Tensioning control device

Information

  • Patent Grant
  • 10954019
  • Patent Number
    10,954,019
  • Date Filed
    Thursday, January 3, 2019
    5 years ago
  • Date Issued
    Tuesday, March 23, 2021
    3 years ago
Abstract
A tensioning control device having a first motor that applies a torque to a first end of a substrate in a first direction and a second motor that applies a torque to a second end of the substrate in a second direction that is generally opposite the first direction is disclosed. In this manner, the first motor and the second motor apply torque to the substrate in opposing directions, thereby placing the substrate in tension. In one embodiment, the first motor applies a torque to the first end of the substrate that is equal to the torque applied to the second end of the substrate by the second motor. By placing the substrate in tension in this manner, an actuator is able to incrementally move the substrate in a forward direction and a backward direction independent of the tension applied to the substrate.
Description
BACKGROUND OF THE INVENTION

1. Field of the Disclosure


The present disclosure relates generally to a tensioning control device. More particularly, the present disclosure relates to a tensioning control device for a labeling device for a syringe.


2. Description of the Related Art


Syringes need to include information to help medical professionals identify the contents of the syringes. Errors such as giving an incorrect medication or an incorrect dose can easily be made if the contents of the syringe cannot be positively identified from the point of time that a medication is transferred to a syringe up to the moment of its administration.


The results of missed and unintended medication include adverse effects to patients and significant costs to the healthcare industry. Potential causes for these errors include unclear syringe contents due to unlabeled or poorly labeled syringes and poor record keeping of which drugs were administered and the concentration and quantity of the administered drug.


Identifying the content of a syringe based on the appearance of that content is unreliable. Visual identification of the medication is very difficult since several of the medications are identical or nearly identical in appearance.


SUMMARY OF THE INVENTION

The present disclosure provides a tensioning control device having a first motor that applies a torque to a first end of a substrate in a first direction and a second motor that applies a torque to a second end of the substrate in a second direction that is generally opposite the first direction. In this manner, the first motor and the second motor apply torque to the substrate in opposing directions, thereby placing the substrate in tension. In one embodiment, the first motor applies a torque to the first end of the substrate that is equal to the torque applied to the second end of the substrate by the second motor. By placing the substrate in tension in this manner, an actuator is able to incrementally move the substrate in a forward direction and a backward direction independent of the tension applied to the substrate.


In accordance with an embodiment of the present invention, a tensioning control device includes a substrate having a first end and an opposing second end; a first motor applying a first torque to the first end of the substrate in a first direction; and a second motor applying a second torque to the second end of the substrate in a second direction, the second direction generally opposite the first direction thereby placing the substrate in tension.


In one configuration, the first torque applied to the first end of the substrate is equal to the second torque applied to the second end of the substrate. In another configuration, the tensioning control device further includes an actuator adapted to move the substrate in a forward direction and a backward direction. In yet another configuration, the actuator is adapted to move the substrate in the forward direction and the backward direction independent of the tension applied to the substrate. In one configuration, the actuator is adapted to incrementally move the substrate. In another configuration, the actuator is a printing mechanism. In yet another configuration, the substrate is a material adapted to receive information for a label for a syringe.


In accordance with another embodiment of the present invention, a tensioning control device includes a substrate having a first end and an opposing second end; a first motor applying a first torque to the first end of the substrate in a first direction; a second motor applying a second torque to the second end of the substrate in a second direction, the second direction generally opposite the first direction thereby placing the substrate in tension; and an actuator adapted to move the substrate in a forward direction and a backward direction independent of the tension applied to the substrate.


In one configuration, the first torque applied to the first end of the substrate is equal to the second torque applied to the second end of the substrate. In another configuration, the actuator is adapted to incrementally move the substrate. In yet another configuration, the actuator is a printing mechanism. In one configuration, the substrate is a material adapted to receive information for a label for a syringe.


In accordance with another embodiment of the present invention, a labeling subsystem for a labeling device for a syringe includes a material adapted to receive information for a label for the syringe, the material having a first end and an opposing second end; a first motor applying a first torque to the first end of the material in a first direction; a second motor applying a second torque to the second end of the material in a second direction, the second direction generally opposite the first direction thereby placing the material in tension; and an actuator adapted to move the material in a forward direction and a backward direction independent of the tension applied to the material.


