The present invention relates to surgical devices and, in particular, to devices for repair or fixation of soft tissue to bone without the need for knots.
When soft tissue such as a ligament or a tendon becomes detached from a bone, surgery is usually required to reattach or reconstruct the tissue. Often, a tissue graft is attached to the bone to facilitate regrowth and permanent attachment. Techniques and devices that have been developed generally involve tying the soft tissue with suture to an anchor or a hole provided in the bone tissue. Knotless suture anchors, such as the two piece Arthrex PushLock® anchor, disclosed in U.S. Pat. No. 7,329,272, have been developed to facilitate tissue fixation to bone.
There is a need for a knotless anchor which has a design that allows tensioning of the suture as necessary and after insertion into bone. Also needed is a tensionable anchor that does not require tying of knots and allows adjustment of both the tension of the suture and the location of the tissue with respect to the bone.
The present invention fulfills the above needs and objectives by providing a knotless, tensionable suture anchor. The suture anchor of the present invention has a configuration which allows the suture to be spliced and passed through itself within the suture anchor, to create a construct that is tensionable after insertion in bone (to allow attached tissue to be brought proximate to bone) and does not require tying of any knots.
Other features and advantages of the present invention will become apparent from the following description of the invention.
The present invention provides surgical constructs, systems and techniques for knotless soft tissue repair and fixation, such as fixation of soft tissue (ligament, tendon, graft, etc.) to bone. The surgical constructs comprise fixation devices (tensionable knotless anchors) that are inserted into bone with a suture mechanism (tensionable construct) formed of a flexible strand (a suture) provided within the fixation device and a shuttle/pull device (a suture passing instrument) attached to the flexible strand. The flexible strand and the shuttle/pull device attached to it allow the formation of a splice within or outside the body of the anchor and during the tissue repair procedure (to finalize the construct). The shuttle/pull device is provided within the strand (inside of the strand) and forms the splice subsequent to the insertion of the fixation device within the bone (and subsequent to attachment to soft tissue to be repaired or fixated) to allow formation of the final fixation device with a knotless self-locking mechanism that allows the user (for example, the surgeon) to control the tension of the strand on the soft tissue to be attached to bone.
At least one of the flexible strand and the shuttle/pull device may be made of any known suture material, such as ultrahigh molecular weight poly ethylene (UHMWPE) or the FiberWire® suture (disclosed in U.S. Pat. No. 6,716,234 which is hereby incorporated by reference in its entirety). Typically the suture will be UHWMPE suture without a core to permit ease of splicing. The shuttle/pull device may be a shuttle/pull suture device such as a FiberLink™ or a Nitinol loop.
The present invention also provides methods of soft tissue repair which do not require tying of knots and allow adjustment of both the tension of the suture and the location of the tissue with respect to the bone. An exemplary method of the present invention comprises inter alia the steps of: (i) providing a surgical construct comprising a fixation device (for example, an anchor) with a flexible strand (for example, suture) and with a shuttle/pull device (a suture passing instrument) attached to the flexible strand; (ii) inserting the fixation device into bone; (iii) passing the flexible strand around or through tissue to be fixated (or reattached) to bone, and then through an eyelet/loop of the shuttle/pull device; (iv) subsequently, pulling on the shuttle/pull device to allow the flexible strand to pass through itself and to form a splice; and (v) pulling on the flexible strand to allow the soft tissue to achieve the desired location relative to the bone, and to allow proper tensioning of the final construct.
The flexible strand may be passed through at least a portion of the body of the fixation device (for example, through a full cannulation of the fixation device, or through a transversal opening at a distal end of the fixation device). Alternatively, the flexible strand may be fixed to the fixation device (which may be solid or cannulated) by overmolding the suture to the anchor body or by compressing the suture against the bone (achieving an interference fit between the fixation device and the bone tunnel, compressing the flexible strand). The splice may be formed within the body of the fixation device or outside the body of the fixation device. Upon insertion into the bone and tensioning, the splice may reside within the body of the fixation device or outside the body of the fixation device (but within a bone tunnel).
Another exemplary method of the present invention comprises inter alia the steps of: (i) providing a surgical construct comprising a fixation device (for example, an anchor) with a flexible strand (for example, suture) extending through the body of the fixation device and with a shuttle/pull device (a suture passing instrument) attached to the flexible strand; (ii) inserting the fixation device into bone; (iii) passing the flexible strand around or through tissue to be fixated (or reattached) to bone, and then through an eyelet/loop of the shuttle/pull device; (iv) subsequently, pulling on the shuttle/pull device to allow the flexible strand to pass through itself and to form a splice within the body of the fixation device (with the flexible strand passing through itself); and (v) pulling on the flexible strand to allow the soft tissue to achieve the desired location relative to the bone, and to allow proper tensioning of the final construct.
