1 |
20120089193 | Stone et al. | Apr 2012 | A1 |
20120109299 | Li et al. | May 2012 | A1 |
20120123473 | Hernandez | May 2012 | A1 |
20120123474 | Zajac et al. | May 2012 | A1 |
20120123541 | Albertorio et al. | May 2012 | A1 |
20120130424 | Sengun et al. | May 2012 | A1 |
20120150297 | Denham et al. | Jun 2012 | A1 |
20120158051 | Foerster | Jun 2012 | A1 |
20120165867 | Denham et al. | Jun 2012 | A1 |
20120165938 | Denham et al. | Jun 2012 | A1 |
20120179199 | Hernandez et al. | Jul 2012 | A1 |
20120197271 | Astorino et al. | Aug 2012 | A1 |
20120239085 | Schlotterback et al. | Sep 2012 | A1 |
20120290003 | Dreyfuss | Nov 2012 | A1 |
20120296345 | Wack et al. | Nov 2012 | A1 |
20120330357 | Thal | Dec 2012 | A1 |
20130023928 | Dreyfuss | Jan 2013 | A1 |
20130023929 | Sullivan et al. | Jan 2013 | A1 |
20130072975 | Van Der Burg et al. | Mar 2013 | A1 |
20130085528 | DiMatteo et al. | Apr 2013 | A1 |
20130096611 | Sullivan | Apr 2013 | A1 |
20130123842 | Chan et al. | May 2013 | A1 |
20130131723 | Snell et al. | May 2013 | A1 |
20130144338 | Stone et al. | Jun 2013 | A1 |
20130165972 | Sullivan | Jun 2013 | A1 |
20130190819 | Norton | Jul 2013 | A1 |
20130345749 | Sullivan et al. | Dec 2013 | A1 |
20130345750 | Sullivan | Dec 2013 | A1 |
20140039551 | Donahue | Feb 2014 | A1 |
20140052179 | Dreyfuss et al. | Feb 2014 | A1 |
20140121700 | Dreyfuss et al. | May 2014 | A1 |
20140142627 | Hendricksen et al. | May 2014 | A1 |
20140188163 | Sengun | Jul 2014 | A1 |
20140188164 | Sengun | Jul 2014 | A1 |
20140257378 | Norton et al. | Sep 2014 | A1 |
20140257382 | McCartney | Sep 2014 | A1 |
20140257384 | Dreyfuss et al. | Sep 2014 | A1 |
20140276992 | Stone et al. | Sep 2014 | A1 |
20150045832 | Sengun | Feb 2015 | A1 |
20150245831 | Sullivan | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
299 10 202 | Sep 1999 | DE |
201 01 791 | Jun 2001 | DE |
0 440 991 | Aug 1991 | EP |
1 108 401 | Jun 2001 | EP |
1 707 127 | Oct 2006 | EP |
2 572 648 | Mar 2013 | EP |
WO 03022161 | Mar 2003 | WO |
WO 2006037131 | Apr 2006 | WO |
WO 2007002561 | Jan 2007 | WO |
WO 2007109769 | Sep 2007 | WO |
WO 2008091690 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20170049432 A1 | Feb 2017 | US |