Tensioning apparatuses for occupant restraint systems and associated systems and methods

Information

  • Patent Grant
  • 8632131
  • Patent Number
    8,632,131
  • Date Filed
    Monday, October 8, 2012
    12 years ago
  • Date Issued
    Tuesday, January 21, 2014
    11 years ago
Abstract
Tensioning apparatuses for occupant restraint systems and associated systems and methods. In one embodiment, an occupant restraint system for a vehicle can include a flexible web configured to extend across at least a portion of an occupant seated in the vehicle and an electrically actuated web retractor operably coupled to a proximal end portion of the web. The web retractor is configured to automatically wind and unwind the web. The system also includes an acceleration sensor operably coupled to the electrically actuated web retractor. The acceleration sensor is configured to send an electrical signal to the web retractor in response to a vehicle acceleration above a preset magnitude. In response to the signal, the web retractor is configured to (a) retract the web, and/or (b) at least temporarily prevent the web from moving inwardly or outwardly.
Description
TECHNICAL FIELD

The following disclosure relates generally to tensioning apparatuses for occupant restraint systems and associated systems and methods.


BACKGROUND

Conventional occupant restraint systems, such as those used in passenger vehicles, typically include one or more webs or belts to restrain passengers in their seats. One type of restraint system, for example, includes a shoulder, web and a lap web. Other restraint systems have more than two webs (e.g., two shoulder webs, a lap web, and a crotch web) to more adequately restrain passengers during impacts that can cause dislocation of the passengers in the vertical direction.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are partially schematic front and back views, respectively, of an occupant restraint system having a web tensioning subsystem configured in accordance with an embodiment of the disclosure.



FIGS. 2A-2D are isometric views of a web retractor having an electrically activated web tensioning device configured in accordance with an embodiment of the disclosure.



FIG. 3 is a schematic diagram of the web tensioning subsystem of FIGS. 1A and 1B configured in accordance with an embodiment of the disclosure.



FIGS. 4A-4C illustrate a portion of an occupant restraint system including a web tensioning subsystem configured in accordance with another embodiment of the disclosure.





DETAILED DESCRIPTION

The present disclosure describes tensioning apparatuses for occupant restraint systems and associated systems and methods. Many specific details are set forth in the following description and in FIGS. 1A-4C to provide a thorough understanding of various embodiments of the disclosure. Other details describing well-known structures and systems often associated with restraint systems and related vehicle structures, however, are not set forth below to avoid unnecessarily obscuring the description of the various embodiments of the disclosure.


Many of the details and features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details and features without departing from the spirit and scope of the present disclosure. In addition, those of ordinary skill in the art will understand that further embodiments can be practiced without several of the details described below. Furthermore, various embodiments of the disclosure can include structures other than those illustrated in the Figures and are expressly not limited to the structures shown in the Figures. Moreover, the various elements and features illustrated in the Figures may not be drawn to scale.



FIGS. 1A and 1B are front and back views, respectively, of an occupant restraint system 110 having a web tensioning subsystem 150 configured in accordance with an embodiment of the disclosure. Referring to FIGS. 1A and 1B together, the occupant restraint system 110 (“restraint system 110”) secures an occupant 102 to a seat 104 in a vehicle 106. Suitable vehicles 106 can include ground vehicles, automobiles, military vehicles, aircraft, rotorcraft, watercraft, spacecraft, and other suitable land, sea, and air vehicles). As described in greater detail below, the web tensioning subsystem 150 is configured to control operation of certain aspects of the restraint system 110 to automatically adjust or modulate the tension of the restraint system in response to predetermined dynamic events and/or forces (e.g., rollovers, rough terrain, rapid decelerations and/or accelerations, collisions, impacts, etc.).


In the illustrated embodiment, the restraint system 110 includes a plurality of webs or belts extending around the occupant 102 and operably coupled to the vehicle 106 and/or the web tensioning subsystem 150. As used herein, “webs” can include any type of flexible straps or belts, such as seat belts made from woven material as is known in the art for use with personal restraint systems. In the illustrated embodiment, for example, the restraint system 110 is a five-point restraint system including shoulder webs 112 (identified individually as a first shoulder web 112a and a second shoulder web 112b), lap webs 114 (identified individually as a first lap web 114a and a second lap web 116b), and a crotch web 116 operably coupled to a buckle assembly 117. In other embodiments, however, the restraint system 110 can have other configurations. For example, the restraint system 110 can include a three-point or four-point restraint system. In still other embodiments, a single lap web 114 and/or a single shoulder web 118 may be used. Accordingly, the present disclosure is not limited to the particular web configurations disclosed herein.


As best seen in FIG. 1B, the web tensioning subsystem 150 includes a sensor assembly 152 (shown schematically) and one or more web retractors 154 (two are shown as a first web retractor 154a and a second web retractor 154b). A proximal end portion of the first shoulder web 112a is operably coupled to the first web retractor 154a, and a proximal end portion of the second shoulder web 112b is operably coupled to the second web retractor 154b. The first and second web retractors 154a and 154b are fixedly attached to a rear portion of the seat 104. The first and second web retractors 154a and 154b are each electrically coupled to the sensor assembly 152 with an electrical link 156 (e.g., a wire, electrical line, connector, etc.).


In the illustrated embodiment, the first and second web retractors 154a and 154b are positioned behind the seat 104. In other embodiments, however, web retractors 154 can be positioned at different locations in the vehicle 106, such as to the side of the seat 104, above the seat 104, etc. Moreover, although only two web retractors 154 are shown in the illustrated embodiment, a different number of web retractors 154 can be operably coupled to the shoulder webs 112 and/or the lap webs 114. For example, a third web retractor 154 can be operably coupled to the lap webs 114 in addition to the illustrated web retractors 154a and 154b operably coupled to the shoulder webs 112.