In one configuration, the labeling subsystem further includes a printer adapted to print the information on the material. In another configuration, the labeling subsystem further includes a removal device adapted to automatically remove a backing material from the material. In yet another configuration, the first torque applied to the first end of the material is equal to the second torque applied to the second end of the material. In one configuration, the actuator is adapted to incrementally move the material. In another configuration, the actuator is a printing mechanism.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following descriptions of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a labeling device with a top door and a side door in an open position in accordance with an embodiment of the present invention.



FIG. 2A is a perspective view of a syringe with a needle attached to the syringe and a protective cap covering the needle in accordance with an embodiment of the present invention.



FIG. 2B is a cross-sectional view of a syringe barrel, stopper, and plunger rod of a syringe in accordance with an embodiment of the present invention.



FIG. 2C is a perspective view of a syringe having a first label including machine readable information and a second label having human readable information in accordance with an embodiment of the present invention.



FIG. 3 is an exploded, perspective view of a syringe clamp assembly in accordance with an embodiment of the present invention.



FIG. 4 is an assembled, perspective view of a syringe clamp assembly with gripping components in an open position in accordance with an embodiment of the present invention.



FIG. 5 is an assembled, perspective view of a syringe clamp assembly with gripping components in a closed position in accordance with an embodiment of the present invention.



FIG. 6A is a top, perspective view of a syringe clamp assembly with gripping components in an open position, with a syringe positioned within the syringe clamp assembly in accordance with an embodiment of the present invention.



FIG. 6B is a top, perspective view of a syringe clamp assembly with gripping components in a partially closed position, with a syringe positioned within the syringe clamp assembly in accordance with an embodiment of the present invention.



FIG. 7 is a cross-sectional view of a syringe clamp assembly in accordance with an embodiment of the present invention.



FIG. 8 is a top, perspective view of a syringe clamp assembly with gripping components in a closed position, with a syringe secured within the syringe clamp assembly in accordance with an embodiment of the present invention.



FIG. 9 is an exploded, perspective view of a label print and apply assembly in accordance with an embodiment of the present invention.



FIG. 10 is a detailed, fragmentary perspective view of a portion of the label print and apply assembly of FIG. 9 in accordance with an embodiment of the present invention.



FIG. 11 is a perspective view of a pinch roller mechanism in accordance with an embodiment of the present invention.



FIG. 12 is a perspective view of an optical syringe alignment unit in accordance with an embodiment of the present invention.



FIG. 13 is a perspective view of a first labeling subsystem, with a syringe secured within the first labeling subsystem for the automatic application of a first label to the syringe in accordance with an embodiment of the present invention.



FIG. 14 is a detailed, fragmentary perspective view of a portion of a first labeling subsystem, with a syringe secured within the first labeling subsystem for the automatic application of a first label to the syringe in accordance with an embodiment of the present invention.



FIG. 15 is a perspective view of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 16 is an exploded, perspective view of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 17 is a first assembled, perspective view of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 18 is a second assembled, perspective view of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 19 is a top assembled, perspective view of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 20 is a first detailed, perspective view of a removal device of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 21 is a second detailed, perspective view of a removal device of a second labeling subsystem in accordance with an embodiment of the present invention.



FIG. 22 is a perspective view of a first labeling subsystem, with a syringe secured within the first labeling subsystem for the automatic application of a first label to the syringe in accordance with another embodiment of the present invention.



FIG. 23 is a perspective view of a first labeling subsystem, with a syringe secured within the first labeling subsystem for the automatic application of a first label to the syringe in accordance with another embodiment of the present invention.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the disclosure, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.


DETAILED DESCRIPTION

The following description is provided to enable those skilled in the art to make and use the described embodiments contemplated for carrying out the invention. Various modifications, equivalents, variations, and alternatives, however, will remain readily apparent to those skilled in the art. Any and all such modifications, variations, equivalents, and alternatives are intended to fall within the spirit and scope of the present invention.


For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations, except where expressly specified to the contrary. It is also to be understood that the specific devices illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting.



FIGS. 1-21 illustrate an exemplary embodiment of the present disclosure. Referring to FIGS. 1-21, a labeling device 10 for a syringe 12 includes a housing 14, a first labeling subsystem 16, a tensioning control device or second labeling subsystem 18, a scanner 20, and a touchscreen interface 22 as will be described in more detail below. Labeling device 10 provides an encoded syringe labeler for the labeling of syringes in a medical setting such as an operating room, pharmacy, or perioperative space of a hospital.