According to another exemplary method of the present invention, a method of tissue repair comprises inter alia the steps of: (i) providing a surgical construct comprising a fixation device (for example, an anchor) with a flexible strand (for example, suture) fixed to the fixation device and with a shuttle/pull device (a suture passing instrument) attached to the flexible strand; (ii) inserting the fixation device into bone; (iii) passing the flexible strand around or through tissue to be fixated (or reattached) to bone, and then through an eyelet/loop of the shuttle/pull device; (iv) subsequently, pulling on the shuttle/pull device to allow the flexible strand to pass through itself and to form a splice outside the body of the fixation device (i.e., with the flexible strand passing through itself and the splice being located outside the body of the fixation device); and (v) pulling on the flexible strand to allow the soft tissue to achieve the desired location relative to the bone, and to allow proper tensioning of the final construct.
Referring now to the drawings, where like elements are designated by like reference numerals,
Cylindrical portion 14 is provided at the proximal end 13 of the anchor 10 and contains a socket 19 (
Openings/channels 16, 17 are positioned opposite to each other relative to the post 20 and also symmetrically located relative to the post 20, to allow flexible strand 30 (suture 30) and shuttle/pull device 40 (suture passing instrument 40) to pass and slide therethrough, as also detailed below. Openings/channels 16, 17 extend in a direction about perpendicular to the longitudinal axis 11a, and communicate through recesses 16a, 17a with the outer surfaces 11c of anchor body 11. Only recess 16a is shown in
Anchor 10 may be a screw-in anchor or a push-in style anchor. Anchor 10 may be formed of metal, biocompatible plastic such as PEEK or a bioabsorbable PLLA material. Socket 19 at the distal end 13 of the anchor 10 is configured to securely engage a tip of a driver, as detailed below. The socket of the anchor 10 may have any shape adapted to receive a driver tip for pushing tap-in or screw-in style anchors. Tensionable knotless anchor 10 may be made of one or more pieces, or may be provided as an integrated device.
Reference is now made to
Suture 30, which is typically braided or multi-filament, is preloaded onto the anchor by tying static knot 31, which prevents suture 30 from passing through distal blind hole 12a. The suture may also be preloaded by insert molding or by any other means known in the art. Suture 30 passes around post 20, which is large enough to allow suture 30 to take gradual turns instead of sharp turns. Suture 30 then passes through cannulation 11b and proximal blind hole 13a. Tensionable knotless anchor 10 is loaded onto a driver (not shown in
Prior to the fastening of the anchor 10 to the driver, suture passing device 40 (for example, a FiberLink™ or a nitinol loop) is threaded through suture 30 (i.e., attached to the suture 30 through splice region 39), as shown in
In
The surgical construct 100 with the knotless anchor 10 and tensionable construct 99 of the invention offers the following advantages:
Although tensionable knotless anchor 210 is depicted in
In
Once the suture 30 has been fully passed through itself, the suture end 32 (
Reference is now made to
The final splice mechanism 221 (
Tensionable knotless anchor 310 of
Although tensionable knotless anchor 310 is depicted in
In this exemplary embodiment, and as shown in
An exemplary method of tissue repair with surgical construct 200 (including tensionable anchor 310, 310a, flexible material 30 and passing device 40) comprises inter alia the steps of: (i) providing a surgical construct 99 comprising a fixation device 310a (for example, anchor) with a flexible strand 30 (for example, suture) fixed to the fixation device 310a (by knot 31, for example) and with a shuttle/pull device 40 (a suture passing instrument) attached to the flexible strand 30; (ii) inserting the fixation device 310 into bone; (iii) passing the flexible strand 30 around or through tissue to be fixated (or reattached) to bone, and then through an eyelet/loop of the shuttle/pull device 40; (iv) subsequently, pulling on the shuttle/pull device 40 to allow the flexible strand 30 to pass through itself and to form a splice 221 outside of the body of the fixation device (with the flexible strand passing through itself); and (v) pulling on the flexible strand to allow the soft tissue to achieve the desired location relative to the bone, and to allow proper tensioning of the final construct.