The sensor assembly 152 can include one or more acceleration sensors 153 (e.g., accelerometers) configured to sense vehicle accelerations (and decelerations) in one or more directions and send associated control signals to the web retractors 154. For example, the sensor assembly 152 can include at least one acceleration sensor configured to sense vehicle accelerations in the vertical direction along the Z axis and one or more additional sensors configured to sense accelerations in the fore and aft directions along the X axis and/or laterally along the Y axis. In other embodiments, the web tensioning subsystem 150 can have a different arrangement and/or include different features. For example, the web tensioning subsystem 150 can include one or more additional web retractors 154 coupled to other webs. In addition, the web retractors 154 and/or sensor assembly 160 can be positioned at other locations on the seat 104 or vehicle 106. Moreover, the sensor assembly 152 can include different features and/or have a different number of acceleration sensors.


Referring back to FIGS. 1A and 1B together, the shoulder webs 112 and other webs (e.g., lap webs 114, crotch web 116, etc.) can include features typically associated with conventional webs and safety belts. For example, the shoulder webs 112 and lap webs 114 can each include flexible segments of a fixed length and/or adjustable length to accommodate different sized occupants. In the illustrated embodiment, the lap webs 114 and crotch web 116 are fixedly secured to the seat 104 (e.g., to a seat frame and/or directed to the vehicle 106), and the shoulder webs 112 are operably coupled to the web tensioning subsystem 150. In other embodiments, however, the lap webs 114 and/or crotch web 116 can also be attached to the web tensioning subsystem 150 or another retractor (e.g., inertial reel) to automatically adjust the fit of the webs in response to movement of the occupant 102. In still other embodiments, lap webs 114 and/or other webs may be manually adjusted, static, etc.



FIGS. 2A-2D are isometric views of the first web retractor 154a before installation with the vehicle 106. More specifically, FIGS. 2A and 2C are partially transparent left and right isometric views, respectively, of the first web retractor 154a, and FIGS. 2B and 2D are non-transparent left and right isometric views, respectively. Although only the first web retractor 154a is shown in FIGS. 2A-2D, the first and second web retractors 154a and 154b can be at least generally similar in structure and function.


Referring to FIGS. 2A-2D together, the first web retractor 154a includes a base or mounting bracket 160 that is fixedly attached to the vehicle 106 (e.g., a frame of the seat 104 of FIGS. 1A and 1B, a vehicle frame, a vehicle mount, etc.) and provides a secure base for the components of the web retractor. A spool 162 is carried by and rotatably mounted to the base 160. The spool 162 is configured to receive a web or belt (e.g., the first shoulder web 112a) and wind and unwind the webbing during normal operation, as well as lock the webbing in place in the event of a sudden dynamic event to prevent the webbing from being released from the spool. The first web retractor 154a can also include an actuator 170 (e.g., a DC electric motor, linear motor, rotary motor, etc.) to control operation of the spool 162. In other embodiments, the actuator 170 can include other suitable electrical, mechanical, pneumatic, hydraulic, and/or electromechanical devices in addition to, or in lieu of, the DC motor in the illustrated embodiment.


The spool 162 is fixedly attached to a rotating shaft 164 having (a) a first end 165a operably coupled to a gear assembly 166 (FIG. 2A), and (b) a second end 165b operably coupled to a locking wheel 168 (FIG. 2C). The gear assembly 166 can include, for example, one or more gears 167 positioned to provide a gear reduction for increased torque between the actuator 170 and the shaft 164. The locking wheel 168 includes a plurality of teeth 169 spaced about a perimeter thereof. The first web retractor 154a can also include a solenoid 174 configured to lock/unlock the spool 162 in response to electrical signals from the sensor assembly 152. As best seen in FIGS. 2B and 2D, the gear assembly 166 can be positioned within a first housing 176a, the solenoid 174 can be positioned within a second housing 176b, and the locking wheel 168 can be positioned within a third housing 176c.


In operation, the first web retractor 154a is configured to adapt or modulate the tension of the restraint system 110 (FIGS. 1A and 1B) in response to a detected predetermined event by activating the spool 162 and winding up, locking, or paying out the webbing (e.g., the first shoulder web 112a). More specifically, the sensor(s) 153 of the sensor assembly 152 (FIG. 1B) can sense a vehicle acceleration above a preset magnitude (e.g., during a rollover, impact, collision, rapid deceleration or acceleration, etc.). The sensor assembly 152 sends a corresponding electrical signal to the first web retractor 154a via the link 156. The actuator 170 responds to the signal by rotating the spool 162 and retracting the first shoulder web 112a in the direction of arrow A to tension the shoulder web. In some instances, the electrical signal can also energize the solenoid 174 and cause the teeth 169 of the locking wheel 168 to engage an engagement structure 178 (as best seen in FIG. 2C) and prevent the spool 162 from rotating. This can prevent the spool 162 from paying out any webbing during the event. After the predetermined event, the actuator 170 can rotate the spool 162 in the other direction and extend the first shoulder web 112a in a direction opposite to the arrow A to reduce and/or restore the pre-event tension of the first shoulder web 112a. In this manner, the first web retractor 154a (as well as the other web retractors 154) can repeatedly increase and decrease the tension of the shoulder webs 112 in response to different predetermined events and/or conditions.