Labeling device 10 is compatible with a plurality of different syringes. For example, labeling device 10 is compatible with any syringe available from Becton, Dickinson and Company of Franklin Lakes, N.J. In one embodiment, labeling device 10 is compatible with any luer lock syringe available from Becton, Dickinson and Company of Franklin Lakes, N.J.


Referring to FIGS. 2A and 2B, in one embodiment, syringe 12 includes a syringe barrel 24, a plunger rod 26, a stopper 28, a needle 44, and a protective cap 46. Syringe 12 may be adapted for the dispensing and delivery of a fluid and/or collection of a fluid. For example, syringe 12 may be used for injection or infusion of fluid such as a medication into a patient. Syringe 12 is contemplated for use in connection with a needle, such as by connecting syringe 12 to a separate needle assembly such as needle 44, or alternatively for connection with an intravenous (IV) connection assembly (not shown). It can be appreciated that the present disclosure can be used with any type of syringe assembly.


Referring to FIGS. 2A and 2B, syringe barrel 24 generally includes a barrel body or sidewall 30 extending between a first or distal end 32 and a second or proximal end 34. Sidewall 30 defines an elongate aperture or interior chamber 36 of syringe barrel 24. In one embodiment, interior chamber 36 may span the extent of syringe barrel 24 so that syringe barrel 24 is cannulated along its entire length. In one embodiment, syringe barrel 24 may be in the general form of an elongated cylindrical barrel as is known in the art in the general shape of a hypodermic syringe. In alternative embodiments, syringe barrel 24 may be in other forms for containing a fluid for delivery, such as in the general form of an elongated rectangular barrel, for example. Syringe barrel 24 may be formed of glass, or may be injection molded from thermoplastic material such as polypropylene and polyethylene according to techniques known to those of ordinary skill in the art, though it is to be appreciated that syringe barrel 24 may be made from other suitable materials and according to other applicable techniques. In certain configurations, syringe barrel 24 may include an outwardly extending flange 40 about at least a portion of proximal end 34. Flange 40 may be configured for easy grasping by a medical practitioner.


Distal end 32 of syringe barrel 24 includes an outlet opening 38 which is in fluid communication with chamber 36. Outlet opening 38 may be sized and adapted for engagement with a separate device, such as a needle assembly or IV connection assembly and, therefore, may include a mechanism for such engagement as is conventionally known. In one embodiment, distal end 32 may include a generally-tapered luer tip 42 for engagement with an optional separate tapered luer structure of such a separate device for attachment therewith such as needle 44. In one configuration, both the tapered luer tip 42 and the separate tapered luer structure may be provided with syringe 12. In such a configuration, the separate tapered luer structure may be fitted with an attachment mechanism, such as a threaded engagement, for corresponding engagement with a separate device such as needle 44. In another configuration, tapered luer tip 42 may be provided for direct engagement with a separate device such as needle 44. In one embodiment, needle 44 includes a needle hub 48 for engagement to distal end 32 of syringe barrel 24. In addition, a mechanism for locking engagement therebetween may also be provided with at least one of tapered luer tip 42 and/or the separate tapered luer structure, such as a luer collar or luer lock including interior threads. Such luer connections and luer locking mechanisms are well known in the art.


Proximal end 34 of syringe barrel 24 is generally open-ended, but is intended to be closed off to the external environment as discussed herein. Syringe barrel 24 may also include markings, such as graduations located on sidewall 30, for providing an indication as to the level or amount of fluid contained within interior chamber 36 of syringe barrel 24. Such markings may be provided on an external surface of sidewall 30, an internal surface of sidewall 30, or integrally formed or otherwise within sidewall 30 of syringe barrel 24. In other embodiments, alternatively, or in addition thereto, the markings may also provide a description of the contents of the syringe or other identifying information as may be known in the art, such as maximum and/or minimum fill lines.


