The invention relates to tensioned support shafts that may be used in various devices, particularly pumps for pumping molten metal.
As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which are released into molten metal.
Known molten-metal pumps include a pump base (also called a housing or casing), one or more inlets (an inlet being an opening in the housing to allow molten metal to enter a pump chamber), a pump chamber of any suitable configuration, which is an open area formed within the housing, and a discharge, which is a channel or conduit of any structure or type communicating with the pump chamber (in an axial pump the chamber and discharge may be the same structure or different areas of the same structure) leading from the pump chamber to an outlet, which is an opening formed in the exterior of the housing through which molten metal exits the casing. An impeller, also called a rotor, is mounted in the pump chamber and is connected to a drive system. The drive shaft is typically an impeller shaft connected to one end of a motor shaft, the other end of the drive shaft being connected to an impeller. Often, the impeller (or rotor) shaft is comprised of graphite and/or ceramic, the motor shaft is comprised of steel, and the two are connected by a coupling. As the motor turns the drive shaft, the drive shaft turns the impeller and the impeller pushes molten metal out of the pump chamber, through the discharge, out of the outlet and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the impeller pushes molten metal out of the pump chamber. Other molten metal pumps do not include a base or support posts and are sized to fit into a structure by which molten metal is pumped. Most pumps have a metal platform, or super structure, that is either supported by a plurality of support posts attached to the pump base, or unsupported if there is no base. The motor is positioned on the superstructure, if a superstructure is used.
This application incorporates by reference the portions of the following publications that are not inconsistent with this disclosure: U.S. Pat. No. 4,598,899, issued Jul. 8, 1986, to Paul V. Cooper, U.S. Pat. No. 5,203,681, issued Apr. 20, 1993, to Paul V. Cooper, U.S. Pat. No. 5,308,045, issued May 3, 1994, by Paul V. Cooper, U.S. Pat. No. 5,662,725, issued Sep. 2, 1997, by Paul V. Cooper, U.S. Pat. No. 5,678,807, issued Oct. 21, 1997, by Paul V. Cooper, U.S. Pat. No. 6,027,685, issued Feb. 22, 2000, by Paul V. Cooper, U.S. Pat. No. 6,124,523, issued Sep. 26, 2000, by Paul V. Cooper, U.S. Pat. No. 6,303,074, issued Oct. 16, 2001, by Paul V. Cooper, U.S. Pat. No. 6,689,310, issued Feb. 10, 2004, by Paul V. Cooper, U.S. Pat. No. 6,723,276, issued Apr. 20, 2004, by Paul V. Cooper, U.S. Pat. No. 7,402,276, issued Jul. 22, 2008, by Paul V. Cooper, U.S. Pat. No. 7,507,367, issued Mar. 24, 2009, by Paul V. Cooper, U.S. Pat. No. 7,906,068, issued Mar. 15, 2011, by Paul V. Cooper, U.S. Pat. No. 8,075,837, issued Dec. 13, 2011, by Paul V. Cooper, U.S. Pat. No. 8,110,141, issued Feb. 7, 2012, by Paul V. Cooper, U.S. Pat. No. 8,178,037, issued May 15, 2012, by Paul V. Cooper, U.S. Pat. No. 8,361,379, issued Jan. 29, 2013, by Paul V. Cooper, U.S. Pat. No. 8,366,993, issued Feb. 5, 2013, by Paul V. Cooper, U.S. Pat. No. 8,409,495, issued Apr. 2, 2013, by Paul V. Cooper, U.S. Pat. No. 8,440,135, issued May 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,444,911, issued May 21, 2013, by Paul V. Cooper, U.S. Pat. No. 8,475,708, issued Jul. 2, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 12/895,796, filed Sep. 30, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/877,988, filed Sep. 8, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/853,238, filed Aug. 9, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/880,027, filed Sep. 10, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 13/752,312, filed Jan. 28, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/756,468, filed Jan. 31, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,889, filed Mar. 8, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,952, filed Mar. 9, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/841,594, filed Mar. 15, 2013, by Paul V. Cooper, and U.S. patent application Ser. No. 14/027,237, filed Sep. 15, 2013, by Paul V. Cooper.
Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Circulation pumps may be used in any vessel, such as in a reverbatory furnace having an external well. The well is usually an extension of the charging well, in which scrap metal is charged (i.e., added).
Standard transfer pumps are generally used to transfer molten metal from one structure to another structure such as a ladle or another furnace. A standard transfer pump has a riser tube connected to a pump discharge and supported by the superstructure. As molten metal is pumped it is pushed up the riser tube (sometimes called a metal-transfer conduit) and out of the riser tube, which generally has an elbow at its upper end, so molten metal is released into a different vessel from which the pump is positioned.
Gas-release pumps, such as gas-injection pumps, circulate molten metal while introducing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of both of these purposes or for any other application for which it is desirable to introduce gas into molten metal.
Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second end submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where molten metal enters the pump chamber. The gas may also be released into any suitable location in a molten metal bath.
Molten metal pump casings and rotors often employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet and outlet) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump base, during pump operation.
Generally, a degasser (also called a rotary degasser) includes (1) an impeller shaft having a first end, a second end and a passage for transferring gas, (2) an impeller, and (3) a drive source for rotating the impeller shaft and the impeller. The first end of the impeller shaft is connected to the drive source and to a gas source and the second end is connected to the impeller.
Generally a scrap melter includes an impeller affixed to an end of a drive shaft, and a drive source attached to the other end of the drive shaft for rotating the shaft and the impeller. The movement of the impeller draws molten metal and scrap metal downward into the molten metal bath in order to melt the scrap. A circulation pump is preferably used in conjunction with the scrap melter to circulate the molten metal in order to maintain a relatively constant temperature within the molten metal.
The materials forming the components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, or other ceramic material capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.
Ceramic, however, is more resistant to corrosion by molten aluminum than graphite. It would therefore be advantageous to develop vertical members used in a molten metal device that are comprised of ceramic, but less costly than solid ceramic members, and less prone to breakage than normal ceramic.
The present invention relates to a vertical member used in a molten metal device. The member is comprised of a hollow ceramic outer shell that has tension applied along a longitudinal axis of a rod therein. When such tension is applied to the rod, the ceramic outer shell is much less prone to breakage. One type of vertical member that may employ the invention is a support post. The disclosure also relates to pump including such support posts and to other molten metal devices.
For any device described herein, any of the components that contact the molten metal are preferably formed by a material that can withstand the molten metal environment. Preferred materials are oxidation-resistant graphite and ceramics, such as silicon carbide.
Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings.
The components of pump 100 or portions thereof that are exposed to the molten metal (such as support shafts 140, drive shaft 122, rotor 110, base 160, gas-transfer foot 172 and gas-transfer tube 174) are preferably formed of structural refractory materials, which are resistant to degradation in the molten metal.
Pump 100 need not be limited to the structure depicted in
In this embodiment, one or more support posts 140 connect base 160 to a superstructure 130 of pump 100 thus supporting superstructure 130. Pump 100 could be constructed so there is no physical connection between the base and the superstructure, wherein the superstructure is independently supported. The motor, drive shaft and rotor could be suspended without a superstructure, wherein they are supported, directly or indirectly, to a structure independent of the pump base.