FIG. 3 is a schematic diagram of a portion of the web tensioning subsystem 150 described above with reference to FIGS. 1A-2D. During vehicle operation, a vehicle power circuit 301 provides power (e.g., 12-volt and/or 24-volt vehicle power) to the sensor assembly 152. In the illustrated embodiment, the sensor assembly 152 can include an X-axis sensor 310a for sensing vehicle accelerations in the fore/aft or X direction, a Y-axis sensor 310b for sensing vehicle accelerations in the left/right or Y direction, and a Z-axis sensor 310c for sensing vehicle accelerations in the vertical or Z direction. The sensors 310a-c are operably coupled to a processor 312 and memory 314, and configured to send corresponding acceleration information to the processor 312. In operation, the processor 312 can process the information in accordance with computer-readable instructions stored on the memory 314. More specifically, the processor 312 can determine if the acceleration(s) exceed a preset magnitude and, if so, the processor 312 can send a corresponding signal to the web retractor 154 via an activation circuit 316. The components of the subsystem 150 can be operably coupled to each other with wired, wireless, fiber optic, and/or other links to control operation of the subsystem 150.


During normal vehicle operation, the activation circuit 316 disables the sensor assembly 152 and the web retractor 154. When the vehicle experiences an acceleration of above a predetermined magnitude in the X, Y, and/or Z direction (e.g., during a rollover), the sensor assembly 152 activates the activation circuit 316 and transmits an electrical signal to the web retractor 154 via the link 156. As described above, the electrical signal causes the web retractor 154 to at least temporarily lock the spool 162 (FIG. 2A) and prevent further extension of the web 112a. After the duration of the event, or if the forces associated with the predetermined event decreases, the sensor assembly 152 can notify the web retractor 154 to adjust (e.g., increase or decrease), and/or restore the tension to the attached web 112a. In the illustrated embodiment, for example, the web retractor 154 remains locked for a preset time or until a reset switch 318 deactivates the activation circuit 316, de-energizing the web retractor 154. The reset switch 318 can include a position sensor 320 operably coupled to the web retractor 154.


In other embodiments, the web tensioning subsystem 150 can include different features and/or have a different configuration. For example, although the web tensioning subsystem 150 illustrated in FIG. 3 shows the components of the device operably coupled to each other, one skilled in the art will appreciate that a number of the components of the subsystem 150 may be combined or included in a single component.



FIGS. 4A-4C illustrate a portion of an occupant restraint system 210 including a web tensioning subsystem 250 configured in accordance with another embodiment of the disclosure. More specifically, FIG. 4A is a back view of the occupant restraint system 210 and web tensioning subsystem 250. The restraint system 210 also includes a plurality of webs or belts (only two shoulder webs 212a and 212b are shown) extending around the occupant 202 to releasably secure the occupant 202 to a seat 204 in a vehicle 206. In the illustrated embodiment, for example, restraint system 210 is a five-point restraint system generally similar to the restraint system 110 described above with reference to FIGS. 1A and 1B). The web tensioning subsystem 250 can include, for example, two web retractors 254 having electrically activated web tensioning devices and a sensor assembly (not shown). In the illustrated embodiment, the web retractors 254 are fixedly attached to a frame of the seat 204.



FIGS. 4B and 4C are left and right isometric views, respectively, of one of the web retractors 254 before installation with the seat 204. The web retractors 254 can be generally similar to the web retractors 154 described above with reference to FIGS. 1A-2D, and can function in generally the same way.


The web tensioning subsystems 150 and 250 described above can be configured to provide different amounts of tension to the corresponding webs (e.g., the shoulder webs 112) based on different corresponding predetermined events. For example, the web retractors 154a-b can partially and/or fully retract the shoulder webs 112 to provide different amounts of tension. By way of illustration, when the web tensioning subsystem 150 is employed in an automobile, the web tensioning subsystem 150 can tension the shoulder webs 112 with a first force in response to driving the automobile on rough or uneven terrain. After the rough terrain, the web tensioning subsystem 150 can restore the shoulder webs 112 to their original tensions. If the automobile rolls over or is in an accident, however, the web tensioning subsystem 150 can provide a second force greater than the first force, to restrain the occupant 102 in the seat 104. Moreover, instead of providing discrete amounts of tension, in other embodiments, the web tensioning subsystem 150 can provide an amount of tension that is proportional to the severity of the predetermined event.


One advantage of the restraint systems and associated web tensioning subsystems described above and disclosed herein is that they can secure an occupant in their seat when the vehicle experiences a rapid deceleration, acceleration, impact, collision, rollover, etc. Another advantage of the tensioning apparatuses described above is that they can adjust the tension of the attached webs in response to different predetermined events, and restore the webs to their original tension after the predetermined events. A further advantage of the tensioning apparatuses described above is that they can repeatedly adjust the tension of the attached webs in response to the different predetermined events.


From the foregoing, it will be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the disclosure. For example, the occupant restraint systems described above with reference to FIGS. 1-4C may have different configurations and/or include different features. Moreover, specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. For example, the occupant restraint systems described in the context of specific vehicles (e.g., automobile or aircraft systems) can be implemented in a number of other types of vehicles (e.g., non-automobile or non-aircraft systems). Certain aspects of the disclosure are accordingly not limited to automobile or aircraft systems. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the disclosure is not limited, except as by the appended claims.