In some embodiments, syringe 12 may be useful as a pre-filled syringe, and, therefore, may be provided for end use with a fluid, such as a medication or drug, contained within interior chamber 36 of syringe barrel 24, pre-filled by the manufacturer. In this manner, syringe 12 can be manufactured, pre-filled with a medication, sterilized, and packaged in appropriate packaging for delivery, storage, and use by the end user. In such embodiments, syringe 12 may include a sealing cap member disposed at distal end 32 of syringe barrel 24 to seal a fluid, such as a medication, within interior chamber 36 of syringe barrel 24.


Referring to FIG. 2B, syringe 12 includes stopper 28 which is moveably or slidably disposed within interior chamber 36, and in sealing contact with the internal surface of sidewall 30 of syringe barrel 24, thereby separating interior chamber 36 into a proximal chamber adjacent proximal end 34, and a distal chamber adjacent distal end 32. Stopper 28 is sized relative to syringe barrel 24 to provide sealing engagement with the interior surface of sidewall 30 of syringe barrel 24. Additionally, stopper 28 may include one or more annular ribs extending around the periphery of stopper 28 to increase the sealing engagement between stopper 28 and the interior surface of sidewall 30 of syringe barrel 24. In alternate embodiments, a singular O-ring or a plurality of O-rings may be circumferentially disposed about stopper 28 to increase the sealing engagement with the interior surface of sidewall 30.


Referring to FIGS. 2A and 2B, syringe 12 further includes plunger rod 26 which provides a mechanism for dispensing fluid contained within interior chamber 36 of syringe barrel 24 through outlet opening 38 upon connection of plunger rod 26 to syringe barrel 24 via stopper 28. Plunger rod 26 is adapted for advancing stopper 28. In one embodiment, plunger rod 26 is sized for movement within interior chamber 36 of syringe barrel 24.


Referring to FIG. 2A, syringe barrel 24 includes a needle 44 attached. The needle 44 is used to fill the syringe barrel 24 with a medication from a separate container, such as a vial, prior to use. In one embodiment, needle 44 is a blunt needle. The protective cap 46 is attached to the syringe barrel 24 to surround and cover the needle 44 to prevent accidental needle stick injuries.


Labeling device 10 provides an encoded syringe labeler for the labeling of syringes in a medical setting such as an operating room, pharmacy, or perioperative space of a hospital. Referring to FIG. 1, the labeling device 10 for a syringe 12 includes a housing 14, a first labeling subsystem 16, a tensioning control device or second labeling subsystem 18, a scanner 20, and a touchscreen interface 22. The housing 14 of labeling device 10 generally includes a top portion 50, a bottom portion 52, a front portion 54, a rear portion 56, a first side portion 58, and a second side portion 60. The labeling device 10 includes a side door 62 located at first side portion 58. In one embodiment, side door 62 may be connected to first side portion 58 of housing 14 by a hinged portion 64. In this manner, side door 62 may be transitioned between a closed position and an open position as shown in FIG. 1.


The labeling device 10 includes a top door 66 located at top portion 50. In one embodiment, top door 66 may be connected to top portion 50 of housing 14 by a hinged portion 68. In this manner, top door 66 may be transitioned between a closed position and an open position as shown in FIG. 1.


The labeling device 10 includes a label slot or opening 76 located at front portion 54 of housing 14 of labeling device 10. The label slot 76 provides an exit portion for a second label 300 having human readable information 302 as described in more detail below, and shown in FIG. 2C.


In one embodiment, the scanner 20 is located on front portion 54 of housing 14 of labeling device 10. The scanner 20 is adapted to scan a portion of a container having a medication therein to retrieve medication information for the medication contained in the container. For example, in one embodiment, the scanner 20 may scan a barcode located on a container having a medication therein. Upon scanning the container with the scanner 20, the medication information about the medication contained in the container is processed by the labeling device 10. For example, the labeling device 10 may refer to a database to process the medication information about the medication contained in the container. In one embodiment, the labeling device 10 may refer to a centralized database to process the medication information about the medication contained in the container. In another embodiment, the labeling device 10 may refer to a local database stored in the labeling device 10 to process the medication information about the medication contained in the container. A user may then select to analyze and/or modify this medication information using the onboard touchscreen interface 22. Potential data fields requiring modification include drug concentration, combinations, and/or other medication identifying information. In one embodiment, the touchscreen interface 22 that is adapted to display the medication information is located on the front portion 54 of housing 14 of labeling device 10.