Motor 120, which can be any structure, system or device suitable for driving pump 100, but is preferably an electric or pneumatic motor, is positioned on superstructure 130 and is connected to an end of a drive shaft 122. A drive shaft 122 can be any structure suitable for rotating an impeller, and preferably comprises a motor shaft (not shown) coupled to a rotor shaft. The motor shaft has a first end and a second end, wherein the first end of the motor shaft connects to motor 120 and the second end of the motor shaft connects to the coupling. Rotor shaft 124 has a first end and a second end, wherein the first end is connected to the coupling and the second end is connected to rotor (or impeller) 110.
Rotor 110 can be any rotor suitable for use in a molten metal pump and the term “rotor,” as used in connection with this disclosure, means any device or rotor used in a molten metal device to displace molten metal.
As described herein, support post (also referred to herein as support shaft) 140 may be a structure that is configured to support a motor and/or superstructure of a molten metal pump. In various embodiments and with reference to
Tube 250, illustrated in more detail in
In various embodiments, tube 250 may comprise inner or interior surface 149 that defines a hollow channel or cavity 251 within tube 250. As discussed herein, tension rod 242 may be installable within and/or housed by tube 250 within its hollow channel. Moreover, tension rod 242 may be separated from the interior surface of tube 250. In this regard, there may be a gap defined between tension rod 242 and the interior surface 149 of tube 250.
In various embodiments, tube 250 may be a homogeneous ceramic material. For example, tube 250 may be formed of a ceramic material such as, for example, silicon carbide.
Top cap 244 and bottom cap 246 are preferably made of graphite. In various embodiments, and with reference to
Bottom cap 246 and portions thereof are illustrated in greater detail in
In various embodiments, top cap 244 is an assembly comprising housing 243 and spring 256 (illustrated in more detail in
In various embodiments, and with reference to
In various embodiments, and as discussed herein, bottom cap 346 may comprise various parts including washers such as, for example, washer 352-1 and fasteners such as, for example, fastener 354-1. These washers and fasteners may be separately removable components or they may be integrally formed within one or more components of bottom cap 346. For example, washer 352-1 may be integrally formed within housing 347. In this regard, a first end 342A of tension rod 342 may be configured to pass through housing 347 and/or washer 352-1. Moreover, the first end 342A of tension rod 342 may comprise a threaded portion 342C that threads into and/or threads through housing 347 and/or washer 352-1. Housing 347 and/or cover 348 may also comprise and/or may be configured with an integrally formed fastener 354-1. In this regard, first end 342A of tension rod 342 may be configured to thread through the integral fastener 354-1 and/or may be capable of having the integral fastener threaded on the threaded portion 342C of the first end 342A of tension rod 342.
In various embodiments, top cap 344 may be an assembly that is configured to receive a threaded portion 342D of a second end 342B of tension rod 342. Top cap 344 may comprise various components including, for example, washers 352-2 and 352-3, fastener 354-2, spring 356, and/or spring cover 357. One or more of these elements may be integrally formed within top cap 344. For example, washer 352-2 may be integrally formed within or as part of top cap 344. Moreover, top cap 344 may be a multi-piece assembly that allows for installation of various components including, for example, spring 356 and/or spring cover 357. Top cap 344 may be, for example, a clamshell assembly having two halves that thread together. A first portion 344A of the clamshell assembly of top cap 344 may comprise a washer 352-2 that is configured to provide a seat or loading surface for spring 356 and a seating surface for spring cover 357. Moreover, a second portion 344B of a clamshell assembly of top cap 344 may comprise an integrally formed fastener 354-2 and washer 352-3. In this regard, the first portion 344A and second portion 344B of the clamshell assembly of top cap 344 may be operatively coupled to one another with various fasteners, threading and/or the like.
In various embodiments, the second end 342B of tension rod 342 may comprise a threaded portion 342D that is configured to thread through and/or pass through one or more components of top cap 344, including, for example, spring 356, washers 352-2 and 352-3, spring cover 357, fastener 354-2, housing 343, and/or the like. In this regard, the second end 342B of tension rod 342 may comprise a threaded portion 342D and a guide portion 342E having a tip with a reduced diameter and/or a chamfered edge.
In various embodiments, the second end 342B of tension rod 342 may pass through top cap 344 allowing engagement with a base or superstructure of a molten metal pump.
Top cap 544, illustrated in greater detail in
Top cap 544 and bottom cap 546 can be attached (e.g., threadedly) to second end 542B and first end 542A, respectively, of tension rod 542 to apply a compressive load to tube 550.
First end 550A of tube 550 includes tapered portion 586 and optional cylindrical portion 588. As illustrated in
Outer tube 602 includes a first end 610, a second end 612, and an outer surface 612. Outer tube 602 includes a cavity 614 spanning therethrough to receive inner rod 604. Outer tube 602 can be formed of, for example, a ceramic, such as silicon carbide.
Inner rod 604 can include a rod (e.g., steel) that is partially threaded—e.g., including first (e.g., threaded) portion 615 and second (e.g., threaded) portion 616. Structure 618, such as a nut, can be threadedly attached to second threaded portion 616 to retain rotor 608 proximate or adjacent second end 612. First portion 615 can be used to engage with cap 606 to retain cap 606 proximate or adjacent first end 610. Rotor shaft 600 can also include a washer 620—e.g., between rotor 608 and nut 618.
Cap 606 and portions thereof are illustrated in more detail in
Rotor shaft 600 can also include a rotor plug 400, illustrated in
Rotor 608 connects to second end 612 of rotor shaft 602. Rotor 608 includes one or more (e.g., a plurality) of spaced-apart blades 632-636, a passageway 638 for receiving second (e.g., threaded) end 616 of inner rod 604, a cavity for retaining structure 618 and for receiving rotor plug 400.
Body 702 includes an opening 716 to receive a motor shaft from a motor, described in more detail below, and an outer surface 718 to be received by an inner surface 640 of cap 606 of rotor shaft 600. Body 702 also includes openings 720, 722 and 724 to receive (e.g., threadedly) one or more (e.g., manual) tightening structures 710-714. Body 702 also includes opening 726 and 728 to receive a rod 730, which can be a hardened steel rod having, for example a diameter of about 0.75 inches and a length of about 4.75 inches. Body 702 can further include a notch 732 and/or recessed region 734. In the illustrated example, opening 716 includes recessed region 734, a first section 736, and a second section 738. A diameter of the opening of recessed region 734 is larger than the diameter of the opening of first region 736, and the diameter of the opening of first region 736 is larger than a diameter of the opening of second region 738. Each of the recessed region 734, the opening in the first region, and the opening in the second region can be cylindrical.
Securing structures 704-708 can be in the form of tubes formed of, for example, schedule 40 pipe, having a one inch diameter (e.g., about 1.049″ ID and about 1.315″ OD) and a length of about 3.5 inches. Securing structures 704-708 can be welded to outer surface 718—e.g., evenly spaced along the same height of outer surface 718. In the illustrated example, three securing structures 704-708 are welded to outer surface 718.
Pump mount assembly 816 includes a pump mount 846, pump mount insulation 848, a motor mount plate 849, one or more fasteners 850, such as bolts 852 and washers (e.g., lock washers) 854. Pump mount insulating 848 can be coupled to pump mount 846 using, for example, bracket 849 and fastener 851, which can include, for example, a bolt 853 and a washer 855. Motor mount plate 849 can be attached to pump mount 846 using fasteners 850.
Base assembly 802 includes a pump chamber 856 that can include any suitably shaped chamber, such as a generally nonvolute shape—e.g., a cylindrical pump chamber, sometimes referred to as a “cut” volute; alternatively pump chamber 856 can include a volute-shape. Pump chamber 856 can be constructed to have only one opening, either in its top or bottom, if a tangential discharge is used, since only one opening is required to introduce molten metal into pump chamber 856. Pump chamber 856 can include two coaxial openings of the same diameter, in which case usually one is blocked by a flow blocking plate 803 mounted on, or formed as part of, rotor 801. Base assembly 802 further includes a tangential discharge 858 (although another type of discharge, such as an axial discharge may be used) in fluid communication with pump chamber 856.