The knotless tensionable anchor 310b of
Tensionable anchor 310b of
Upon insertion into bone socket or tunnel 88 in bone 80, the suture mechanism forms the splice 221 similar to those formed in the above-described embodiments (i.e., with flexible strand 30 and shuttle/pull device 40 attached to the strand 30 and in a manner similar to the formation of the final constructs described above). However, splice 221 is contained within the bone 80 instead of the anchor body. As shown in
An exemplary method of tissue repair employing anchor 310b of
Anchor 310, 310a, 310b may be formed of metal, biocompatible plastic such as PEEK or a bioabsorbable PLLA material. The anchors may be provided with a socket at the distal end (such as socket 19 of the anchor 10) configured to securely engage a tip of a driver. The socket of the anchor 310, 310a, 310b may have any shape adapted to receive a driver tip for pushing the anchors, for example, tap-in or screw-in style anchors. Tensionable knotless anchor 310, 310a, 310b may be made of one or more pieces, or may be provided as an integrated device.
The knotless suture constructs and systems of the present invention are used in conjunction with any knotless fixation devices which can allow a flexible strand and attached suture passing device to form a splice within the body of the fixation device. The fixation devices may be any of swivel and/or screw-in suture anchors and/or push-in suture anchors (such as an Arthrex SwiveLock® anchor, disclosed in U.S. Patent Application Publication No. 2008/0004659 or a PushLock® anchor, as disclosed in U.S. Pat. No. 7,329,272). The fixation devices may be also any anchors, implants or screws (such as interference screws or tenodesis screws) or any fixation element that allows attachment/fixation of the knotless suture construct to bone. The fixation devices/implants may have various sizes (various diameters and/or lengths) and may be formed of biocompatible materials such as PEEK, biocomposite materials, metals and/or metal alloys, or combination of such materials, among others. The fixation devices may be unitary or may be multiple-piece constructs.
The flexible strand 30 may be a high-strength suture, such as an ultrahigh molecular weight polyethylene (UHMWPE) suture which is the preferred material as this material allows easy splicing. Alternatively, the high strength suture may be a FiberWire® suture, which is disclosed and claimed in U.S. Pat. No. 6,716,234, the entire disclosure of which is incorporated herein by reference. FiberWire® suture is formed of an advanced, high-strength fiber material, namely ultrahigh molecular weight polyethylene (UHMWPE), sold under the tradenames Spectra (Honeywell) and Dyneema (DSM) fibers, braided with at least one other fiber, natural or synthetic, to form lengths of suture material.
The strands may also be formed of a stiff material, or combination of stiff and flexible materials, depending on the intended application. The strands may be also coated and/or provided in different colors. The knotless anchors of the present invention can be used with any type of flexible material or suture that forms a splice and a loop.
The knotless suture constructs also include sutures that are spliced—at least in part—in a manner similar to an Arthrex ACL TightRope®, such as disclosed in U.S. Patent Application Publication Nos. 2010/0256677 and 2010/0268273, the disclosures of which are incorporated by reference herein.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, embodiments and substitution of equivalents all fall within the scope of the invention. Accordingly, the invention is to be limited not by the specific disclosure herein, but only by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/537,811, filed Sep. 22, 2011, and of U.S. Provisional Application No. 61/663,024, filed Jun. 22, 2012, the disclosures of both of which are incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
