Information
-
Patent Grant
-
6437496
-
Patent Number
6,437,496
-
Date Filed
Friday, December 17, 199925 years ago
-
Date Issued
Tuesday, August 20, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Patel; Nimeshkumar D.
- Roy; Sikha
Agents
- Leydig, Voit & Mayer, Ltd.
-
CPC
-
US Classifications
Field of Search
-
International Classifications
- H01J2907
- H01J2980
- H01J2981
-
Abstract
A tensioned shadow mask for a color cathode ray tube (CRT) adopting the same. In the color CRT including a faceplate on an inner side, a phosphor screen, a tensioned mask, and frame assembly secured to the faceplate, a funnel connected to the faceplate, the funnel having a neck portion and a cone portion, an electron gun in the neck portion of the funnel, and a deflection yoke on the cone portion of the funnel, the tensioned mask including a series of parallel strips separated by slits at an interval, tie bars interconnecting adjacent strips and defining slits at intervals, and dummy bridges disposed between adjacent tie bars, the dummy bridges respectively extending from adjacent strips toward each other in respective slits but not interconnecting the adjacent strips.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a color cathode ray tube (CRT), and more particularly, to a tensioned shadow mask with a color selection function, which has dummy bridges with an improved structure, and a color CRT adopting the same.
2. Description of the Related Art
Color CRTs for televisions and computer displays employ a shadow mask (hereinafter, simply referred to as a mask) for accurate landing of three electron beams emitted from an electron gun on each phosphor of a phosphor screen. The mask includes a dot mask with substantially circular apertures a slot mask with parallel elongated apertures, and a tensioned mask to which tension is applied from opposite sides thereof, and having series of parallel strips separated by slits through which electron beams pass.
FIG. 1
shows an example of a tensioned mask. As shown in
FIG. 1
, the tensioned mask formed of a foil includes a plurality of strips
12
separated by slits
11
having a predetermined interval, and a plurality of tie bars
13
which interconnect the adjacent strips to define the slits
11
at predetermined intervals.
In the mask, the tie bars
13
which interconnect the adjacent strips
12
can reduce a howling phenomenon, which occurs due to mask vibration from external impact, and unacceptable Poisson's contraction. However, if the vertical pitch PV of the tie bars
23
is too large, that is, if the vertical pitch PV of the tie bars
23
is twice or more the horizontal pitch PH thereof, a reflection image of the tie bars
13
is shown on the screen, which is unpleasant to viewers.
To avoid this problem, U.S. Pat. No. 4,926,089 discloses a tensioned mask as shown FIG.
2
. As shown
FIG. 2
, a tensioned mask
20
includes a plurality of strips
21
separated by slits
22
having a predetermined interval, and tie bars
23
which interconnect the adjacent strips
21
. Also, dummy bridges
24
, which extend partially between but not interconnecting adjacent strips, are disposed between the adjacent tie bars
23
to separate each slit
21
into sub-slits having a predetermined interval.
In the tensioned mask, due to a technical problem in mask pattern formation, the width WI of the dummy bridges
24
is smaller than the width W
2
of the tie bars
23
. Thus, the reflection images by the dummy bridges
24
and the tie bars
23
have a slight difference in intensity of light. This difference raises the problem of tie bar visibility, thus deteriorating display image and making viewing unpleasant.
In formation of the phosphor screen on the inner side of a faceplate, as shown in
FIG. 3
, a tensioned mask and frame assembly is secured to a faceplate
100
, and then subjected to an exposure process for forming a phosphor screen
101
, wherein an exposure lamp
102
for use in the exposure process is long enough to irradiate a region corresponding to the vertical pitch between adjacent tie bars
23
or that of adjacent dummy bridges
24
of the tensioned mask
20
. However, in the phosphor screen formation using the exposure lamp
102
, red phosphor, blue phosphor and green phosphor are not completely excited, resulting in black matrix pattens in the nonexcited regions, as shown in FIG.
4
. This problem is associated with the offset configuration of the dummy bridges
24
of the tensioned mask
20
. In particular, as shown in
FIG. 2
, the dummy bridges
24
of the tensioned mask
20
extend from a strip
21
′ toward the adjacent strip
21
″, to define gaps near the strip
21
″. Accordingly, regions of the phosphor patterns that correspond to the offset protrusions of the dummy bridges
24
, except for regions that correspond to the gaps between the dummy bridges
24
and the strip
21
″, are not excited by the electron beams emitted from the electron gun, so that the black matrix remains therein. Such intrusion of the black matrix into the red, blue and green phosphor patterns reduces the emission area of the phosphors, and regions, which are not excited due to the dummy bridges
24
are also shown in a screen, thereby lowering appearance uniformity.