The one or more support posts 806-808 can be the same or similar to support posts described elsewhere herein. For example, support posts 806-810 can be support posts 140, 240, 340, or 540. Similarly, rotor shaft 810 can be the same as or similar to rotor shaft 600.
Injection button 812 can be coupled to injection tube 814. Injection tube 814 can, in turn, can be coupled to pump mount assembly 816 or another portion of pump 800 using, for example, injection tube clamp 822. Injection button 812 and injection tube 814 can be used to provide gas from a gas source to a molten metal bath, wherein injection button 812 is at least partially within the molten metal bath. The gas can be released downstream of pump chamber 856 into the pump discharge or into a stream of molten metal exiting wither the discharge or a conduit. Alternatively, gas can be released into pump chamber 856 or upstream of pump chamber 856.
Some specific examples of embodiments of the invention follow:
a tube defining a hollow channel and having a first tube end and a second tube end;
a tension rod having a first rod end and a second rod end disposed within the hollow channel of the tube;
a bottom cap configured to receive the first tube end and operatively coupled to the first rod end; and
a top cap configured to receive the second tube end and operatively couple to a portion of the tension rod, wherein the tension rod is configured to load the tube in response to be operatively coupled to the bottom cap and the top cap.
Having thus described different embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired result. Further, any dimensions provided herein are provided for reference only. Unless otherwise stated, the invention is not limited to components having such dimensions.
This application is a continuation of, and claims priority to U.S. patent application Ser. No. 16/792,643, filed Feb. 17, 2020, and entitled “Tensioned Rotor Shaft For Molten Metal” which is a continuation of, and claims priority to U.S. patent application Ser. No. 16/144,873, filed Sep. 27, 2018, and entitled “Tensioned Support Shaft and Other Molten Metal Devices” (Now U.S. Pat. No. 10,641,270) which is a continuation of, and claims priority to, U.S. patent application Ser. No. 15/406,515 (Now U.S. Pat. No. 10,267,314), filed Jan. 13, 2017, and entitled “Tensioned Support Shaft and Other Molten Metal Devices,” which claims the benefit of U.S. Provisional Application Ser. No. 62/278,314, filed Jan. 13, 2016, and entitled “Tensioned Support Shaft and Other Molten Metal Devices,” the contents of each of the foregoing applications, are incorporated herein by reference, to the extent such contents do not conflict with the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
35604 | Guild | Jun 1862 | A |
116797 | Barnhart | Jul 1871 | A |
209219 | Bookwalter | Oct 1878 | A |
251104 | Finch | Dec 1881 | A |
307845 | Curtis | Nov 1884 | A |
364804 | Cole | Jun 1887 | A |
390319 | Thomson | Oct 1888 | A |
495760 | Seitz | Apr 1893 | A |
506572 | Wagener | Oct 1893 | A |
585188 | Davis | Jun 1897 | A |
757932 | Jones | Apr 1904 | A |
882477 | Neumann | Mar 1908 | A |
882478 | Neumann | Mar 1908 | A |
890319 | Wells | Jun 1908 | A |
898499 | O'Donnell | Sep 1908 | A |
909774 | Flora | Jan 1909 | A |
919194 | Livingston | Apr 1909 | A |
1037659 | Rembert | Sep 1912 | A |
1100475 | Franckaerts | Jun 1914 | A |
1170512 | Chapman | Feb 1916 | A |
1196758 | Blair | Sep 1916 | A |
1304068 | Krogh | May 1919 | A |
1331997 | Neal | Feb 1920 | A |
1185314 | London | Mar 1920 | A |
1377101 | Sparling | May 1921 | A |
1380798 | Hansen et al. | Jun 1921 | A |
1439365 | Hazell | Dec 1922 | A |
1454967 | Gill | May 1923 | A |
1470607 | Hazell | Oct 1923 | A |
1513875 | Wilke | Nov 1924 | A |
1518501 | Gill | Dec 1924 | A |
1522765 | Wilke | Jan 1925 | A |
1526851 | Hall | Feb 1925 | A |
1669668 | Marshall | May 1928 | A |
1673594 | Schmidt | Jun 1928 | A |
1697202 | Nagle | Jan 1929 | A |
1717969 | Goodner | Jun 1929 | A |
1718396 | Wheeler | Jun 1929 | A |
1896201 | Sterner-Rainer | Feb 1933 | A |
1988875 | Saborio | Jan 1935 | A |
2013455 | Baxter | Sep 1935 | A |
2035282 | Schmeller, Sr. | Mar 1936 | A |
2038221 | Kagi | Apr 1936 | A |
2075633 | Anderegg | Mar 1937 | A |
2090162 | Tighe | Aug 1937 | A |
2091677 | Fredericks | Aug 1937 | A |
2138814 | Bressler | Dec 1938 | A |
2173377 | Schultz, Jr. et al. | Sep 1939 | A |
2264740 | Brown | Dec 1941 | A |
2280979 | Rocke | Apr 1942 | A |
2290961 | Heuer | Jul 1942 | A |
2300688 | Nagle | Nov 1942 | A |
2304849 | Ruthman | Dec 1942 | A |
2368962 | Blom | Feb 1945 | A |
2383424 | Stepanoff | Aug 1945 | A |
2423655 | Mars et al. | Jul 1947 | A |
2488447 | Tangen et al. | Nov 1949 | A |
2493467 | Sunnen | Jan 1950 | A |
2515097 | Schryber | Jul 1950 | A |
2515478 | Tooley et al. | Jul 1950 | A |
2528208 | Bonsack et al. | Oct 1950 | A |
2528210 | Stewart | Oct 1950 | A |
2543633 | Lamphere | Feb 1951 | A |
2566892 | Jacobs | Apr 1951 | A |
2625720 | Ross | Jan 1953 | A |
2626086 | Forrest | Jan 1953 | A |
2676279 | Wilson | Apr 1954 | A |
2677609 | Moore et al. | Apr 1954 | A |
2698583 | House et al. | Jan 1955 | A |
2714354 | Farrand | Aug 1955 | A |
2762095 | Pemetzrieder | Sep 1956 | A |
2768587 | Corneil | Oct 1956 | A |
