The present disclosure relates to a system for controlling the tension on a web that is being wound onto a rewind roll from the output of a processor, such as a printer, through which the web has passed. The web is a continuous strip that may carry labels or other materials that are printed.
Label printers, in particular, have a supply roll of a continuous web or substrate carrying the labels and the web is fed through the printer. After the label is printed, the web is wound onto a rewind roll so that the printed labels can be removed from the web for use. It is important that the web is tightly wound on the rewind roll. It is desirable that the web is not pulled by external tension as it passes through the printer, to avoid printing problems. Also, the web should be wound so that the rewind roll has a smooth, uniform edge.
The present disclosure relates to a web rewind system for controlling the tension with which a web or substrate is rewound onto a roll. The rewinding is done in a manner that ensures the web or substrate is tightly wound on the rewind roll, and which also ensures that the tension in the web at the rewind roll does not cause external tension on the web portion that is in the processor or printer. It is known to have an adjustable torque drive on a web rewind roll so that the amount of tension created in a web being wound onto the rewind roll can be controlled.
The present device is a web control that will receive the web after the web has passed through a processor, as shown a printer, and before the web is wound onto a rewind roll, so that periodically the web can be clamped and the loops of the web on the rewind roll are tightened down onto the core by driving the core without causing any increase in tension in the web as it exits the printer. The present rewind tension control device is compact and easy to use, and the web can be tightly wound on the rewind roll with a lower initial wrap tension than with previous tension controls. Temporarily clamping the continuous web or substrate and controlling the motor driving the rewind roll to continue to rotate creates tension in the web between the clamp point and the rewind roller, and web material previously wound or looped on the roll tightens on itself. Preferably, only a short length of web material is permitted to wrap loosely onto the rewind roll before clamping and tightening, so the slack in the form of loose loops on the rewind roll is easily taken up.
Rewind rolls can be wound with a web until the roll is quite large, for example, up to a twelve inch outside diameter.
The web 12 is fed from the feed rolls 22 to exit the printer 10, and then it passes to an input of web tensioner 28, and then is wound onto a rewind roller assembly 30 that includes a central core 32 on which the web is wound. The core 32 is supported on a mandrel 31.Side guide plates 33 of roller assembly 30 are spaced apart and supported on the mandrel 31. The web fits between guide plates 33. The rewind roller assembly 30 is driven by a suitable variable torque output motor shown schematically at 34. The output torque of motor 34 is electronically adjustable in a known manner, so that the drive torque for the core 32 can be adjusted from a torque adjustment control 36. Adjustable torque output motors are commercially available.
The tensioner 28 includes guides for guiding movement of the web, and has a “dancer” roll, or slack sensing roll, held in a slack sensor assembly 38. The slack sensor assembly 38 includes a pair of pivoting arms 40, as can be seen in
The dancer roll 42 moves up and down as the slack of the web length between the printer and an infeed to the tensioner forming a loop 13 changes, causing the arms 40 to pivot from an upper operational position shown in solid lines in
As can be seen in
The web 12 passes underneath a guide plate 52, and underneath an upper clamp pad 54 that is carried by a portion of the guide plate 52. The guide plate 52 is held in the housing in a suitable manner. Additionally, there are guide plates 56 in the housing 46, that, while threading the web, guide it along the bottom side of a second idler guide roller 58 that is also suitably rotatably mounted between side walls of the housing 46. A lower guide plate 60 is provided below the web 12 to guide the web if it is slack, while threading the web. The rollers 48 and 56 define the path of the web when the web is under tension while winding or tightening the web on the rewind roll.
The upper clamp pad 54 operates in connection with a lower clamp pad 62 that is below the web 12, and aligned with the upper clamp pad 54. The clamp pads together form a web clamp or web restraint that prevents longitudinal, lineal movement of the web 12. The guide plate 52 and the upper clamp pad 54 extend transversely between the side walls of the housing 46.