SUMMARY OF THE INVENTION
An object of the present is to provide a tensioned shadow mask and a color cathode ray tube (CRT) adopting the same, capable of eliminating intrusion of a black matrix into phosphor patterns during phosphor screen formation, due to dummy bridges.
Another object of the present invention is to provide a tensioned mask and a color CRT adopting the same, capable of eliminating the problem of tie bar visibility.
According to an aspect of the present invention, there is provided a tensioned shadow mask for a cathode ray tube (CRT), comprising: a series of parallel strips separated by slits having a predetermined interval; a plurality of tie bars interconnecting adjacent strips to define a plurality of slits at predetermined intervals; and a plurality of dummy bridges disposed between adjacent tie bars, the dummy bridges extending between the adjacent strips and facing each other, but not interconnecting the adjacent strips.
Preferably; the area of the dummy bridges is equal to that of the tie bars, or the area difference between the dummy bridges and the tie bars is in a predetermined range.
According to another aspect of the present invention, there is provided a color cathode ray tube (CRT) including a faceplate having on the inner side thereof a phosphor screen, a tensioned mask and frame assembly secured into the faceplate, which is an assembly of a tensioned mask and a frame, a funnel connected to the faceplate, the funnel having a neck portion and a cone portion, an electron gun inserted in the neck portion of the funnel, and a deflection yoke installed in the cone portion of the funnel, wherein the tensioned mask comprises: a series of parallel strips separated by slits having a predetermined interval; a plurality of tie bars interconnecting adjacent strips to defines a plurality of slits at predetermined intervals; and a plurality of dummy bridges disposed between adjacent tie bars, the dummy bridges extending between the adjacent strips and facing each other, but not interconnecting the adjacent strips.
BRIEF DESCRIPTION OF THE DRAWING
The above object and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
FIG. 1
is a plan view of a conventional tensioned mask for a color cathode ray tube (CRT);
FIG. 2
is a plan view of another conventional tensioned mask for a color CRT;
FIG. 3
is a diagram illustrating an exposure process in a state where a tensioned mask is secured onto a faceplate;
FIG. 4
shows phosphor patterns obtained by exposing a phosphor screen using the tensioned mask of
FIG. 2
;
FIG. 5
is a perspective view of a color CRT according to the present invention;
FIG. 6
is an exploded perspective view showing a tensioned mask according to the present invention secured to a frame;
FIG. 7
is a partial enlarged view of the tensioned mask of
FIG. 6
, illustrating an aperture configuration thereof; and
FIGS. 8 and 17
are photos illustrating the visibility of tie bars reflected on a phosphor screen with respect to the area difference between the tie bars and dummy bridges of tensioned masks.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As shown in
FIG. 5
, a general color cathode ray tube (CRT) includes a faceplate
40
having on the inner side thereof a phosphor screen
41
with a predetermined pattern, a tensioned mask and frame assembly
50
secured onto the faceplate
40
, which is an assembly of a tensioned mask
51
and a frame
56
, a funnel
60
connected to the faceplate
40
, which has a neck portion
60
a
and a cone portion
60
b
, an electron gun
62
inserted in the neck portion
60
a
of the funnel
60
, for emitting electron beams through apertures of the tensioned mask
51
to excite the phosphor screen
41
, and a deflection yoke
63
surrounding the cone portion
60
b
and the neck portion
60
a
of the funnel
60
, for deflecting the electron beams emitted from the electron gun
62
.
In particular, in the phosphor screen
41
disposed on the inner side of the faceplate
40
, phosphors producing light of red, blue and green colors are deposited in a dotted or striped shape. The tensioned mask and frame assembly
50
, as shown in
FIG. 6
, includes the tensioned mask
51
having apertures through which electron beams emitted from the electron gun
62
pass, and the frame
56
for supporting the tensioned mask
51
in tension.