2775348 | Williams | Dec 1956 | A |
2779574 | Schneider | Jan 1957 | A |
2787873 | Hadley | Apr 1957 | A |
2808782 | Thompson et al. | Oct 1957 | A |
2809107 | Russell | Oct 1957 | A |
2821472 | Peterson et al. | Jan 1958 | A |
2824520 | Bartels | Feb 1958 | A |
2832292 | Edwards | Apr 1958 | A |
2839006 | Mayo | Jun 1958 | A |
2853019 | Thornton | Sep 1958 | A |
2865295 | Nikolaus | Dec 1958 | A |
2865618 | Abell | Dec 1958 | A |
2868132 | Rittershofer | Jan 1959 | A |
2901006 | Andrews | Aug 1959 | A |
2901677 | Chessman et al. | Aug 1959 | A |
2906632 | Nickerson | Sep 1959 | A |
2918876 | Howe | Dec 1959 | A |
2948524 | Sweeney et al. | Aug 1960 | A |
2958293 | Pray, Jr. | Nov 1960 | A |
2966345 | Burgoon et al. | Dec 1960 | A |
2966381 | Menzel | Dec 1960 | A |
2978885 | Davison | Apr 1961 | A |
2984524 | Franzen | May 1961 | A |
2987885 | Hodge | Jun 1961 | A |
3010402 | King | Nov 1961 | A |
3015190 | Arbeit | Jan 1962 | A |
3039864 | Hess | Jun 1962 | A |
3044408 | Mellott | Jul 1962 | A |
3048384 | Sweeney et al. | Aug 1962 | A |
3070393 | Silverberg et al. | Dec 1962 | A |
3092030 | Wunder | Jun 1963 | A |
3099870 | Seeler | Aug 1963 | A |
3128327 | Upton | Apr 1964 | A |
3130678 | Chenault | Apr 1964 | A |
3130679 | Sence | Apr 1964 | A |
3151565 | Albertson et al. | Oct 1964 | A |
3171357 | Egger | Mar 1965 | A |
3172850 | Englesberg et al. | Mar 1965 | A |
3203182 | Pohl | Aug 1965 | A |
3227547 | Szekely | Jan 1966 | A |
3244109 | Barske | Apr 1966 | A |
3251676 | Johnson | May 1966 | A |
3255702 | Gehrm | Jun 1966 | A |
3258283 | Winberg et al. | Jun 1966 | A |
3272619 | Sweeney et al. | Sep 1966 | A |
3289473 | Londa | Dec 1966 | A |
3291473 | Sweeney et al. | Dec 1966 | A |
3368805 | Davey et al. | Feb 1968 | A |
3374943 | Cervenka | Mar 1968 | A |
3400923 | Howie et al. | Sep 1968 | A |
3417929 | Secrest et al. | Dec 1968 | A |
3432336 | Langrod et al. | Mar 1969 | A |
3459133 | Scheffler | Aug 1969 | A |
3459346 | Tinnes | Aug 1969 | A |
3477383 | Rawson et al. | Nov 1969 | A |
3487805 | Satterthwaite | Jan 1970 | A |
3512762 | Umbricht | May 1970 | A |
3512788 | Kilbane | May 1970 | A |
3532445 | Scheffler et al. | Oct 1970 | A |
3561885 | Lake | Feb 1971 | A |
3575525 | Fox et al. | Apr 1971 | A |
3581767 | Jackson | Jun 1971 | A |
3612715 | Yedidiah | Oct 1971 | A |
3618917 | Fredrikson et al. | Nov 1971 | A |
3620716 | Hess | Nov 1971 | A |
3650730 | Derham et al. | Mar 1972 | A |
3689048 | Foulard et al. | Sep 1972 | A |
3715112 | Carbonnel | Feb 1973 | A |
3732032 | Daneel | May 1973 | A |
3737304 | Blayden et al. | Jun 1973 | A |
3737305 | Blayden et al. | Jun 1973 | A |
3743263 | Szekely | Jul 1973 | A |
3743500 | Foulard et al. | Jul 1973 | A |
3753690 | Emley et al. | Aug 1973 | A |
3759628 | Kempf | Sep 1973 | A |
3759635 | Carter et al. | Sep 1973 | A |
3767382 | Bruno et al. | Oct 1973 | A |
3776660 | Anderson et al. | Dec 1973 | A |
3785632 | Kraemer et al. | Jan 1974 | A |
3787143 | Carbonnel et al. | Jan 1974 | A |
3799522 | Brant et al. | Mar 1974 | A |
3799523 | Seki | Mar 1974 | A |
3807708 | Jones | Apr 1974 | A |
3814400 | Seki | Jun 1974 | A |
3824028 | Zenkner et al. | Jul 1974 | A |
3824042 | Barnes et al. | Jul 1974 | A |
3836280 | Koch | Sep 1974 | A |
3839019 | Bruno et al. | Oct 1974 | A |
3844972 | Tully, Jr. et al. | Oct 1974 | A |
3871872 | Downing et al. | Mar 1975 | A |
3873073 | Baum et al. | Mar 1975 | A |
3873305 | Claxton et al. | Mar 1975 | A |
3881039 | Baldieri et al. | Apr 1975 | A |
3886992 | Maas et al. | Jun 1975 | A |
3915594 | Nesseth | Oct 1975 | A |
3915694 | Ando | Oct 1975 | A |
3935003 | Steinke et al. | Jan 1976 | A |
3941588 | Dremann | Mar 1976 | A |
3941589 | Norman et al. | Mar 1976 | A |
3942473 | Chodash | Mar 1976 | A |
3954134 | Maas et al. | May 1976 | A |
3958979 | Valdo | May 1976 | A |
3958981 | Forberg et al. | May 1976 | A |
3961778 | Carbonnel et al. | Jun 1976 | A |
3966456 | Ellenbaum et al. | Jun 1976 | A |
3967286 | Andersson et al. | Jun 1976 | A |
3972709 | Chin et al. | Aug 1976 | A |
3973871 | Hance | Aug 1976 | A |
3984234 | Claxton et al. | Oct 1976 | A |
3985000 | Hartz | Oct 1976 | A |
3997336 | van Linden et al. | Dec 1976 | A |
4003560 | Carbonnel | Jan 1977 | A |
4008884 | Fitzpatrick et al. | Feb 1977 | A |
4018598 | Markus | Apr 1977 | A |
4043146 | Stegherr et al. | Aug 1977 | A |
4052199 | Mangalick | Oct 1977 | A |
4055390 | Young | Oct 1977 | A |
4063849 | Modianos | Dec 1977 | A |
4068965 | Lichti | Jan 1978 | A |
4073606 | Eller | Feb 1978 | A |
4091970 | Komiyama et al. | May 1978 | A |
4119141 | Thut et al. | Oct 1978 | A |
4125146 | Muller | Nov 1978 | A |
4126360 | Miller et al. | Nov 1978 | A |
4128415 | van Linden et al. | Dec 1978 | A |
4147474 | Heimdal et al. | Apr 1979 | A |
4169584 | Mangalick | Oct 1979 | A |
4191486 | Pelton | Mar 1980 | A |
4213742 | Henshaw | Jul 1980 | A |
4242039 | Villard et al. | Dec 1980 | A |
4244423 | Thut et al. | Jan 1981 | A |
4286985 | Van Linden et al. | Sep 1981 | A |
4305214 | Hurst | Dec 1981 | A |
4322245 | Claxton | Mar 1982 | A |
4338062 | Neal | Jul 1982 | A |
4347041 | Cooper | Aug 1982 | A |
4351514 | Koch | Sep 1982 | A |
4355789 | Dolzhenkov et al. | Oct 1982 | A |
4356940 | Ansorge | Nov 1982 | A |
4360314 | Pennell | Nov 1982 | A |