330087 | Binns | Nov 1885 | A |
2698986 | Brown | Jan 1955 | A |
3176316 | Bodell | Apr 1965 | A |
4099750 | McGrew | Jul 1978 | A |
4187558 | Dahlen et al. | Feb 1980 | A |
4301551 | Dore et al. | Nov 1981 | A |
4400833 | Kurland | Aug 1983 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4790850 | Dunn et al. | Dec 1988 | A |
4792336 | Hlavacek et al. | Dec 1988 | A |
4851005 | Hunt et al. | Jul 1989 | A |
4863471 | Mansat | Sep 1989 | A |
4917700 | Aikins | Apr 1990 | A |
4932972 | Dunn et al. | Jun 1990 | A |
5024669 | Peterson et al. | Jun 1991 | A |
5026398 | May et al. | Jun 1991 | A |
5062344 | Gerker | Nov 1991 | A |
5129902 | Goble et al. | Jul 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5171274 | Fluckiger et al. | Dec 1992 | A |
5211647 | Schmieding | May 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5263984 | Li et al. | Nov 1993 | A |
5266075 | Clark et al. | Nov 1993 | A |
5306301 | Graf et al. | Apr 1994 | A |
5320626 | Schmieding | Jun 1994 | A |
5397357 | Schmieding et al. | Mar 1995 | A |
5534011 | Greene et al. | Jul 1996 | A |
5562669 | McGuire | Oct 1996 | A |
5575819 | Amis | Nov 1996 | A |
5628756 | Barker et al. | May 1997 | A |
5643266 | Li | Jul 1997 | A |
5645588 | Graf et al. | Jul 1997 | A |
5690676 | DiPoto et al. | Nov 1997 | A |
5699657 | Paulson | Dec 1997 | A |
5931869 | Boucher et al. | Aug 1999 | A |
5961520 | Beck et al. | Oct 1999 | A |
5964764 | West, Jr. et al. | Oct 1999 | A |
6056752 | Roger | May 2000 | A |
6099530 | Simonian et al. | Aug 2000 | A |
6099568 | Simonian et al. | Aug 2000 | A |
6110207 | Eichhorn et al. | Aug 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6193754 | Seedhom | Feb 2001 | B1 |
6203572 | Johnson et al. | Mar 2001 | B1 |
6283996 | Chervitz et al. | Sep 2001 | B1 |
6296659 | Foerster | Oct 2001 | B1 |
6325804 | Wenstrom et al. | Dec 2001 | B1 |
6517542 | Papay et al. | Feb 2003 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6533802 | Bojarski et al. | Mar 2003 | B2 |
6592609 | Bonutti | Jul 2003 | B1 |
6991636 | Rose | Jan 2006 | B2 |
7097654 | Freedland | Aug 2006 | B1 |
7217279 | Reese | May 2007 | B2 |
7261716 | Strobel et al. | Aug 2007 | B2 |
7320701 | Haut et al. | Jan 2008 | B2 |
7494506 | Brulez et al. | Feb 2009 | B2 |
7686838 | Wolf et al. | Mar 2010 | B2 |
7713286 | Singhatat | May 2010 | B2 |
7749250 | Stone et al. | Jul 2010 | B2 |
7776039 | Bernstein et al. | Aug 2010 | B2 |
7819898 | Stone et al. | Oct 2010 | B2 |
7828855 | Ellis et al. | Nov 2010 | B2 |
7875052 | Kawaura et al. | Jan 2011 | B2 |
7875057 | Cook et al. | Jan 2011 | B2 |
7905903 | Stone et al. | Mar 2011 | B2 |
7914539 | Stone et al. | Mar 2011 | B2 |
7938847 | Fanton et al. | May 2011 | B2 |
8029536 | Sorensen et al. | Oct 2011 | B2 |
8088130 | Kaiser et al. | Jan 2012 | B2 |
8109965 | Stone et al. | Feb 2012 | B2 |
8118836 | Denham et al. | Feb 2012 | B2 |
8162997 | Struhl | Apr 2012 | B2 |
8206446 | Montgomery | Jun 2012 | B1 |
8231654 | Kaiser et al. | Jul 2012 | B2 |
8277484 | Barbieri et al. | Oct 2012 | B2 |
8460322 | van der Burg et al. | Jun 2013 | B2 |
8460340 | Sojka et al. | Jun 2013 | B2 |
8652171 | Stone et al. | Feb 2014 | B2 |
8652172 | Denham et al. | Feb 2014 | B2 |
8758406 | Fanton et al. | Jun 2014 | B2 |
8771315 | Lunn et al. | Jul 2014 | B2 |
8814905 | Sengun et al. | Aug 2014 | B2 |