As shown in
FIG. 7
, in the tensioned mask
51
, which is formed of a 50-100 μm-thick foil, a series of strips
53
having a width of 190 μm are separated by slits
52
having a predetermined interval. The slits
52
are separated by tie bars
54
which interconnect adjacent strips
53
′ and
53
″ and have a relatively large vertical pitch PV′, compared to dummy bridges. Also, a plurality of dummy bridges
55
, which define the slits
52
at predetermined intervals, are disposed between the tie bars
54
, wherein the dummy bridges extend between but do not interconnect adjacent strips.
In particular, the dummy bridges
55
, which define the slits
52
at predetermined intervals, include first and second protrusions
55
a
and
55
b
which extend between the adjacent strips
53
′ and
53
″ and face each other, wherein the first and second protrusions
55
a
and
55
b
do not contact each other.
In the present embodiment, preferably, the length L
1
of the dummy bridges
55
is greater than the length L
2
of the tie bars
54
. For example, the length L
1
of the dummy bridges
55
, i.e., the width in the direction of the strips
53
, may be in the range of 100 to 120 μm, and the length L
2
of the tie bars
54
may be in the range of 55 to 90 μm. Also, the width W
3
of the dummy bridges
55
(the sum of the width of the first and second protrusions
55
a
and
55
b
) is less than the width W
4
of the tie bars
54
. Preferably, the area A
1
(=L
1
×W
3
) of the dummy bridges
64
is equal to the area A
2
(=L
2
×W
4
) of the tie bars
54
, or the area difference between the dummy bridges
55
and the rear tie bars
54
is in a predetermined range. For example, in a mask for monitors, the width W
3
of the dummy bridges
55
is 30 μm which is equal to the sum of a width of 15 μm of the first and second protrusions
55
a
and
55
b
extending from the adjacent strips
53
′ and
53
″, respectively. Also, in a mask for televisions, the width W
3
of the dummy bridges
55
is 145 μm which is equal to the sum of a width of 72.5 μm of the first and second protrusions
55
a
and
55
b
extending from the adjacent strips
53
′ and
53
″, respectively. The area of the dummy bridges
55
may differ from that of the tie bars
54
. However, it is preferable that the area of the dummy bridges
55
be equal to that of the tie bars
54
, so that the tie bars will not visibly stand out. Preferably, the area difference between the dummy bridges
55
and the tie bars
54
is in the range of 30 percent, which is expressed by |(A
1
−A
2
)|/A
2
≦0.3.
Also, as shown in
FIG. 6
, the frame
56
of the tensioned mask and frame assembly comprises a pair of supports
56
a
and
56
b
spaced a predetermined distance, for supporting the longer side edges of the tensioned mask
51
, and a pair of elastic members
56
c
and
56
d
for applying tension to the tensioned mask
51
, wherein both ends of the elastic members
56
c
and
56
d
are fixed to those of the support members
56
a
and
56
b
. The frame configuration is not limited to the above configuration, and any configuration capable of placing tension on the tensioned mask
51
can be adopted.
In the color CRT having the configuration of
FIG. 5
, electron beams emitted from the electron gun
62
inserted into the neck portion
60
a
of the funnel
60
are selectively diffracted by the deflection yoke
63
according to scanning positions in the phosphor screen, and then land through the slits
52
of the tensioned mask
51
on the phosphor screen, thereby forming an image thereon.
In the color CRT according to the present invention, which forms an image as mentioned above, phosphor patterns are uniformly formed over the phosphor screen, without intrusion of a black matrix into the phosphor patterns, so that the brightness and resolution of the display image are improved. In particular, in order to obtain a phosphor screen, a phosphor producing red, green or blue color light is deposited on the inner surface of the faceplate
40
on which a black matrix has been deposited, and an exposure process is carried out thereon while the tensioned mask and frame assembly
50
is fixed to the faceplate
40
. During the exposure process, the phosphor exposed through the gap between the first and second protrusions
55
a
and
55
b
of the dummy bridges
55
can be excited, without causing non-excited regions due to the dummy bridges
55
in the phosphor screen. This is due to the configuration of the dummy bridges
55
, in which the first and second protrusions
55
a
and
55
b
extend, facing each other between adjacent strips, but not interconnecting the adjacent strips.