4370096 | Church | Jan 1983 | A |
4372541 | Bocourt et al. | Feb 1983 | A |
4375937 | Cooper | Mar 1983 | A |
4389159 | Sarvanne | Jun 1983 | A |
4392888 | Eckert et al. | Jul 1983 | A |
4410299 | Shimoyama | Oct 1983 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4456424 | Araoka | Jun 1984 | A |
4470846 | Dube | Sep 1984 | A |
4474315 | Gilbert et al. | Oct 1984 | A |
4496393 | Lustenberger | Jan 1985 | A |
4504392 | Groteke | Mar 1985 | A |
4509979 | Bauer | Apr 1985 | A |
4537624 | Tenhover et al. | Aug 1985 | A |
4537625 | Tenhover et al. | Aug 1985 | A |
4545887 | Amesen | Oct 1985 | A |
4556419 | Otsuka et al. | Dec 1985 | A |
4557766 | Tenhover et al. | Dec 1985 | A |
4586845 | Morris | May 1986 | A |
4592700 | Toguchi et al. | Jun 1986 | A |
4594052 | Niskanen | Jun 1986 | A |
4596510 | Ameth et al. | Jun 1986 | A |
4598899 | Cooper | Jul 1986 | A |
4600222 | Appling | Jul 1986 | A |
4607825 | Briolle et al. | Aug 1986 | A |
4609442 | Tenhover et al. | Sep 1986 | A |
4611790 | Otsuka et al. | Sep 1986 | A |
4617232 | Chandler et al. | Oct 1986 | A |
4634105 | Withers et al. | Jan 1987 | A |
4640666 | Sodergard | Feb 1987 | A |
4655610 | Al-Jaroudi | Apr 1987 | A |
4673434 | Withers et al. | Jun 1987 | A |
4682585 | Hiltebrandt | Jul 1987 | A |
4684281 | Patterson | Aug 1987 | A |
4685822 | Pelton | Aug 1987 | A |
4696703 | Henderson et al. | Sep 1987 | A |
4701226 | Henderson et al. | Oct 1987 | A |
4702768 | Areauz et al. | Oct 1987 | A |
4714371 | Cuse | Dec 1987 | A |
4717540 | McRae et al. | Jan 1988 | A |
4739974 | Mordue | Apr 1988 | A |
4743428 | McRae et al. | May 1988 | A |
4747583 | Gordon et al. | May 1988 | A |
4767230 | Leas, Jr. | Aug 1988 | A |
4770701 | Henderson et al. | Sep 1988 | A |
4786230 | Thut | Nov 1988 | A |
4802656 | Hudault et al. | Feb 1989 | A |
4804168 | Otsuka et al. | Feb 1989 | A |
4810314 | Henderson et al. | Mar 1989 | A |
4822473 | Amesen | Apr 1989 | A |
4834573 | Asano et al. | May 1989 | A |
4842227 | Harrington et al. | Jun 1989 | A |
4844425 | Piras et al. | Jul 1989 | A |
4851296 | Tenhover et al. | Jul 1989 | A |
4859413 | Harris et al. | Aug 1989 | A |
4860819 | Moscoe et al. | Aug 1989 | A |
4867638 | Handtmann et al. | Sep 1989 | A |
4884786 | Gillespie | Dec 1989 | A |
4898367 | Cooper | Feb 1990 | A |
4908060 | Duenkelmann | Mar 1990 | A |
4911726 | Warkentin | Mar 1990 | A |
4923770 | Grasselli et al. | May 1990 | A |
4930986 | Cooper | Jun 1990 | A |
4931091 | Waite et al. | Jun 1990 | A |
4940214 | Gillespie | Jul 1990 | A |
4940384 | Amra et al. | Jul 1990 | A |
4954167 | Cooper | Sep 1990 | A |
4967827 | Campbell | Nov 1990 | A |
4973433 | Gilbert et al. | Nov 1990 | A |
4986736 | Kajiwara et al. | Jan 1991 | A |
5015518 | Sasaki et al. | May 1991 | A |
5025198 | Mordue et al. | Jun 1991 | A |
5028211 | Mordue et al. | Jul 1991 | A |
5029821 | Bar-on et al. | Jul 1991 | A |
5058654 | Simmons | Oct 1991 | A |
5078572 | Amra et al. | Jan 1992 | A |
5080715 | Provencher et al. | Jan 1992 | A |
5083753 | Soofi | Jan 1992 | A |
5088893 | Gilbert et al. | Feb 1992 | A |
5092821 | Gilbert et al. | Mar 1992 | A |
5098134 | Monckton | Mar 1992 | A |
5099554 | Cooper | Mar 1992 | A |
5114312 | Stanislao | May 1992 | A |
5126047 | Martin et al. | Jun 1992 | A |
5131632 | Olson | Jul 1992 | A |
5135202 | Yamashita et al. | Aug 1992 | A |
5143357 | Gilbert et al. | Sep 1992 | A |
5145322 | Senior, Jr. et al. | Sep 1992 | A |
5152631 | Bauer | Oct 1992 | A |
5154652 | Ecklesdafer | Oct 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5162858 | Shoji et al. | Nov 1992 | A |
5165858 | Gilbert et al. | Nov 1992 | A |
5177304 | Nagel | Jan 1993 | A |
5191154 | Nagel | Mar 1993 | A |
5192193 | Cooper et al. | Mar 1993 | A |
5202100 | Nagel et al. | Apr 1993 | A |
5203681 | Cooper | Apr 1993 | A |
5209641 | Hoghind et al. | May 1993 | A |
5215448 | Cooper | Jun 1993 | A |
5268020 | Claxton | Dec 1993 | A |
5286163 | Amra et al. | Feb 1994 | A |
5298233 | Nagel | Mar 1994 | A |
5301620 | Nagel et al. | Apr 1994 | A |
5303903 | Butler et al. | Apr 1994 | A |
5308045 | Cooper | May 1994 | A |
5310412 | Gilbert et al. | May 1994 | A |
5318360 | Langer et al. | Jun 1994 | A |
5322547 | Nagel et al. | Jun 1994 | A |
5324341 | Nagel et al. | Jun 1994 | A |
5330328 | Cooper | Jul 1994 | A |
5354940 | Nagel | Oct 1994 | A |
5358549 | Nagel et al. | Oct 1994 | A |
5358697 | Nagel | Oct 1994 | A |
5364078 | Pelton | Nov 1994 | A |
5369063 | Gee et al. | Nov 1994 | A |
5388633 | Mercer, II et al. | Feb 1995 | A |
5395405 | Nagel et al. | Mar 1995 | A |
5399074 | Nose et al. | Mar 1995 | A |
5407294 | Giannini | Apr 1995 | A |
5411240 | Rapp et al. | May 1995 | A |
5425410 | Reynolds | Jun 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5435982 | Wilkinson | Jul 1995 | A |
5436210 | Wilkinson et al. | Jul 1995 | A |
5443572 | Wilkinson et al. | Aug 1995 | A |
5454423 | Tsuchida et al. | Oct 1995 | A |
5468280 | Areaux | Nov 1995 | A |
5470201 | Gilbert et al. | Nov 1995 | A |
5484265 | Horvath et al. | Jan 1996 | A |
5489734 | Nagel et al. | Feb 1996 | A |
5491279 | Robert et al. | Feb 1996 | A |
5494382 | Kloppers | Feb 1996 | A |
5495746 | Sigworth | Mar 1996 | A |
5505143 | Nagel | Apr 1996 | A |
5505435 | Laszlo | Apr 1996 | A |