Claims
  • 1. An occupant restraint system for use in a vehicle, the occupant restraint system comprising: a plurality of elongate webs configured to extend across at least a portion of an occupant seated in a seat carried by a vehicle;a first electrically actuated web retractor operably coupled to a proximal end portion of one of the webs;a second electrically actuated web retractor operably coupled to a proximal end portion of another one of the webs, wherein the first and second web retractors are configured to automatically wind and unwind the respective webs; anda sensor assembly electrically coupled to the first and second electrically actuated web retractors, wherein the sensor assembly includes one or more acceleration sensors configured to sense vehicle accelerations and decelerations in one or more directions,wherein the sensor assembly is configured to send electrical signals to the first and second web retractors in response to a dynamic event resulting in a vehicle acceleration above a predetermined threshold value, and wherein, in response to receiving the electrical signals from the sensor assembly, the first and second web retractors are configured to (a) automatically increase tension in the corresponding webs, and/or (b) prevent the corresponding webs from moving inwardly or outwardly.
  • 2. The occupant restraint system of claim 1 wherein the plurality of elongate webs comprises a five-point restraint system including a first shoulder web, a second shoulder web, a first lap web, a second lap web, and a crotch web.
  • 3. The occupant restraint system of claim 2 wherein: the first electrically actuated web retractor is coupled to a proximal end portion of the first shoulder web;the second electrically actuated web retractor is coupled to a proximal end portion of the second shoulder web; andthe first and second web retractors and the sensor assembly are configured to fixedly attach to a rear portion of the seat.
  • 4. The occupant restraint system of claim 1 wherein the individual electrically actuated web retractors comprise: a base;a spool rotatably mounted to the base and fixedly attached to a rotating shaft, wherein the spool is configured to wind, unwind, and/or lock the corresponding webs during operation;a gear assembly operably coupled to a first end of the shaft;a locking wheel operably coupled to a second end of the shaft, wherein the second end is opposite to the first end;a DC motor operably coupled to the spool and configured to rotatably move the spool; anda solenoid operably coupled to the spool configured to lock and unlock the spool in response to signals from the sensor assembly.
  • 5. The occupant restraint system of claim 1 wherein the one or more acceleration sensors of the sensor assembly comprises: a first acceleration sensor configured to sense vehicle accelerations in a forward and/or aft direction along an X-axis;a second acceleration sensor configured to sense vehicle accelerations in a lateral direction along a Y-axis;a third acceleration sensor configured to sense vehicle accelerations in a vertical direction along a Z-axis; andan activation circuit configured to (a) disable the web retractors during normal vehicle operation, and (b) transmit the electrical signals to the web retractors when the vehicle experiences a dynamic event resulting in one or more vehicle accelerations above the predetermined threshold value.
  • 6. The occupant restraint system of claim 1 wherein: the first and second web retractors are configured to automatically tension the corresponding webs with a first force during a first dynamic event resulting in a first vehicle acceleration above the predetermined threshold value; andthe first and second web retractors are configured to automatically tension the corresponding webs with a second force greater than the first force during a second dynamic event resulting in a second vehicle acceleration above the predetermined threshold value, and wherein the second vehicle acceleration is greater than the first vehicle acceleration.
  • 7. The occupant restraint system of claim 6 wherein the first and second web retractors are configured to automatically return the corresponding webs to normal or pre-event tension levels after the first dynamic event and after the second dynamic event.
CROSS REFERENCE TO APPLICATIONS INCORPORATED HEREIN BY REFERENCE

This application is a divisional of U.S. patent application Ser. No. 12/569,522, filed Sep. 29, 2009, which claims the benefit of U.S. Provisional Patent Application No. 61/101,085, filed Sep. 29, 2008, the disclosures of which are incorporated herein by reference in their entireties. This application is also related to U.S. Provisional Patent Application No. 61/029,292 entitled PERSONAL RESTRAINT SYSTEMS AND ASSOCIATED TENSIONING APPARATUSES, filed Feb. 15, 2008, and incorporated herein by reference in its entirety.