The lower clamp pad 62 likewise extends across the tensioner between the side walls of the housing 46 and is formed as part of a plate-like lower clamp pad bracket or plate 64 that is slidably guided for limited vertical movement. As can be seen in
The lower clamp pad bracket 64 is spring loaded toward the upper clamp pad 54 with springs 66 to a web clamping position. A cam 70 that is driven from an output shaft 80 of a clamp motor 82 can be rotated to move the lower clamp pad 64 to an open position. The cam 70 aligns with a flange 84 that is formed on the clamp pad bracket 64, so that as motor 82 rotates the cam lobe will engage the flange 84 and move the lower clamp pad bracket 64 against the force of the springs 66 to the open position that is shown in
When the web 12 is clamped as shown with the clamp pads in the position of
The desired positions of the dancer roll 42 are sensed to provide signals indicating a desired minimum and maximum slack in the web length between the printer output side and the tensioner. When there is slack less than the minimum, the rewind roller will continue to rotate after the clamp pads 54 and 62 separate until the roll 42 reaches an upper operational position where the slack at the infeed of the tensioner is a minimum. When the web is clamped and the rewind roll is tightened, the slack will increase because the web continues to be driven through the printer, and the dancer roll will reach a lower operational position where the slack loop 13 is at an operational maximum. The rewind roller is driven at a speed to provide a lineal speed of movement of the web greater than the lineal speed of movement of the web through the printer to reduce the slack in the web length between the printer and the infeed of the tensioner during operation when the web is unclamped. The dancer roll 42 will then move between the two different operational positions of arms 40, including the lower operational position (maximum slack) which is illustrated in dotted lines in
When the tension in the web 12 between the printer 10 and the tensioner 28 is such that the web lifts the dancer roll 42 to the position shown in solid lines in
The two operational positions of the dancer roll 42 are sensed by arm position sensors shown in
Additionally, the clamped and operational positions of the lower clamp pad 62 and the lower clamp pad bracket 64 are sensed by a sensor 98 that provides a signal when a flag 100 attached to the lower clamp pad bracket 64 is aligned with the sensor. The signal indicating the position of the bracket 64 and the lower clamp pad 62 is provided to a controller 37 to indicate whether the web 12 is clamped or free to move. The controller 37 controls the interaction of web tensioner 28 and the operation of the rewind motor 34.
When the printer and rewind system shown in
The continuous web or substrate 12, such as label stock, is threaded through the tensioner, as shown in
When this is done, the arms 40 and the dancer roll 42 are moved to engage the web 12, which forms a slack loop 13 and the sensor 92 indicates the disc 90 is no longer blocking its light beam, the rewind system can be operated. The movement of the arms 40 to the lower operational position will thus automatically start the rewind motor 34 through the controller 37, to wrap the web around the core 32 at a speed faster than the web is fed out of the printer or other device with which the tensioner is used. The web 12 is moved so that the slack loop 13 lifts the dancer roll 42 high enough so that the position sensor 94 signals that the dancer roll 42 is in the upper operational position. The rewind motor will be stopped by the controller 37 in response to this signal, and the tensioner clamp motor will be started to drive the cam 70 so the lower clamp pad bracket is moved upwardly under the spring load from springs 66 until the flag 100 moves far enough so that the lower clamp position sensor 98 indicates to the controller that the clamp bracket 64 is raised. At this point, the lower clamp pad 62 will have moved web 12 against the upper clamp pad. This clamps the web and holds it in position, as shown in
The variable torque motor 34 for the rewind roll 30 will then be turned on, thereby tightening the coils or loop of the web that have been loosely wrapped around the core 32, by allowing the core to be rotated and the wraps of web to slip upon themselves and tighten onto the core as the web is held from longitudinal movement by the clamp 61.
The rewind motor 34 is timed as it runs to tighten the loops or wraps with a section of timer 35 in controller 37, and after the clamp 61 is closed, the motor 34 will run for a set period of time, which is dependent upon the speed of the web 12 as it is fed out of the printer 10, and the movement or pivoting of the arms 40 for the dancer roll. The time period for running motor 34 for tightening the wraps or coils of the web on the core is set so that the rewind motor will stop before the web length between the printer and tensioner forming slack loop 13, which is being fed by the printer, becomes slack enough for the dancer arms 40 and roller 42 to reach the lower operational position, as sensed by the sensor 92. In a typical system the tightening time of running the motor 34 may be under 1 second. While, as shown, the motor 34 stops after a set period of time, the motor also could be stopped by a third sensor sensing the position of the arms 40 to signal when the arms are near, but not yet at, the lower operational position.