5509791 | Turner | Apr 1996 | A |
5511766 | Vassilicos | Apr 1996 | A |
5520422 | Friedrich | May 1996 | A |
5537940 | Nagel et al. | Jul 1996 | A |
5543558 | Nagel et al. | Aug 1996 | A |
5555822 | Loewen et al. | Sep 1996 | A |
5558501 | Wang et al. | Sep 1996 | A |
5558505 | Mordue et al. | Sep 1996 | A |
5571486 | Robert et al. | Nov 1996 | A |
5585532 | Nagel | Dec 1996 | A |
5586863 | Gilbert et al. | Dec 1996 | A |
5591243 | Colussi et al. | Jan 1997 | A |
5597289 | Thut | Jan 1997 | A |
5613245 | Robert | Mar 1997 | A |
5616167 | Eckert | Apr 1997 | A |
5622481 | Thut | Apr 1997 | A |
5629464 | Bach et al. | May 1997 | A |
5634770 | Gilbert et al. | Jun 1997 | A |
5640706 | Nagel et al. | Jun 1997 | A |
5640707 | Nagel et al. | Jun 1997 | A |
5640709 | Nagel et al. | Jun 1997 | A |
5655849 | McEwen et al. | Aug 1997 | A |
5660614 | Waite et al. | Aug 1997 | A |
5662725 | Cooper | Sep 1997 | A |
5676520 | Thut | Oct 1997 | A |
5678244 | Shaw et al. | Oct 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5679132 | Rauenzahn et al. | Oct 1997 | A |
5685701 | Chandler et al. | Nov 1997 | A |
5690888 | Robert | Nov 1997 | A |
5695732 | Sparks et al. | Dec 1997 | A |
5716195 | Thut | Feb 1998 | A |
5717149 | Nagel et al. | Feb 1998 | A |
5718416 | Flisakowski et al. | Feb 1998 | A |
5735668 | Klein | Apr 1998 | A |
5735935 | Areaux | Apr 1998 | A |
5741422 | Eichenmiller et al. | Apr 1998 | A |
5744093 | Davis | Apr 1998 | A |
5744117 | Wilkinson et al. | Apr 1998 | A |
5745861 | Bell et al. | Apr 1998 | A |
5755847 | Quayle | May 1998 | A |
5758712 | Pederson | Jun 1998 | A |
5772324 | Falk | Jun 1998 | A |
5776420 | Nagel | Jul 1998 | A |
5785494 | Vild et al. | Jul 1998 | A |
5842832 | Thut | Dec 1998 | A |
5846481 | Tilak | Dec 1998 | A |
5858059 | Abramovich et al. | Jan 1999 | A |
5863314 | Morando | Jan 1999 | A |
5866095 | McGeever et al. | Feb 1999 | A |
5875385 | Stephenson et al. | Feb 1999 | A |
5935528 | Stephenson et al. | Aug 1999 | A |
5944496 | Cooper | Aug 1999 | A |
5947705 | Mordue et al. | Sep 1999 | A |
5948352 | Jagt et al. | Sep 1999 | A |
5951243 | Cooper | Sep 1999 | A |
5961285 | Meneice et al. | Oct 1999 | A |
5963580 | Eckert | Oct 1999 | A |
5992230 | Scarpa et al. | Nov 1999 | A |
5993726 | Huang | Nov 1999 | A |
5993728 | Vild | Nov 1999 | A |
6019576 | Thut | Feb 2000 | A |
6027685 | Cooper | Feb 2000 | A |
6036745 | Gilbert et al. | Mar 2000 | A |
6074455 | van Linden et al. | Jun 2000 | A |
6082965 | Morando | Jul 2000 | A |
6093000 | Cooper | Jul 2000 | A |
6096109 | Nagel et al. | Aug 2000 | A |
6113154 | Thut | Sep 2000 | A |
6123523 | Cooper | Sep 2000 | A |
6152691 | Thut | Nov 2000 | A |
6168753 | Morando | Jan 2001 | B1 |
6187096 | Thut | Feb 2001 | B1 |
6199836 | Rexford et al. | Mar 2001 | B1 |
6217823 | Vild et al. | Apr 2001 | B1 |
6231639 | Eichenmiller | May 2001 | B1 |
6250881 | Mordue et al. | Jun 2001 | B1 |
6254340 | Vild et al. | Jul 2001 | B1 |
6270717 | Tremblay et al. | Aug 2001 | B1 |
6280157 | Cooper | Aug 2001 | B1 |
6293759 | Thut | Sep 2001 | B1 |
6303074 | Cooper | Oct 2001 | B1 |
6345964 | Cooper | Feb 2002 | B1 |
6354796 | Morando | Mar 2002 | B1 |
6358467 | Mordue | Mar 2002 | B1 |
6364930 | Kos | Apr 2002 | B1 |
6371723 | Grant et al. | Apr 2002 | B1 |
6398525 | Cooper | Jun 2002 | B1 |
6439860 | Greer | Aug 2002 | B1 |
6451247 | Mordue et al. | Sep 2002 | B1 |
6457940 | Lehman | Oct 2002 | B1 |
6457950 | Cooper et al. | Oct 2002 | B1 |
6464458 | Vild et al. | Oct 2002 | B2 |
6495948 | Garrett, III | Dec 2002 | B1 |
6497559 | Grant | Dec 2002 | B1 |
6500228 | Klingensmith et al. | Dec 2002 | B1 |
6503292 | Klingensmith et al. | Jan 2003 | B2 |
6524066 | Thut | Feb 2003 | B2 |
6533535 | Thut | Mar 2003 | B2 |
6551060 | Mordue et al. | Apr 2003 | B2 |
6562286 | Lehman | May 2003 | B1 |
6656415 | Kos | Dec 2003 | B2 |
6679936 | Quackenbush | Jan 2004 | B2 |
6689310 | Cooper | Feb 2004 | B1 |
6709234 | Gilbert et al. | Mar 2004 | B2 |
6723276 | Cooper | Apr 2004 | B1 |
6805834 | Thut | Oct 2004 | B2 |
6843640 | Mordue et al. | Jan 2005 | B2 |
6848497 | Sale et al. | Feb 2005 | B2 |
6869271 | Gilbert et al. | Mar 2005 | B2 |
6869564 | Gilbert et al. | Mar 2005 | B2 |
6881030 | Thut | Apr 2005 | B2 |
6887424 | Ohno et al. | May 2005 | B2 |
6887425 | Mordue et al. | May 2005 | B2 |
6902696 | Klingensmith et al. | Jun 2005 | B2 |
7037462 | Klingensmith et al. | May 2006 | B2 |
7074361 | Carolla et al. | Jul 2006 | B2 |
7083758 | Tremblay | Aug 2006 | B2 |
7131482 | Vincent et al. | Nov 2006 | B2 |
7157043 | Neff | Jan 2007 | B2 |
7204954 | Mizuno | Apr 2007 | B2 |
7273582 | Mordue | Sep 2007 | B2 |
7279128 | Kennedy et al. | Oct 2007 | B2 |
7326028 | Morando | Feb 2008 | B2 |
7402276 | Cooper | Jul 2008 | B2 |
7470392 | Cooper | Dec 2008 | B2 |
7476357 | Thut | Jan 2009 | B2 |
7481966 | Mizuno | Jan 2009 | B2 |
7497988 | Thut | Mar 2009 | B2 |
7507365 | Thut | Mar 2009 | B2 |
7507367 | Cooper | Mar 2009 | B2 |
7543605 | Morando | Jun 2009 | B1 |
7731891 | Cooper | Jun 2010 | B2 |
7771171 | Mohr | Aug 2010 | B2 |
7841379 | Evans | Nov 2010 | B1 |
7896617 | Morando | Mar 2011 | B1 |
7906068 | Cooper | Mar 2011 | B2 |
8075837 | Cooper | Dec 2011 | B2 |
8110141 | Cooper | Feb 2012 | B2 |
8137023 | Greer | Mar 2012 | B2 |