US Referenced Citations (440)
Number Name Date Kind
906045 Miller Dec 1908 A
1079080 Ward Nov 1913 A
1438898 Carpmill Dec 1922 A
2538641 Elsner Jan 1951 A
2549841 Morrow et al. Apr 1951 A
2639852 Sanders et al. May 1953 A
2641813 Loxham Jun 1953 A
2710999 Davis Jun 1955 A
2763451 Moran Sep 1956 A
2803864 Bishaf Aug 1957 A
2846745 Lathrop Aug 1958 A
2869200 Phillips et al. Jan 1959 A
2876516 Cummings Mar 1959 A
2892232 Quilter Jun 1959 A
2893088 Harper et al. Jul 1959 A
2899732 Cushman Aug 1959 A
2901794 Prete, Jr. Sep 1959 A
2938254 Gaylord May 1960 A
2964815 Sereno Dec 1960 A
2965942 Carter Dec 1960 A
3029487 Asai Apr 1962 A
3084411 Lindblad Apr 1963 A
3091010 Davis May 1963 A
3104440 Davis Sep 1963 A
3110071 Higuchi Nov 1963 A
3118208 Wexler Jan 1964 A
3137907 Unai Jun 1964 A
D198566 Holmberg et al. Jul 1964 S
3142103 Lindbald Jul 1964 A
3145442 Brown Aug 1964 A
3165805 Lower Jan 1965 A
3179992 Murphy, Sr. Apr 1965 A
3183568 Gaylord May 1965 A
3189963 Wamer et al. Jun 1965 A
3218685 Atumi Nov 1965 A
3226791 Carter Jan 1966 A
3233941 Selzer Feb 1966 A
3256576 Klove, Jr. et al. Jun 1966 A
3262169 Jantzen Jul 1966 A
3287062 Board Nov 1966 A
3289261 Davis Dec 1966 A
3293713 Gaylord Dec 1966 A
3312502 Coe Apr 1967 A
3369842 Adams et al. Feb 1968 A
3414947 Holmberg et al. Dec 1968 A
3451720 Makinen Jun 1969 A
3491414 Stoffel Jan 1970 A
3505711 Carter Apr 1970 A
3523342 Spires Aug 1970 A
D218589 Lohr et al. Sep 1970 S
3564672 McIntyre Feb 1971 A
3576056 Barcus Apr 1971 A
3591900 Brown Jul 1971 A
3605207 Glauser et al. Sep 1971 A
3605210 Lohr Sep 1971 A
3631571 Stoffel Jan 1972 A
3639948 Sherman Feb 1972 A
3644967 Romanzi, Jr. et al. Feb 1972 A
3648333 Stoffel Mar 1972 A
3658281 Gaylord Apr 1972 A
3673645 Burleigh et al. Jul 1972 A
3678542 Prete, Jr. Jul 1972 A
3695696 Lohr et al. Oct 1972 A
3714684 Gley Feb 1973 A
3744102 Gaylord Jul 1973 A
3744103 Gaylord Jul 1973 A
3760464 Higuchi Sep 1973 A
3766611 Gaylord Oct 1973 A
3775813 Higuchi Dec 1973 A
3825979 Jakob Jul 1974 A
3856351 Garvey Dec 1974 A
3879810 Prete, Jr. et al. Apr 1975 A
3898715 Balder Aug 1975 A
3935618 Fohl et al. Feb 1976 A
3964138 Gaylord Jun 1976 A
3986234 Frost et al. Oct 1976 A
3995885 Plesniarski Dec 1976 A
4018399 Rex Apr 1977 A
4051743 Gaylord Oct 1977 A
4095313 Piljay et al. Jun 1978 A
D248618 Anthony Jul 1978 S
4100657 Minolla et al. Jul 1978 A
4118833 Knox et al. Oct 1978 A
4128924 Happel et al. Dec 1978 A
4136422 Ivanov et al. Jan 1979 A
4148224 Craig Apr 1979 A
4181832 Ueda et al. Jan 1980 A
4184234 Anthony et al. Jan 1980 A
4185363 David Jan 1980 A
4196500 Happel et al. Apr 1980 A
4220294 DiPaola Sep 1980 A
4228567 Ikesue et al. Oct 1980 A
4239260 Hollowell Dec 1980 A
4253623 Steger et al. Mar 1981 A
4262396 Koike et al. Apr 1981 A
4273301 Frankila Jun 1981 A
4302049 Simpson Nov 1981 A
4317263 Fohl et al. Mar 1982 A
4321734 Gandelman Mar 1982 A
4334341 Krautz et al. Jun 1982 A
4336636 Ishiguro et al. Jun 1982 A
4366604 Anthony et al. Jan 1983 A
4385425 Tanaka et al. May 1983 A
4408374 Fohl et al. Oct 1983 A
4419874 Brentini et al. Dec 1983 A
4425688 Anthony et al. Jan 1984 A
4457052 Hauber Jul 1984 A
4487454 Biller Dec 1984 A
4491343 Fohl Jan 1985 A
4525901 Krauss Jul 1985 A
4545097 Wier et al. Oct 1985 A
4549769 Pilarski Oct 1985 A
4569535 Haglund et al. Feb 1986 A
D285383 Anthony Sep 1986 S
4617705 Anthony et al. Oct 1986 A
4637102 Teder et al. Jan 1987 A
4638533 Gloomis et al. Jan 1987 A
4640550 Hakansson et al. Feb 1987 A
4644618 Holmberg et al. Feb 1987 A
4646400 Tanaka et al. Mar 1987 A
4648483 Skyba Mar 1987 A
4650214 Higbee Mar 1987 A
4651946 Anthony et al. Mar 1987 A
4656700 Tanaka et al. Apr 1987 A
4660889 Anthony et al. Apr 1987 A
4679852 Anthony et al. Jul 1987 A
4682791 Ernst et al. Jul 1987 A
4685176 Burnside et al. Aug 1987 A
4692970 Anthony et al. Sep 1987 A
4711003 Gelula Dec 1987 A
4716630 Skyba Jan 1988 A
4720148 Anthony et al. Jan 1988 A
4726625 Bougher Feb 1988 A
4727628 Rudholm et al. Mar 1988 A
4733444 Takada Mar 1988 A
4738485 Rumpf Apr 1988 A
4742604 Mazelsky May 1988 A
D296678 Lortz et al. Jul 1988 S
