The invention relates to a tensioner, and more particularly, to a tensioner having a torsion spring disposed within a radially inward receiving portion of a base cylindrical portion.
The two most common methods synchronously driving rotating members such as cam shafts and balance shafts from a crankshaft are timing chains and belts. Timing chains require engine oil to operate. In comparison most timing belt applications require that no oil be present in the belt drive as the presence of oil can damage the belt and inhibit its intended purpose. Recent improvements in belts no long require that a belt be isolated from the engine oil environment.
The recent improvement of belts to operate in oil, however poses other problems that need to be solved. One specific problem is properly tensioning the belt drive to keep the camshaft synchronized with the crankshaft. Should the camshaft or other synchronized driven crankshaft component loose synchronization with the crankshaft catastrophic engine damage can result.
To transmit power through the belt from the rotating crankshaft one side of the belt is pulled around the crankshaft and is commonly referred to as the belt tight side by those skilled in the art. Conversely the other side is referred to as the belt slack side, since the belt is being “pushed” away from the crankshaft. It is important to provide tensioning to the slack side of the belt to prevent the belt from becoming unduly slack and thus causing a loss of synchronization between the crankshaft and the components rotated by the crankshaft. This loss of synchronization is commonly referred to as “tooth jump” or “ratcheting” by those skilled in the art.
Known tensioners are constrained in size based on the arrangement of the components. Typically a torsion spring is stacked axially with a pulley bearing. This limits the minimum height of the device, which in turn affects the engine and belt system design.
Representative of the art is U.S. Pat. No. 9,618,098 which discloses a tensioner comprising a base, a shaft connected to the base, an eccentric adjuster coaxially engaged with the shaft, an arm pivotally engaged with the shaft, a pulley journalled to the arm, a torsion spring engaged between the arm and the base, the arm comprising a first receiving portion and a second receiving portion disposed axially opposite from the first receiving portion, a first damping member disposed between the arm and the base, the first damping member frictionally engaged with the base and engaged with first receiving portion, a second damping member disposed between the arm and the eccentric adjuster having a member engaged with the second receiving portion, and a biasing member disposed between the first damping member and the arm for applying a normal force to the first damping member and to the second damping member.
What is needed is a tensioner having a torsion spring disposed within a radially inward receiving portion of a base cylindrical portion. The present invention meets this need.
The primary aspect of the invention is to provide a tensioner having a torsion spring disposed within a radially inward receiving portion of a base cylindrical portion.
Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention comprises a tensioner comprising a base having a cylindrical portion extending axially, the cylindrical portion comprising a radially outer surface and a receiving portion that is radially inward of the radially outer surface, an eccentric arm pivotally engaged with the radially outer surface, a torsion spring disposed within the radially inward receiving portion, the torsion spring applying a biasing force to the eccentric arm, and a pulley journalled to the eccentric arm.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate preferred embodiments of the present invention, and together with a description, serve to explain the principles of the invention.
Eccentric arm 20 pivots about cylindrical portion 12. Bushing 60 is disposed between inner surface 22 and outer surface 14. Bushing 60 comprises a slot 61 which substantially aligns with opening 11 in cylindrical portion 12. Pulley 40 is journalled to surface 21 on a needle bearing 50. A needle bearing is used in an oil bath environment. Other bearings known in the art are suitable as well.
Torsion spring 30 engages and biases eccentric arm 20 toward a belt (not shown) in order to apply a belt load. End 31 projects through slot 61 and opening 11 to engage eccentric arm 20 receiving portion 24. End 32 engages a receiving portion 15 in base 10. Torsion spring 30 is entirely disposed within receiving portion 18. Receiving portion 18 is a central hollow portion of cylindrical portion 12. Torsion spring 30 is coplanar with bearing 50, pulley 40 and eccentric arm 20. Torsion spring 30 is disposed radially inward of pulley 40, bearing 50, bushing 60 and cylindrical portion 12. Namely, torsion spring 30, bearing 50, pulley 40 and eccentric arm 20 are all concentrically arranged such that no one of the listed components is axially displaced, along axis A-A, from the others.
Retaining ring 6 engages circumferential slot 16 in base 10. Retaining ring 5 engages circumferential slot 23 in eccentric arm 20. Retaining ring 5 retains bearing 50 on eccentric arm 20. Retaining ring 6 retains eccentric arm 20 on base 10. In the presence of oil retaining ring 5 and 6 can each act as a thrust washer to transmit axial forces.
Pulley 40 is press fit on bearing 50. Fastener 4 projects through torsion spring 30 and hole 17 in base 10 to fix tensioner 100 to a mounting surface such as an engine (not shown).
Bushing 60 comprises a dynamic coefficient of friction (COF) in the range of approximately 0.05 to approximately 0.20. A static COF is preferably lower than the dynamic COF.