During the operation of the color CRT, the phosphors of the phosphor screen
41
cannot be completely excited by the electron beams emitted from the electron gun, due to the tie bars
54
and the dummy bridges
55
, which define the slits
52
at predetermined intervals and shield electron beams emitted from the electron gun, thus resulting in a reflection image thereby on the screen. However, since in the present invention the length L
1
of the dummy bridges
55
is longer than the length L
2
of the tie bars
54
such that the area of the dummy bridges
55
is almost equal to that of the tie bars
54
, the reflection image area due to the tie bars
54
, which corresponds to a nonexcited region of the phosphor screen, is similar to that due to the dummy bridges
55
. As a result, real image and reflection image are uniformly distributed over the screen, so that viewers scarcely perceive the reflection image, thereby improving appearance uniformity. The reflection image distribution can be controlled by varying the number of tie bars
55
and dummy bridges
54
.
The following embodiments are provided so that this disclosure will be thorough and complete.
EXPERIMENTAL EXAMPLE 1
The appearance uniformity with respect to the area difference between the tie bars and the dummy bridges was observed by varying the length of the dummy bridges relative to the length of the tie bars in a tensioned mask of a CRT for monitors. The result is shown in Table 1.
TABLE 1
|
|
Tie bar
Dummy bridge
|
Length
Width
Area
Length
Width
Area
Area
Appearance
|
Sample
(μm)
(μm)
(μm
2
)
(μm)
(μm)
(μm
2
)
ratio (%)
Uniformity
|
|
1
60
60
3,600
60
30
1,800
50
poor
|
2
60
60
3,600
90
30
1,800
75
moderate
|
3
60
60
3,600
120
30
1,800
100
good
|
4
60
60
3,600
150
30
1,800
125
moderate
|
|
As can be noted from Table 1, the appearance uniformity is acceptable when the area of the tie bars is in an range greater than 70% and less than 130% of the area of the tie bars.
FIGS. 8 through 13
are photos illustrating the visibility of tie bars reflected on the phosphor screen, with respect to the area difference between the tie bars and dummy bridges of tensioned masks shown in Table 1. In particular,
FIG. 9
is a macro photo in a case when the area of the dummy bridges is 50% of that of the tie bars (Sample 1 of Table 1), and
FIG. 8
is a 20X-magnified photo of FIG.
9
. As shown in
FIGS. 8 and 9
, distinct tie bar shadows appear on the phosphor screen.
FIG. 11
is a macro photo showing the tie bar visibility on the phosphor screen when the area of the dummy bridges is 75% of that of the tie bar (Sample 2 of Table 1), and
FIG. 10
is a 20×-magnified photo of FIG.
11
. As shown in
FIG. 10
, the sizes of the reflection image by the tie bars and the dummy bridges appears to be equal to each other, showing a slight difference in intensity of light therebetween. Also, as shown in
FIG. 11
, it is difficult to distinguish the tie bar shadows on the phosphor screen from the dummy bridges shadows thereon.
FIG. 13
is a macro photo showing the tie bar visibility on the phosphor screen when there is no difference in area between the tie bars and the dummy bridges (Sample 3 of Table 1), and
FIG. 12
is a 20×-magnified photo of FIG.
13
. In
FIG. 12
, the dummy bridges that are enlarged in the longitudinal direction so as to make the area of the dummy bridges equal to that of the tie bars are visible. As shown in
FIG. 13
, it is difficult to distinguish the tie bar shadows from the dummy bridges shadows, and the reflection images of the tie bars and dummy bridges show uniform intensity of light.
Although the photos of Sample 4 in Table 1, in which the area of the dummy bridges is 125% of that of the tie bars, were not taken, the size of the reflection image of the dummy bridges on the phosphor screen was large whereas that of the tie bars was small, compared to the Sample 3. Furthermore, the reflection image of the tie bars were shown as white dots on the screen.
EXPERIMENTAL EXAMPLE 2
The appearance uniformity with respect to the area difference between the tie bars and the dummy bridges was observed by varying the length of the dummy bridges relative to the length of the tie bars in a tensioned mask of a CRT for. televisions. The result is shown in Table 2.
TABLE 2
|
|
Tie bar
Dummy bridge
|
Length
Width
Area
Length
Width
Area
Area
Appearance
|
Sample
(μm)
(μm)
(μm
2
)
(μm)
(μm)
(μm
2
)
ratio (%)
Uniformity
|
|
1
80
195
15,600
60
145
8,700
55
poor
|
2
80
195
15,600
80
145
11,600
74
moderate
|
3
80
195
15,600
108
145
15,660
100.3
good
|
4
80
195
15,600
140
145
20,300
130.1
moderate
|
|
As can be understood from Table 2, the appearance uniformity is acceptable when the area difference between the tie bars and dummy bridges is in the range of 30%.