4757579 Nishino et al. Jul 1988 A
4758048 Shuman Jul 1988 A
4766654 Sugimoto Aug 1988 A
4790597 Bauer et al. Dec 1988 A
4809409 Van Riesen et al. Mar 1989 A
4832410 Bougher May 1989 A
4843688 Ikeda et al. Jul 1989 A
4854608 Barral et al. Aug 1989 A
D303232 Lortz et al. Sep 1989 S
4876770 Bougher Oct 1989 A
4876772 Anthony et al. Oct 1989 A
4884652 Vollmer Dec 1989 A
4911377 Lortz et al. Mar 1990 A
4919484 Bougher et al. Apr 1990 A
4934030 Spinosa et al. Jun 1990 A
4940254 Ueno et al. Jul 1990 A
4942649 Anthony et al. Jul 1990 A
4995640 Saito et al. Feb 1991 A
5015010 Homeier et al. May 1991 A
5023981 Anthony et al. Jun 1991 A
5026093 Nishikaji Jun 1991 A
5029369 Oberhardt et al. Jul 1991 A
5031962 Lee Jul 1991 A
5038446 Anthony et al. Aug 1991 A
5039169 Bougher et al. Aug 1991 A
5054815 Gavagan Oct 1991 A
5067212 Ellis Nov 1991 A
5074011 Carlson Dec 1991 A
5074588 Huspen Dec 1991 A
5084946 Lee Feb 1992 A
5088160 Warrick Feb 1992 A
5088163 van Riesen et al. Feb 1992 A
5097572 Warrick Mar 1992 A
D327455 Blair Jun 1992 S
5119532 Tanaka et al. Jun 1992 A
5123147 Blair Jun 1992 A
5142748 Anthony et al. Sep 1992 A
5159732 Burke et al. Nov 1992 A
5160186 Lee Nov 1992 A
5170539 Lundstedt et al. Dec 1992 A
D332433 Bougher Jan 1993 S
5176402 Coulon Jan 1993 A
5182837 Anthony et al. Feb 1993 A
5219206 Anthony et al. Jun 1993 A
5219207 Anthony et al. Jun 1993 A
5220713 Lane, Jr. et al. Jun 1993 A
D338119 Merrick Aug 1993 S
5234181 Schroth et al. Aug 1993 A
5236220 Mills Aug 1993 A
5248187 Harrison Sep 1993 A
D342465 Anthony et al. Dec 1993 S
5267377 Gillis et al. Dec 1993 A
5269051 McFalls Dec 1993 A
5282672 Borlinghaus Feb 1994 A
5282706 Anthony et al. Feb 1994 A
5283933 Wiseman et al. Feb 1994 A
5286057 Forster Feb 1994 A
5286090 Templin et al. Feb 1994 A
5292181 Dybro Mar 1994 A
5308148 Peterson et al. May 1994 A
5311653 Merrick May 1994 A
5350195 Brown Sep 1994 A
5369855 Tokugawa et al. Dec 1994 A
5370333 Lortz et al. Dec 1994 A
5375879 Williams et al. Dec 1994 A
5380066 Wiseman et al. Jan 1995 A
5392535 Van Noy et al. Feb 1995 A
5403038 McFalls Apr 1995 A
5406681 Olson et al. Apr 1995 A
5411292 Collins et al. May 1995 A
D359710 Chinni et al. Jun 1995 S
5432987 Schroth Jul 1995 A
5443302 Dybro Aug 1995 A
5451094 Templin et al. Sep 1995 A
D364124 Lortz et al. Nov 1995 S
5471714 Olson et al. Dec 1995 A
5495646 Scrutchfield et al. Mar 1996 A
5497956 Crook Mar 1996 A
5511856 Merrick et al. Apr 1996 A
5516199 Crook et al. May 1996 A
5526556 Czank Jun 1996 A
5560565 Merrick et al. Oct 1996 A
5561891 Hsieh et al. Oct 1996 A
5566431 Haglund Oct 1996 A
5568676 Freeman Oct 1996 A
5570933 Rouhana et al. Nov 1996 A
5584107 Koyanagi et al. Dec 1996 A
5588189 Gorman et al. Dec 1996 A
5606783 Gillis et al. Mar 1997 A
5622327 Heath et al. Apr 1997 A
5628548 Lacoste May 1997 A
5634664 Seki et al. Jun 1997 A
5669572 Crook Sep 1997 A
5695243 Anthony et al. Dec 1997 A
5699594 Czank et al. Dec 1997 A
D389426 Merrick et al. Jan 1998 S
5722689 Chen et al. Mar 1998 A
5743597 Jessup et al. Apr 1998 A
5774947 Anscher Jul 1998 A
5779319 Merrick Jul 1998 A
D397063 Woellert et al. Aug 1998 S
5788282 Lewis Aug 1998 A
5794878 Carpenter et al. Aug 1998 A
5813097 Woellert et al. Sep 1998 A
5839793 Merrick et al. Nov 1998 A
5857247 Warrick et al. Jan 1999 A
5873599 Bauer et al. Feb 1999 A
5873635 Merrick Feb 1999 A
5882084 Verellen et al. Mar 1999 A
D407667 Homeier Apr 1999 S
5908223 Miller Jun 1999 A
5915630 Step Jun 1999 A
5928300 Rogers et al. Jul 1999 A
5934760 Schroth et al. Aug 1999 A
D416827 Anthony et al. Nov 1999 S
5979026 Anthony Nov 1999 A
5979982 Nakagawa Nov 1999 A
5996192 Haines et al. Dec 1999 A
6003899 Chaney Dec 1999 A
6017087 Anthony et al. Jan 2000 A
6056320 Khalifa et al. May 2000 A
6065367 Schroth May 2000 A
6065777 Merrick May 2000 A
6123388 Vits et al. Sep 2000 A
6182783 Bayley Feb 2001 B1
RE37123 Templin et al. Apr 2001 E
6230370 Nelsen May 2001 B1
6260884 Bittner et al. Jul 2001 B1
6295700 Plzak Oct 2001 B1
6309024 Busch Oct 2001 B1
6312015 Merrick et al. Nov 2001 B1
6315232 Merrick Nov 2001 B1