Referring to FIG. 1, housing 14 of labeling device 10 defines a first compartment 70 adapted to receive a first labeling subsystem 16 and a second compartment 72 adapted to receive a second labeling subsystem 18. In one embodiment, housing 14 includes a divider wall 74 for separating the first compartment 70 and the second compartment 72. The side door 62 may be moved to the open position as shown in FIG. 1 to install the first labeling subsystem 16 and the second labeling subsystem 18 in the labeling device 10. Also, the side door 62 and the top door 66 allow for easy access to the interior of the housing 14 of the labeling device 10 for maintenance work.


Referring to FIGS. 3-14, in one embodiment, a first labeling subsystem 16 is adapted to print a first label 100 including machine readable information 102 (FIG. 2C) and includes a syringe receiving port 104, a syringe clamp assembly 106, and a label print and apply assembly 108.


The machine readable information 102 conforms to all applicable standards regarding information contained on a label for a syringe. In one embodiment, the machine readable information 102 is a barcode. For example, the machine readable information 102 may be a unique barcode that is able to record and transmit information related to the syringe and the medication contained therein. Referring to FIG. 2C, the labeling device 10 of the present disclosure provides a first label 100 having machine readable information 102 and a second label 300 having human readable information 302 for a syringe 12 so that a user and/or a machine can easily obtain the desired information regarding the syringe 12 and the contents therein.


Referring to FIGS. 1 and 8, the syringe receiving port 104 is adapted to receive a syringe 12 therein for automatic application of a first label 100 to the syringe 12. In one embodiment, the receiving port 104 is located at the top portion 50 of the housing 14 of the labeling device 10. The top door 66 may be moved to the open position as shown in FIG. 1 to insert a syringe 12 within the receiving port 104.


Referring to FIGS. 3-8 and 14, the syringe clamp assembly 106 includes a holding element 110, a drive gear 112, an alignment disc 114, a carrier component 116 having a gear 118, a plurality of gripping components 120, a retaining ring 122, a stability ring 124, and a syringe positioning and alignment component 126. The syringe clamp assembly 106 securely holds the syringe 12 within the syringe receiving port 104 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12.


The holding element 110 provides a gripping surface that allows a user to pick up the clamp assembly 106 without having to place their hand within the syringe receiving port 104. In this manner, with the syringe 12 received within the receiving port 104, a user can remove the syringe 12 and/or clamp assembly 106, if needed, without having to place their hand within the syringe receiving port 104 and without having to touch the syringe 12. In one embodiment, the holding element 110 includes a lip portion 130 that extends beyond the periphery of the other components of the clamp assembly 106. In this manner, a user can grasp the holding element 110 at the lip portion 130 to remove the syringe 12 and/or clamp assembly 106. In one embodiment, the outer diameter of the holding element 110 is greater than the outer diameter of the other components of the clamp assembly 106. The holding element 110 includes a central aperture 132 adapted to receive the syringe 12 therethrough.


The drive gear 112 interfaces with a motor and is adapted to open and close the gripping components 120 that are adapted to grip the syringe 12 with the gripping components 120 in the closed position. The motor provides a drive mechanism to rotate the drive gear 112. Additionally, the drive gear 112 is adapted to rotate the syringe 12 during the automatic application of the first label 100 to the syringe 12. In one embodiment, the drive gear 112 includes teeth 134, a first cam slot 136 adapted to receive a first cam post 138, a second cam slot 140 adapted to receive a second cam post 142, a third cam slot 144 adapted to receive a third cam post 146, and a central aperture 148 adapted to receive the syringe 12 therethrough.


The alignment disc 114 is adapted to properly align and maintain the position of the components of the clamp assembly 106. In one embodiment, the alignment disc 114 includes a superior surface 150, an opposing inferior surface 152, a plurality of retaining posts 154 extending from the inferior surface 152, a bearing 156 disposed on each of the retaining posts 154, and a central aperture 158 adapted to receive the syringe 12 therethrough. In one embodiment, the alignment disc 114 includes three retaining posts 154 each having a bearing 156 thereon.


The alignment disc 114 is adapted to allow the components of the clamp assembly 106 to rotate independently of each other so that the gripping components 120 can be opened and closed to grip the syringe 12 with the gripping components 120 in the closed position. Once the gripping components 120 are moved to the closed position to grip the syringe 12, the components of the clamp assembly 106 are then capable of rotating together to rotate the syringe 12 during the automatic application of the first label 100 to the syringe 12. In one embodiment, the syringe 12 is rotated during the automatic application of the first label 100 to the syringe 12 while the first label 100 remains in a stationary position.