8142145 | Thut | Mar 2012 | B2 |
8178037 | Cooper | May 2012 | B2 |
8328540 | Wang | Dec 2012 | B2 |
8333921 | Thut | Dec 2012 | B2 |
8361379 | Cooper | Jan 2013 | B2 |
8366993 | Cooper | Feb 2013 | B2 |
8409495 | Cooper | Apr 2013 | B2 |
8440135 | Cooper | May 2013 | B2 |
8444911 | Cooper | May 2013 | B2 |
8449814 | Cooper | May 2013 | B2 |
8475594 | Bright et al. | Jul 2013 | B2 |
8475708 | Cooper | Jul 2013 | B2 |
8480950 | Jetten et al. | Jul 2013 | B2 |
8501084 | Cooper | Aug 2013 | B2 |
8524146 | Cooper | Sep 2013 | B2 |
8529828 | Cooper | Sep 2013 | B2 |
8535603 | Cooper | Sep 2013 | B2 |
8580218 | Turenne et al. | Nov 2013 | B2 |
8613884 | Cooper | Dec 2013 | B2 |
8714914 | Cooper | May 2014 | B2 |
8753563 | Cooper | Jun 2014 | B2 |
8840359 | Vick et al. | Sep 2014 | B2 |
8899932 | Tetkoskie et al. | Dec 2014 | B2 |
8915830 | March et al. | Dec 2014 | B2 |
8920680 | Mao | Dec 2014 | B2 |
9011761 | Cooper | Apr 2015 | B2 |
9017597 | Cooper | Apr 2015 | B2 |
9034244 | Cooper | May 2015 | B2 |
9057376 | Thut | Jun 2015 | B2 |
9074601 | Thut | Jul 2015 | B1 |
9080577 | Cooper | Jul 2015 | B2 |
9108224 | Schererz et al. | Aug 2015 | B2 |
9108244 | Cooper | Aug 2015 | B2 |
9156087 | Cooper | Oct 2015 | B2 |
9193532 | March et al. | Nov 2015 | B2 |
9205490 | Cooper | Dec 2015 | B2 |
9234520 | Morando | Jan 2016 | B2 |
9273376 | Lutes et al. | Mar 2016 | B2 |
9328615 | Cooper | May 2016 | B2 |
9377028 | Cooper | Jun 2016 | B2 |
9382599 | Cooper | Jul 2016 | B2 |
9383140 | Cooper | Jul 2016 | B2 |
9409232 | Cooper | Aug 2016 | B2 |
9410744 | Cooper | Aug 2016 | B2 |
9422942 | Cooper | Aug 2016 | B2 |
9435343 | Cooper | Sep 2016 | B2 |
9464636 | Cooper | Oct 2016 | B2 |
9470239 | Cooper | Oct 2016 | B2 |
9476644 | Howitt et al. | Oct 2016 | B2 |
9481035 | Cooper | Nov 2016 | B2 |
9481918 | Vild et al. | Nov 2016 | B2 |
9482469 | Cooper | Nov 2016 | B2 |
9494366 | Thut | Nov 2016 | B1 |
9506129 | Cooper | Nov 2016 | B2 |
9506346 | Bright et al. | Nov 2016 | B2 |
9566645 | Cooper | Feb 2017 | B2 |
9581388 | Cooper | Feb 2017 | B2 |
9587883 | Cooper | Mar 2017 | B2 |
9657578 | Cooper | May 2017 | B2 |
9855600 | Cooper | Jan 2018 | B2 |
9862026 | Cooper | Jan 2018 | B2 |
9903383 | Cooper | Feb 2018 | B2 |
9909808 | Cooper | Mar 2018 | B2 |
9925587 | Cooper | Mar 2018 | B2 |
9951777 | Morando et al. | Apr 2018 | B2 |
9970442 | Tipton | May 2018 | B2 |
9982945 | Cooper | May 2018 | B2 |
10052688 | Cooper | Aug 2018 | B2 |
10072897 | Cooper | Sep 2018 | B2 |
10126058 | Cooper | Nov 2018 | B2 |
10126059 | Cooper | Nov 2018 | B2 |
10138892 | Cooper | Nov 2018 | B2 |
10195664 | Cooper et al. | Feb 2019 | B2 |
10267314 | Cooper | Apr 2019 | B2 |
10274256 | Cooper | Apr 2019 | B2 |
10302361 | Cooper | May 2019 | B2 |
10307821 | Cooper | Jun 2019 | B2 |
10309725 | Cooper | Jun 2019 | B2 |
10322451 | Cooper | Jun 2019 | B2 |
10345045 | Cooper | Jul 2019 | B2 |
10352620 | Cooper | Jul 2019 | B2 |
10428821 | Cooper | Oct 2019 | B2 |
10465688 | Cooper | Nov 2019 | B2 |
10562097 | Cooper | Feb 2020 | B2 |
10570745 | Cooper | Feb 2020 | B2 |
10641270 | Cooper | May 2020 | B2 |
11098720 | Cooper | Aug 2021 | B2 |
20010000465 | Thut | Apr 2001 | A1 |
20020089099 | Denning | Jul 2002 | A1 |
20020146313 | Thut | Oct 2002 | A1 |
20020185794 | Vincent | Dec 2002 | A1 |
20030047850 | Areaux | Mar 2003 | A1 |
20030075844 | Mordue et al. | Apr 2003 | A1 |
20030082052 | Gilbert et al. | May 2003 | A1 |
20030151176 | Ohno | Aug 2003 | A1 |
20030201583 | Klingensmith | Oct 2003 | A1 |
20040050525 | Kennedy et al. | Mar 2004 | A1 |
20040076533 | Cooper | Apr 2004 | A1 |
20040115079 | Cooper | Jun 2004 | A1 |
20040262825 | Cooper | Dec 2004 | A1 |
20050013713 | Cooper | Jan 2005 | A1 |
20050013714 | Cooper | Jan 2005 | A1 |
20050013715 | Cooper | Jan 2005 | A1 |
20050053499 | Cooper | Mar 2005 | A1 |
20050077730 | Thut | Apr 2005 | A1 |
20050116398 | Tremblay | Jun 2005 | A1 |
20060180963 | Thut | Aug 2006 | A1 |
20070253807 | Cooper | Nov 2007 | A1 |
20080163999 | Hymas et al. | Jul 2008 | A1 |
20080202644 | Grassi | Aug 2008 | A1 |
20080211147 | Cooper | Sep 2008 | A1 |
20080213111 | Cooper | Sep 2008 | A1 |
20080230966 | Cooper | Sep 2008 | A1 |
20080253905 | Morando et al. | Oct 2008 | A1 |
20080304970 | Cooper | Dec 2008 | A1 |
20080314548 | Cooper | Dec 2008 | A1 |
20090054167 | Cooper | Feb 2009 | A1 |
20090269191 | Cooper | Oct 2009 | A1 |
20100104415 | Morando | Apr 2010 | A1 |
20100200354 | Yagi et al. | Aug 2010 | A1 |
20110133374 | Cooper | Jun 2011 | A1 |
20110140318 | Reeves et al. | Jun 2011 | A1 |
20110140319 | Cooper | Jun 2011 | A1 |
20110142603 | Cooper | Jun 2011 | A1 |
20110142606 | Cooper | Jun 2011 | A1 |
20110148012 | Cooper | Jun 2011 | A1 |
20110163486 | Cooper | Jul 2011 | A1 |
20110210232 | Cooper | Sep 2011 | A1 |
20110220771 | Cooper | Sep 2011 | A1 |
20110303706 | Cooper | Dec 2011 | A1 |
20120003099 | Tetkoskie | Jan 2012 | A1 |
20120163959 | Morando | Jun 2012 | A1 |
20130105102 | Cooper | May 2013 | A1 |
20130142625 | Cooper | Jun 2013 | A1 |
20130214014 | Cooper | Aug 2013 | A1 |
20130224038 | Tetkoskie et al. | Aug 2013 | A1 |
20130292426 | Cooper | Nov 2013 | A1 |
20130292427 | Cooper | Nov 2013 | A1 |
20130299524 | Cooper | Nov 2013 | A1 |
20130299525 | Cooper | Nov 2013 | A1 |