6322140 Jessup et al. Nov 2001 B1
6328379 Merrick et al. Dec 2001 B1
6343841 Gregg et al. Feb 2002 B1
6357790 Swann et al. Mar 2002 B1
6363591 Bell et al. Apr 2002 B1
6367882 Van Druff et al. Apr 2002 B1
6374168 Fujii Apr 2002 B1
6400145 Chamings et al. Jun 2002 B1
6412863 Merrick et al. Jul 2002 B1
6418596 Haas Jul 2002 B2
6425632 Anthony et al. Jul 2002 B1
6442807 Adkisson Sep 2002 B1
6446272 Lee Sep 2002 B1
6463638 Pontaoe Oct 2002 B1
6467849 Deptolla Oct 2002 B1
6485057 Midorikawa et al. Nov 2002 B1
6485098 Vits et al. Nov 2002 B1
6508515 Vits et al. Jan 2003 B2
6513208 Sack et al. Feb 2003 B1
6520392 Thibodeau et al. Feb 2003 B2
6543101 Sack et al. Apr 2003 B2
6547273 Grace et al. Apr 2003 B2
6560825 Maciejczyk May 2003 B2
6566869 Chamings et al. May 2003 B2
6588077 Katsuyama et al. Jul 2003 B2
6592149 Sessoms Jul 2003 B2
6606770 Badrenas Buscart Aug 2003 B1
6619753 Takayama Sep 2003 B2
6631926 Merrick et al. Oct 2003 B2
6665912 Turner et al. Dec 2003 B2
6694577 Di Perrero Feb 2004 B2
6711790 Pontaoe Mar 2004 B2
6719233 Specht et al. Apr 2004 B2
6719326 Schroth et al. Apr 2004 B2
6722601 Kohlndorfer et al. Apr 2004 B2
6722697 Krauss et al. Apr 2004 B2
6733041 Arnold et al. May 2004 B2
6739541 Palliser et al. May 2004 B2
6749150 Kohlndorfer et al. Jun 2004 B2
6763557 Steiff et al. Jul 2004 B2
6769157 Meal Aug 2004 B1
6786294 Specht Sep 2004 B2
6786510 Roychoudhury et al. Sep 2004 B2
6786511 Heckmayr Sep 2004 B2
6796007 Anscher Sep 2004 B1
6802470 Smithson et al. Oct 2004 B2
6820310 Woodard et al. Nov 2004 B2
6834822 Koning et al. Dec 2004 B2
6836754 Cooper Dec 2004 B2
6840544 Prentkowski Jan 2005 B2
6851160 Carver Feb 2005 B2
6857326 Specht et al. Feb 2005 B2
6860671 Schulz Mar 2005 B2
6863235 Koning et al. Mar 2005 B2
6863236 Kempf et al. Mar 2005 B2
6868585 Anthony et al. Mar 2005 B2
6868591 Dingman et al. Mar 2005 B2
6871876 Xu Mar 2005 B2
6874819 O'Neill Apr 2005 B2
6882914 Gioutsos et al. Apr 2005 B2
6886889 Vits et al. May 2005 B2
6913288 Schulz et al. Jul 2005 B2
6916045 Clancy, III et al. Jul 2005 B2
6921136 Bell et al. Jul 2005 B2
6922875 Sato et al. Aug 2005 B2
6935701 Arnold et al. Aug 2005 B1
6957789 Bowman et al. Oct 2005 B2
6959946 Desmarais et al. Nov 2005 B2
6962394 Anthony et al. Nov 2005 B2
6966518 Kohlndorfer et al. Nov 2005 B2
6969022 Bell et al. Nov 2005 B2
6969122 Sachs et al. Nov 2005 B2
6993436 Specht et al. Jan 2006 B2
6997479 Desmarais et al. Feb 2006 B2
7010836 Acton et al. Mar 2006 B2
D519406 Merrill et al. Apr 2006 S
7025297 Bell et al. Apr 2006 B2
7029067 Vits et al. Apr 2006 B2
7040696 Vits et al. May 2006 B2
7077475 Boyle Jul 2006 B2
7080856 Desmarais et al. Jul 2006 B2
7100991 Schroth et al. Sep 2006 B2
7108114 Mori et al. Sep 2006 B2
7118133 Bell et al. Oct 2006 B2
7131667 Bell et al. Nov 2006 B2
7137648 Schulz et al. Nov 2006 B2
7137650 Bell et al. Nov 2006 B2
7140571 Hishon et al. Nov 2006 B2
7144085 Vits et al. Dec 2006 B2
7147251 Bell et al. Dec 2006 B2
D535214 Kolasa Jan 2007 S
7159285 Karlsson et al. Jan 2007 B2
7180258 Specht et al. Feb 2007 B2
7182370 Arnold Feb 2007 B2
7210707 Schroth et al. May 2007 B2
7219929 Bell et al. May 2007 B2
7232154 Desmarais et al. Jun 2007 B2
7237741 Specht et al. Jul 2007 B2
7240405 Webber et al. Jul 2007 B2
7240924 Kohlndorfer et al. Jul 2007 B2
7246854 Dingman et al. Jul 2007 B2
7263750 Keene et al. Sep 2007 B2
7278684 Boyle Oct 2007 B2
D555358 King Nov 2007 S
7300013 Morgan et al. Nov 2007 B2
7341216 Heckmayr et al. Mar 2008 B2
7360287 Cerruti et al. Apr 2008 B2
7367590 Koning et al. May 2008 B2
7377464 Morgan May 2008 B2
7384014 Ver Hoven et al. Jun 2008 B2
7395585 Longley et al. Jul 2008 B2
7404239 Walton et al. Jul 2008 B1
7407193 Yamaguchi et al. Aug 2008 B2
D578931 Toltzman Oct 2008 S
7452003 Bell Nov 2008 B2
7455256 Morgan Nov 2008 B2
7461866 Desmarais et al. Dec 2008 B2
7475840 Heckmayr Jan 2009 B2
7477139 Cuevas Jan 2009 B1
7481399 Nohren et al. Jan 2009 B2
7506413 Dingman et al. Mar 2009 B2
7516808 Tanaka Apr 2009 B2
7520036 Baldwin et al. Apr 2009 B1
D592543 Kolasa May 2009 S
7533902 Arnold et al. May 2009 B2