8821543 | Hernandez et al. | Sep 2014 | B2 |
8821545 | Sengun | Sep 2014 | B2 |
8932331 | Kaiser et al. | Jan 2015 | B2 |
8936621 | Denham et al. | Jan 2015 | B2 |
20010041938 | Hein | Nov 2001 | A1 |
20020052629 | Morgan et al. | May 2002 | A1 |
20020161439 | Strobel et al. | Oct 2002 | A1 |
20030114929 | Knudsen et al. | Jun 2003 | A1 |
20040015171 | Bojarski et al. | Jan 2004 | A1 |
20040059415 | Schmieding | Mar 2004 | A1 |
20040073306 | Eichhorn et al. | Apr 2004 | A1 |
20040243235 | Goh et al. | Dec 2004 | A1 |
20040267360 | Huber | Dec 2004 | A1 |
20050004670 | Gebhardt et al. | Jan 2005 | A1 |
20050033363 | Bojarski et al. | Feb 2005 | A1 |
20050065533 | Magen et al. | Mar 2005 | A1 |
20050070906 | Clark et al. | Mar 2005 | A1 |
20050137704 | Steenlage | Jun 2005 | A1 |
20050149187 | Clark et al. | Jul 2005 | A1 |
20050171603 | Justin et al. | Aug 2005 | A1 |
20050203623 | Steiner et al. | Sep 2005 | A1 |
20050261766 | Chervitz et al. | Nov 2005 | A1 |
20060067971 | Story et al. | Mar 2006 | A1 |
20060095130 | Caborn et al. | May 2006 | A1 |
20060142769 | Collette | Jun 2006 | A1 |
20060265064 | Re et al. | Nov 2006 | A1 |
20070021839 | Lowe | Jan 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070118217 | Brulez et al. | May 2007 | A1 |
20070156148 | Fanton et al. | Jul 2007 | A1 |
20070162123 | Whittaker et al. | Jul 2007 | A1 |
20070162125 | LeBeau et al. | Jul 2007 | A1 |
20070179531 | Thornes | Aug 2007 | A1 |
20070185494 | Reese | Aug 2007 | A1 |
20070203508 | White et al. | Aug 2007 | A1 |
20070225805 | Schmieding | Sep 2007 | A1 |
20070239209 | Fallman | Oct 2007 | A1 |
20070239275 | Willobee | Oct 2007 | A1 |
20070250163 | Cassani | Oct 2007 | A1 |
20070270857 | Lombardo et al. | Nov 2007 | A1 |
20080009904 | Bourque et al. | Jan 2008 | A1 |
20080046009 | Albertorio et al. | Feb 2008 | A1 |
20080109037 | Steiner et al. | May 2008 | A1 |
20080140092 | Stone et al. | Jun 2008 | A1 |
20080177302 | Shurnas | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080188936 | Ball et al. | Aug 2008 | A1 |
20080208252 | Holmes | Aug 2008 | A1 |
20080215150 | Koob et al. | Sep 2008 | A1 |
20080228271 | Stone et al. | Sep 2008 | A1 |
20080234819 | Schmieding et al. | Sep 2008 | A1 |
20080243248 | Stone et al. | Oct 2008 | A1 |
20080255613 | Kaiser et al. | Oct 2008 | A1 |
20080275553 | Wolf et al. | Nov 2008 | A1 |
20080275554 | Iannarone et al. | Nov 2008 | A1 |
20080300683 | Altman et al. | Dec 2008 | A1 |
20080312689 | Denham et al. | Dec 2008 | A1 |
20090018654 | Schmieding et al. | Jan 2009 | A1 |
20090030516 | Imbert | Jan 2009 | A1 |
20090054982 | Cimino | Feb 2009 | A1 |
20090062854 | Kaiser et al. | Mar 2009 | A1 |
20090069847 | Hashiba et al. | Mar 2009 | A1 |
20090082805 | Kaiser et al. | Mar 2009 | A1 |
20090187244 | Dross | Jul 2009 | A1 |
20090192546 | Schmieding et al. | Jul 2009 | A1 |
20090216326 | Hirpara et al. | Aug 2009 | A1 |
20090228017 | Collins | Sep 2009 | A1 |
20090234451 | Manderson | Sep 2009 | A1 |
20090265003 | Re et al. | Oct 2009 | A1 |
20090275950 | Sterrett et al. | Nov 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20090306784 | Blum | Dec 2009 | A1 |
20090312776 | Kaiser et al. | Dec 2009 | A1 |
20100049258 | Dougherty | Feb 2010 | A1 |
20100049319 | Dougherty | Feb 2010 | A1 |
20100100182 | Barnes et al. | Apr 2010 | A1 |
20100145384 | Stone et al. | Jun 2010 | A1 |
20100145448 | Montes De Oca Balderas et al. | Jun 2010 | A1 |
20100211075 | Stone | Aug 2010 | A1 |
20100211173 | Bardos et al. | Aug 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100268273 | Albertorio et al. | Oct 2010 | A1 |
20100268275 | Stone et al. | Oct 2010 | A1 |