20130306687 | Cooper | Nov 2013 | A1 |
20130343904 | Cooper | Dec 2013 | A1 |
20140008849 | Cooper | Jan 2014 | A1 |
20140041252 | Vild et al. | Feb 2014 | A1 |
20140044520 | Tipton | Feb 2014 | A1 |
20140083253 | Lutes et al. | Mar 2014 | A1 |
20140210144 | Torres et al. | Jul 2014 | A1 |
20140232048 | Howitt et al. | Aug 2014 | A1 |
20140252701 | Cooper | Sep 2014 | A1 |
20140261800 | Cooper | Sep 2014 | A1 |
20140263482 | Cooper | Sep 2014 | A1 |
20140265068 | Cooper | Sep 2014 | A1 |
20140271219 | Cooper | Sep 2014 | A1 |
20140363309 | Henderson et al. | Dec 2014 | A1 |
20150069679 | Henderson et al. | Mar 2015 | A1 |
20150192364 | Cooper | Jul 2015 | A1 |
20150217369 | Cooper | Aug 2015 | A1 |
20150219111 | Cooper | Aug 2015 | A1 |
20150219112 | Cooper | Aug 2015 | A1 |
20150219113 | Cooper | Aug 2015 | A1 |
20150219114 | Cooper | Aug 2015 | A1 |
20150224574 | Cooper | Aug 2015 | A1 |
20150252807 | Cooper | Sep 2015 | A1 |
20150285557 | Cooper | Oct 2015 | A1 |
20150285558 | Cooper | Oct 2015 | A1 |
20150323256 | Cooper | Nov 2015 | A1 |
20150328682 | Cooper | Nov 2015 | A1 |
20150328683 | Cooper | Nov 2015 | A1 |
20160031007 | Cooper | Feb 2016 | A1 |
20160040265 | Cooper | Feb 2016 | A1 |
20160047602 | Cooper | Feb 2016 | A1 |
20160053762 | Cooper | Feb 2016 | A1 |
20160053814 | Cooper | Feb 2016 | A1 |
20160082507 | Cooper | Mar 2016 | A1 |
20160089718 | Cooper | Mar 2016 | A1 |
20160091251 | Cooper | Mar 2016 | A1 |
20160116216 | Schlicht et al. | Apr 2016 | A1 |
20160221855 | Retorick et al. | Aug 2016 | A1 |
20160250686 | Cooper | Sep 2016 | A1 |
20160265535 | Cooper | Sep 2016 | A1 |
20160305711 | Cooper | Oct 2016 | A1 |
20160320129 | Cooper | Nov 2016 | A1 |
20160320130 | Cooper | Nov 2016 | A1 |
20160320131 | Cooper | Nov 2016 | A1 |
20160346836 | Henderson et al. | Dec 2016 | A1 |
20160348973 | Cooper | Dec 2016 | A1 |
20160348974 | Cooper | Dec 2016 | A1 |
20160348975 | Cooper | Dec 2016 | A1 |
20170037852 | Bright et al. | Feb 2017 | A1 |
20170038146 | Cooper | Feb 2017 | A1 |
20170045298 | Cooper | Feb 2017 | A1 |
20170056973 | Tremblay et al. | Mar 2017 | A1 |
20170082368 | Cooper | Mar 2017 | A1 |
20170106435 | Vincent | Apr 2017 | A1 |
20170106441 | Vincent | Apr 2017 | A1 |
20170130298 | Teranishi et al. | May 2017 | A1 |
20170167793 | Cooper et al. | Jun 2017 | A1 |
20170198721 | Cooper | Jul 2017 | A1 |
20170219289 | Williams et al. | Aug 2017 | A1 |
20170241713 | Henderson et al. | Aug 2017 | A1 |
20170246681 | Tipton et al. | Aug 2017 | A1 |
20170276430 | Cooper | Sep 2017 | A1 |
20180058465 | Cooper | Mar 2018 | A1 |
20180111189 | Cooper | Apr 2018 | A1 |
20180178281 | Cooper | Jun 2018 | A1 |
20180195513 | Cooper | Jul 2018 | A1 |
20180311726 | Cooper | Nov 2018 | A1 |
20190032675 | Cooper | Jan 2019 | A1 |
20190270134 | Cooper | Sep 2019 | A1 |
20190293089 | Cooper | Sep 2019 | A1 |
20190351481 | Tetkoskie | Nov 2019 | A1 |
20190360491 | Cooper | Nov 2019 | A1 |
20190360492 | Cooper | Nov 2019 | A1 |
20190368494 | Cooper | Dec 2019 | A1 |
20200130050 | Cooper | Apr 2020 | A1 |
20200130051 | Cooper | Apr 2020 | A1 |
20200130052 | Cooper | Apr 2020 | A1 |
20200130053 | Cooper | Apr 2020 | A1 |
20200130054 | Cooper | Apr 2020 | A1 |
20200182247 | Cooper | Jun 2020 | A1 |
20200182248 | Cooper | Jun 2020 | A1 |
20200360989 | Cooper | Nov 2020 | A1 |
20200362865 | Cooper | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
683469 | Mar 1964 | CA |
2115929 | Aug 1992 | CA |
2244251 | Jun 1998 | CA |
2305865 | Feb 2000 | CA |
2176475 | Jul 2005 | CA |
2924572 | Apr 2015 | CA |
392268 | Sep 1965 | CH |
1800446 | Dec 1969 | DE |
168250 | Jan 1986 | EP |
665378 | Aug 1995 | EP |
1019635 | Jun 2006 | EP |
543607 | Mar 1942 | GB |
942648 | Nov 1963 | GB |
1185314 | Mar 1970 | GB |
2217784 | Mar 1989 | GB |
58048796 | Mar 1983 | JP |
63104773 | May 1988 | JP |
11-270799 | Oct 1999 | JP |
5112837 | Jan 2013 | JP |
227385 | Apr 2005 | MX |
90756 | Jan 1959 | NO |
416401 | Feb 1974 | SU |
773312 | Oct 1980 | SU |
199808990 | Mar 1998 | WO |
199825031 | Jun 1998 | WO |
200009889 | Feb 2000 | WO |
2002012147 | Feb 2002 | WO |
2004029307 | Apr 2004 | WO |
2010147932 | Dec 2010 | WO |
2014055082 | Apr 2014 | WO |
2014150503 | Sep 2014 | WO |
2014185971 | Nov 2014 | WO |
Entry |
---|
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” including Declarations of Haynes and Johnson, dated Apr. 16, 2001. |
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Pat. No. 7,402,276,” Oct. 2, 2009. |
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Pat. No. 7,402,276,” Oct. 9, 2009. |
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3, 4, 15, 17-20, 26, 28 and 29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009. |
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010. |
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010. |
USPTO; Notice of Reissue Examination Certificate dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910. |
Number | Date | Country | |
---|---|---|---|
20210254622 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62278314 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16792643 | Feb 2020 | US |
Child | 17307387 | US | |
Parent | 16144873 | Sep 2018 | US |
Child | 16792643 | US | |
Parent | 15406515 | Jan 2017 | US |
Child | 16144873 | US |