7547043 Kokeguchi et al. Jun 2009 B2
7614124 Keene et al. Nov 2009 B2
7631830 Boelstler et al. Dec 2009 B2
7669794 Boelstler et al. Mar 2010 B2
7698791 Pezza Apr 2010 B2
7722081 Van Druff et al. May 2010 B2
7739019 Robert et al. Jun 2010 B2
7775557 Bostrom et al. Aug 2010 B2
RE41790 Stanley Oct 2010 E
7861341 Ayette et al. Jan 2011 B2
7862124 Dingman Jan 2011 B2
D632611 Buscart Feb 2011 S
D637518 Chen May 2011 S
8096027 Jung et al. Jan 2012 B2
20020089163 Bedewi et al. Jul 2002 A1
20020135175 Schroth Sep 2002 A1
20030027917 Namiki et al. Feb 2003 A1
20040217583 Wang Nov 2004 A1
20050017567 Sachs et al. Jan 2005 A1
20050073187 Frank et al. Apr 2005 A1
20050107932 Bolz et al. May 2005 A1
20050127660 Liu Jun 2005 A1
20050284977 Specht et al. Dec 2005 A1
20060075609 Dingman et al. Apr 2006 A1
20060097095 Boast May 2006 A1
20060237573 Boelstler et al. Oct 2006 A1
20060243070 Van Druff et al. Nov 2006 A1
20060267394 David et al. Nov 2006 A1
20060277727 Keene et al. Dec 2006 A1
20070241549 Boelstler et al. Oct 2007 A1
20070257480 Van Druff et al. Nov 2007 A1
20080018156 Hammarskjold et al. Jan 2008 A1
20080054615 Coultrup Mar 2008 A1
20080100051 Bell et al. May 2008 A1
20080100122 Bell et al. May 2008 A1
20080172847 Keene et al. Jul 2008 A1
20090069983 Humbert et al. Mar 2009 A1
20090183348 Walton et al. Jul 2009 A1
20090241305 Buckingham Oct 2009 A1
20100115737 Foubert May 2010 A1
20100125983 Keene et al. May 2010 A1
20100146749 Jung Jun 2010 A1
20100213753 Humbert Aug 2010 A1
20110010901 Holler Jan 2011 A1
20130019439 Keene et al. Jan 2013 A1
Foreign Referenced Citations (34)
Number Date Country
2038505 Sep 1991 CA
2091526 Oct 1993 CA
2112960 Jul 1994 CA
2450744 Feb 2003 CA
4019402 Dec 1991 DE
4421688 Dec 1995 DE
69019765 Feb 1996 DE
26564 Apr 1981 EP
0363062 Apr 1990 EP
0380442 Aug 1990 EP
0401455 Dec 1990 EP
0404730 Dec 1990 EP
0449772 Oct 1991 EP
0519296 Dec 1992 EP
0561274 Sep 1993 EP
0608564 Aug 1994 EP
1153789 Nov 2001 EP
1447021 Aug 2004 EP
1298012 Jul 1962 FR
888436 Jan 1962 GB
1047761 Nov 1966 GB
1582973 Jan 1981 GB
2055952 Mar 1981 GB
2356890 Jun 2001 GB
52055120 May 1977 JP
63141852 Sep 1988 JP
63247150 Oct 1988 JP
10119611 May 1998 JP
2001138858 May 2001 JP
WO-8603386 Jun 1986 WO
WO-03009717 Feb 2003 WO
WO-2004004507 Jan 2004 WO
WO-2006041859 Apr 2006 WO
WO-2010027853 Mar 2010 WO
Non-Patent Literature Citations (15)
Entry
Non-Final Office Action; U.S. Appl. No. 12/917,898, dated Jun. 20, 2012, 14 pages.
Final Office Action dated Jan. 7, 2013; U.S. Appl. No. 12/917,898; 18 pages.
Novarace, “DL: Group 1 Buckle.” Accessed Sep. 15, 2010. www.novarace.com. (1 page).
Novarace, “GT 3: Group 0 Buckle.” Accessed Sep. 15, 2010. www. novarace.com (1 page).
Novarace, “GT 5: Group 0 Buckle.” Accessed Sep. 15, 2010. www.novarace.com (1 page).
Novarace, “GT: Group 1 Buckle.” Accessed Oct. 8, 2010. www.novarace.com. (1 page).
Novarace, “KMA 1: Group 1 Buckle.” Accessed Sep. 15, 2010. www.novarace.com. (1 page).
Sabelt Catalog, “SAB104: Standard tongue hole to facilitate webbing insert,” p. 23 (1 page).
Sabelt, “Daphne 0: Fiberglass-plastic buckle with metal pin latch.” Accessed Sep. 15, 2010. www.sabelt.com (1 page).
Sabelt, “RO1000: Fiberglass-plastic buckle with metal pin latch.” Accessed Sep. 15, 2010. www.sabelt.com (1 page).
Sabelt, “SAB004: Fiberglass-plastic buckle with metal pin latch.” Accessed Sep. 15, 2010. www. sabelt.com. (1 page).
Sabelt, “SABUSA004: Fiberglass-plastic buckle with metal pin latch.” Accessed Sep. 15, 2010. www.sabelt.com. (1 page).
Schroth Safety Products, Installation Instructions, HMMWW Gunner restraint, Single Lower with Swivel—M1151, Revision: A, Jul. 28, 2006, pp. 1-10.
Toltzman, Randall and Shaul, Rich; “Buckle Assembly”; U.S. Appl. No. 29/297,210, filed Nov. 6, 2007.
Toltzman, Design U.S. Appl. No. 29/297,210; dated Nov. 6, 2007.
Related Publications (1)
Number Date Country
20130127229 A1 May 2013 US
Provisional Applications (1)
Number Date Country
61101085 Sep 2008 US
Divisions (1)
Number Date Country
Parent 12569522 Sep 2009 US
Child 13647198 US