20100274355 | McGuire et al. | Oct 2010 | A1 |
20100274356 | Fening et al. | Oct 2010 | A1 |
20100292733 | Hendricksen et al. | Nov 2010 | A1 |
20100292792 | Stone et al. | Nov 2010 | A1 |
20100305709 | Metzger et al. | Dec 2010 | A1 |
20100312341 | Kaiser et al. | Dec 2010 | A1 |
20100318188 | Linares | Dec 2010 | A1 |
20100324676 | Albertorio et al. | Dec 2010 | A1 |
20100331975 | Nissan et al. | Dec 2010 | A1 |
20110040380 | Schmieding et al. | Feb 2011 | A1 |
20110046734 | Tobis et al. | Feb 2011 | A1 |
20110054609 | Cook et al. | Mar 2011 | A1 |
20110071545 | Pamichev et al. | Mar 2011 | A1 |
20110087283 | Donnelly et al. | Apr 2011 | A1 |
20110087284 | Stone et al. | Apr 2011 | A1 |
20110098727 | Kaiser et al. | Apr 2011 | A1 |
20110112640 | Amis et al. | May 2011 | A1 |
20110112641 | Justin et al. | May 2011 | A1 |
20110118838 | Delli-Santi et al. | May 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110184227 | Altman et al. | Jul 2011 | A1 |
20110196432 | Griffis, III | Aug 2011 | A1 |
20110196490 | Gadikota et al. | Aug 2011 | A1 |
20110218625 | Berelsman et al. | Sep 2011 | A1 |
20110238179 | Laurencin et al. | Sep 2011 | A1 |
20110270278 | Overes et al. | Nov 2011 | A1 |
20110276137 | Seedhom et al. | Nov 2011 | A1 |
20110288635 | Miller et al. | Nov 2011 | A1 |
20110301707 | Buskirk et al. | Dec 2011 | A1 |
20110301708 | Stone et al. | Dec 2011 | A1 |
20120046746 | Konicek | Feb 2012 | A1 |
20120046747 | Justin et al. | Feb 2012 | A1 |
20120053627 | Sojka et al. | Mar 2012 | A1 |
20120053630 | Denham et al. | Mar 2012 | A1 |
20120065732 | Roller et al. | Mar 2012 | A1 |
20120089143 | Martin et al. | Apr 2012 | A1 |
20120089193 | Stone et al. | Apr 2012 | A1 |
20120109299 | Li et al. | May 2012 | A1 |
20120123473 | Hernandez | May 2012 | A1 |
20120123474 | Zajac et al. | May 2012 | A1 |
20120123541 | Albertorio et al. | May 2012 | A1 |
20120130424 | Sengun et al. | May 2012 | A1 |
20120150297 | Denham et al. | Jun 2012 | A1 |
20120158051 | Foerster | Jun 2012 | A1 |
20120165867 | Denham et al. | Jun 2012 | A1 |
20120165938 | Denham et al. | Jun 2012 | A1 |
20120179199 | Hernandez et al. | Jul 2012 | A1 |
20120197271 | Astorino et al. | Aug 2012 | A1 |
20120239085 | Schlotterback et al. | Sep 2012 | A1 |
20120290003 | Dreyfuss | Nov 2012 | A1 |
20120296345 | Wack et al. | Nov 2012 | A1 |
20120330357 | Thal | Dec 2012 | A1 |
20130023928 | Dreyfuss | Jan 2013 | A1 |
20130023929 | Sullivan et al. | Jan 2013 | A1 |
20130072975 | Van Der Burg et al. | Mar 2013 | A1 |
20130085528 | DiMatteo et al. | Apr 2013 | A1 |
20130123842 | Chan et al. | May 2013 | A1 |
20130131723 | Snell et al. | May 2013 | A1 |
20130144338 | Stone et al. | Jun 2013 | A1 |
20130190819 | Norton | Jul 2013 | A1 |
20130345749 | Sullivan et al. | Dec 2013 | A1 |
20130345750 | Sullivan | Dec 2013 | A1 |
20140039551 | Donahue | Feb 2014 | A1 |
20140052179 | Dreyfuss et al. | Feb 2014 | A1 |
20140121700 | Dreyfuss et al. | May 2014 | A1 |
20140142627 | Hendricksen et al. | May 2014 | A1 |
20140257378 | Norton et al. | Sep 2014 | A1 |
20140257382 | McCartney | Sep 2014 | A1 |
20140257384 | Dreyfuss et al. | Sep 2014 | A1 |
20140276992 | Stone et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
299 10 202 | Sep 1999 | DE |
201 01 791 | Jun 2001 | DE |
0 440 991 | Aug 1991 | EP |
1 108 401 | Jun 2001 | EP |
1 707 127 | Oct 2006 | EP |
WO 03022161 | Mar 2003 | WO |
WO 2006037131 | Apr 2006 | WO |
WO 2007002561 | Jan 2007 | WO |
WO 2007109769 | Sep 2007 | WO |
WO 2008091690 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20130096611 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61537811 | Sep 2011 | US | |
61663024 | Jun 2012 | US |