Although forms of the invention have been described herein, it will be obvious to those skilled in the art that variations may be made in the construction and relation of parts and method without departing from the spirit and scope of the invention described herein.
This application claims priority from and is a continuation-in-part of pending U.S. application Ser. No. 15/625,635 filed Jun. 16, 2017.
Number | Name | Date | Kind |
---|---|---|---|
2210276 | Bremer | Aug 1940 | A |
3358522 | Poyser | Dec 1967 | A |
4689037 | Bytzek | Aug 1987 | A |
5055088 | Cradduck et al. | Oct 1991 | A |
5647812 | McDonald | Jul 1997 | A |
5919107 | Stepniak | Jul 1999 | A |
6336881 | Rapp | Jan 2002 | B1 |
6364796 | Nakamura et al. | Apr 2002 | B1 |
6440020 | Tada | Aug 2002 | B1 |
6524202 | Tada et al. | Feb 2003 | B1 |
6592482 | Serkh | Jul 2003 | B2 |
6620067 | Nakamura et al. | Sep 2003 | B1 |
6808467 | Takeda et al. | Oct 2004 | B2 |
6902505 | Yonezawa et al. | Jun 2005 | B2 |
6932731 | Kaiser et al. | Aug 2005 | B2 |
6955621 | Wigsten | Oct 2005 | B2 |
7320262 | Hallen | Jan 2008 | B2 |
7686718 | Nakano | Mar 2010 | B2 |
7901309 | Lehtovaara | Mar 2011 | B2 |
7946938 | Hallen | May 2011 | B2 |
7951030 | Ward et al. | May 2011 | B2 |
8052559 | Wigsten | Nov 2011 | B2 |
8057333 | Haesloop | Nov 2011 | B2 |
8083623 | Cantatore | Dec 2011 | B2 |
8292765 | Rolando et al. | Oct 2012 | B2 |
8348793 | Neary | Jan 2013 | B2 |
8690718 | Cantatore | Apr 2014 | B2 |
8876641 | Koiwa | Nov 2014 | B2 |
8926462 | Ward et al. | Jan 2015 | B2 |
9523413 | Kurematsu et al. | Dec 2016 | B2 |
9618098 | Ward et al. | Apr 2017 | B2 |
9726051 | Frankowski | Aug 2017 | B2 |
9869378 | Kobayashi | Jan 2018 | B2 |
9869379 | Frankowski | Jan 2018 | B2 |
20020107097 | Takeda | Aug 2002 | A1 |
20050143207 | Hashimoto | Jun 2005 | A1 |
20060068957 | Stone et al. | Mar 2006 | A1 |
20070099736 | Hallen | May 2007 | A1 |
20080171622 | Schever | Jul 2008 | A1 |
20080287233 | Cantatore | Nov 2008 | A1 |
20100144473 | Ward et al. | Jun 2010 | A1 |
20100190594 | Rolando et al. | Jul 2010 | A1 |
20110218066 | Rolando et al. | Sep 2011 | A1 |
20120040789 | Cantatore | Feb 2012 | A1 |
20120316018 | Ward et al. | Dec 2012 | A1 |
20120316019 | Ward et al. | Dec 2012 | A1 |
20140287859 | Frankowski | Sep 2014 | A1 |
20150219189 | Serkh | Aug 2015 | A1 |
20170016517 | Ward | Jan 2017 | A1 |
20170023108 | Bauerdick | Jan 2017 | A1 |
20180320764 | Frankowski | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
19907668 | Aug 2000 | DE |
102009012713 | Sep 2010 | DE |
102009057331 | Jun 2011 | DE |
102014209780 | Nov 2015 | DE |
53-081019 | Jul 1978 | JP |
2005164024 | Jun 2005 | JP |
2005273896 | Oct 2005 | JP |
2006024170 | Mar 2006 | WO |
2006099724 | Sep 2006 | WO |
2008149390 | Dec 2008 | WO |
2015167602 | Nov 2015 | WO |
2017070784 | May 2017 | WO |
2018003746 | Jan 2018 | WO |
2018080970 | May 2018 | WO |
2018232295 | Dec 2018 | WO |
Entry |
---|
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority; application No. PCT/US2018/037841, dated Aug. 13, 2018. |
Australian Government IP Australia, Examination Report No. 1 for standard patent application, Application No. 2018274947, dated Jun. 13, 2019. |
Australian Government IP Australia, Examination Report No. 1 for standard patent application, Application No. 2018283309 dated Jun. 13, 2019. |
Canadian Intellectual Property Office, Examination Report, Application No. 3026671 dated Sep. 20, 2019. |
Canadian Intellectual Property Office, Examination Report, Application No. 3033096 dated Jan. 17, 2020. |
Number | Date | Country | |
---|---|---|---|
20180363742 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15625635 | Jun 2017 | US |
Child | 15792258 | US |