FIGS. 14 through 17
are photos illustrating the visibility of tie bars reflected on the phosphor screen, with respect to the area difference between the tie bars and dummy bridges of tensioned masks shown in Table 2. In particular,
FIG. 15
is a macro photo in a case when the area of the dummy bridges is 55% of that of the tie bars (Sample 1 of Table 2), and
FIG. 14
is a 10×-magnified photo of FIG.
15
. As shown in
FIGS. 14 and 15
, although the resolution is poor, due to the large horizontal pitches of the phosphor pattern and the slit of the tensioned mask for televisions, compared to those for monitors (Experimental Example 1), distinct tie bar shadows appear on the screen.
FIG. 17
is a macro photo showing the tie bar visibility on the phosphor screen when the area of the dummy bridges is 74% of that of the tie bars (Sample 2 of Table 2), and
FIG. 16
is a 10×-magnified photo of FIG.
17
. In
FIG. 16
, the dummy bridges that are enlarged in the longitudinal direction so as to make the area of the dummy bridges equal to that of the tie bars are distinct. As shown in
FIG. 17
, the reflection images of the tie bars and dummy tie bars have uniform intensity of light, so that it is difficult to distinguish the reflection image of the tie bars from that of the dummy tie bars, thus improving the appearance uniformity.
Although photos of the Sample 4 in Table 2, in which the area of the dummy bridges is 130% or more larger than that of the tie bars, were not taken, the size of the reflection image of the dummy bridges on the phosphor screen was large whereas that of the tie bars was small, compared to the samples described with reference to photos. Furthermore, the reflection image of the tie bars was shown as white dots on the screen.
While the present invention has been illustrated and described with reference to specific embodiments, further modifications and alterations within the spirit and scope of this invention as defined by the appended claims will become evident to those skilled in the art.
Claims
- 1. A tensioned shadow mask for a cathode ray tube (CRT), comprising:a series of parallel strips extending along a first direction of the shadow mask and separated by respective slits spaced from each other at an interval; a plurality of tie bars, each tie bar interconnecting, along the first direction, two of the slits and, along a second direction transverse to the first direction, interconnecting adjacent strips; and a plurality of dummy bridges, disposed between adjacent tie bars, pairs of the dummy bridges having first and second protrusions extending toward each other in a slit, from respective adjacent strips, but not interconnecting the adjacent strips.
- 2. The tensioned shadow mask of claim 1, wherein the first and second protrusions have, along the second direction, identical widths so that a gap between each pair of first and second protrusions is located at a center of, a slit.
- 3. The tensioned shadow mask of claim 1, wherein each of the dummy bridges and the tie bars have respective areas, and the area of each dummy bridge is in a range greater than 70% and less than 130% of the area of each tie bar.
- 4. A color cathode ray tube (CRT) including:a faceplate having on an inner side a phosphor screen, a tensioned mask and frame assembly secured to the faceplate, a funnel connected to the faceplate, the funnel having a neck portion and a cone portion, an electron gun in the neck portion of the funnel, and a deflection yoke on the cone portion of the funnel, wherein the tensioned mask comprises: a series of parallel strips extending along a first direction of the shadow mask and separated by respective slits spaced from each other at an interval; a plurality of tie bars, each tie bar interconnecting, along the first direction, two of the slits and, along a second direction transverse to the first direction, interconnecting adjacent strips; and a plurality of dummy bridges, disposed between adjacent tie bars, pairs of the dummy bridges having first and second protrusions extending toward each other in a slit, from respective adjacent strips but not interconnecting the adjacent strips.
- 5. The color cathode ray tube of claim 4, wherein each of the dummy bridges and the tie bars have respective areas, and the area of each dummy bridge is in a range greater than 70% and less than 130% of the area of each tie bar.
Priority Claims (1)
Number |
Date |
Country |
Kind |
99-25812 |
Jun 1999 |
KR |
|
US Referenced Citations (8)
Foreign Referenced Citations (3)
Number |
Date |
Country |
487106 |
May 1992 |
EP |
2702881 |
Mar 1994 |
FR |
57-065650 |
Apr 1982 |
JP |