When the rewind motor 34 is stopped by controller 37 after the set time period for tightening the web loops or wraps on the rewind roller (or after a signal from a third sensor), the tensioner clamp motor 82 will be started by the controller to turn the cam 70 to release the clamp 61. The sensor clamp position sensor changes states again, as sensed by the flag 100 and the sensor 98. The cam 70 will have moved the lower clamp pad 62 away from the upper clamp pad 54 to the position shown in
After the cam 70 has moved the lower clamp pad 62 away from the upper clamp pad 54, and the rewind motor has not yet started again, the slack loop 13 increases and a signal from sensor 92, indicating the dancer roll 42 has reached it lower operational position will be received by the controller 37. Motor 34 for the rewind roll will again be started to wind the web fed from the printer around the rewind roller core at a lineal speed of the web greater than the lineal speed of the web fed from the printer, until the web slack loop 13 reduces and the web again lifts the dancer arms 40 and the dancer roll 42 high enough so the dancer roll upper operational position sensor 94 provides an upper position signal to the controller. The clamp motor 84 will again be energized to turn the cam 70 to permit the lower clamp pad 62 to move up against the upper clamp pad 54 under the spring force to hold or restrain the web or substrate from moving, and the process then repeats.
While the present discussion has dealt with a web that is carrying labels to be printed, and used in combination with a printer, the tensioner can be utilized for controlling rewind tension in a continuous web regardless of what process the web undergoes, to ensure that a continuous web is wound efficiently onto a rewind or take up roller. The rewind roller is capable of exerting a set tension in the web, based upon the output torque of the motor that is driving the rewind roller, in order to have the loose loops or wraps periodically tightened down onto the core and any previous wound wraps forming the rewind roll. This insures a tight rewind roll, and keeps the roll usable for easily removing labels or other items that might be on the web that has been re-wound.
The system is preferably set so that when the rewinding is first started, and the rewind roll of printed web is small, only approximately 12 inches length of the web will be passed through the tensioner before the web is clamped and the rewind roller tightens the loose loops or wraps down onto the core. The function of restraining the web from longitudinal lineal movement and tightening down the lengths of the web forming loops or wraps on the rewind roll in short intervals insures that the web will not have to be placed under excessive tension in order to try to tighten down several loops or wraps of the web on the rewind roller, especially if the web is non-slippery in nature. As the rewind or take-up roll of web and printed labels gets larger, the clamping or restraining of the web to permit tensioning the web wrapped on the rewind roll can be activated and the rewound web tightened before a full wrap is made on the rewind roll. The wraps of web are thus kept tight without exerting a high torque on the rewind roller.
The dancer roll 42 is illustrated as being mounted on two pivoting arms, but can be mounted to cantilever from one arm, or can be mounted in a guide or guides to slide up and down between its desired positions as it senses slack in the web between the printer and the tensioner 28.
When there is no web present at the infeed of the tensioner 28, that is between the printer and the tensioner, the dancer roll 42 and arms 40 will move to or past the lower operational position and the edge 90B of disc 90 clears the lower operational position sensor 92 so light from the sensor light source is received by the receiver of the sensor, and again the controller 37 and a section of timer 35 would time how long the light source of sensor 92 was received by its receiver, and if the beam of light was not blocked by the disc 90 after a selected sensor time period for sensor 92, for example, again, 8 to 10 seconds, the motors 34 and 82 would be kept off by controller 37 until the tensioning system was reloaded with a web. The sensor time period for sensor 92 can be different from the sensor time period for sensor 94, if desired.
While a direct acting clamp 61 is disclosed as the web restraint, other web restraints that prevent movement of the web to hold the web from wrapping around the rewind roll, and which will permit rotating the rewind roll core after the web movement is restrained, can be used.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.