The carrier component 116 includes a gear 118 extending around the periphery of the carrier component 116, protruding walls 170 each defining a rod aperture 172, and a central aperture 174 adapted to receive the syringe 12 therethrough. The carrier component 116 provides a carrier that the other components of the clamp assembly 106 can be secured to. In one embodiment, the carrier component 116 is formed of steel, although other materials of similar strength may be used. The components of the clamp assembly 106 can be secured to the carrier component 116 using methods known in the art. In one embodiment, any suitable fastener can be used to secure the components of the clamp assembly 106 to the carrier component 116 such as a bolt or a threaded fastener. The carrier component 116 includes protruding walls 170 that define rod apertures 172 therethrough. The protruding walls 170 extend from the carrier component 116 inward to the central aperture 174. In one embodiment, the carrier component 116 includes three protruding walls 170 each defining a rod aperture 172. The carrier component 116 also includes the central aperture 174 adapted to receive the syringe 12 therethrough.


The gripping components 120 are movable between an open position (FIG. 4) and a closed position (FIGS. 5 and 8). With the gripping components 120 in the closed position, the gripping components 120 contact and grip the syringe 12 to secure the syringe 12 within the syringe receiving port 104 of the first labeling subsystem 16 of the labeling device 10 as shown in FIG. 8. Additionally, as the gripping components 120 move to the closed position to contact and grip the syringe 12, the gripping components 120 also center the syringe 12 to the proper orientation within the clamp assembly 106 for the automatic application of the first label 100 to the syringe 12. In one embodiment, the gripping component 120 includes a first jaw 160, a second jaw 162, and a third jaw 164 that each include a gripping surface 166, a cam post receiving aperture 168, and a rod receiving aperture 180. In one embodiment, the first jaw 160, the second jaw 162, and the third jaw 164 each include a grip element 182 to contact and grip the syringe 12 to further secure the syringe 12 within the syringe receiving port 104 of the first labeling subsystem 16 of the labeling device 10 as shown in FIG. 8.


In one embodiment, the gripping components 120 are adapted to securely hold any size of syringe 12 within the syringe receiving port 104 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12. In other embodiments, the gripping components 120 are adapted to securely hold a syringe 12 having any size from 1 mL to 60 mL within the syringe receiving port 104 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12.


The retaining ring 122 includes a superior surface 186, an opposing inferior surface 188, a plurality of posts 190 extending from the inferior surface 188 and each defining a rod receiving aperture 192, and a central aperture 194 adapted to receive the syringe 12 therethrough.


Referring to FIGS. 3-8, the assembly of the syringe clamp assembly 106 of the first labeling subsystem 16 of labeling device 10 will now be described. The gripping components 120 are movable between an open position (FIG. 4) and a closed position (FIGS. 5 and 8). The gripping components 120 are pivotably connected to the carrier component 116 and retaining ring 122 so that the gripping components 120 are movable between the open position and the closed position. In one embodiment, connecting rods 196 are used to pivotably connect the gripping components 120 to the carrier component 116 and retaining ring 122. Referring to FIG. 3, the respective rod apertures 172 of the carrier component 116 are aligned with the rod receiving apertures 180 of the respective jaws 160, 162, 164 and the respective rod receiving apertures 192 of the retaining ring 122. In this manner, connecting rods 196 can be positioned through the rod apertures 172 of the carrier component 116 and through the rod receiving apertures 180 of the respective jaws 160, 162, 164 and through the respective rod receiving apertures 192 of the retaining ring 122 to pivotably connect the jaws 160, 162, 164 to the carrier component 116 and retaining ring 122. In this manner, the jaws 160, 162, 164 are pivotably connected to the carrier component 116 and retaining ring 122 so that the jaws 160, 162, 164 are movable between the open position and the closed position.


Movement of the jaws 160, 162, 164 between the open position and the closed position is controlled by a movable cam connection between the jaws 160, 162, 164 and the drive gear 112. In one embodiment, the respective cam slots 136, 140, 144 of the drive gear 112 are aligned with the cam post receiving apertures 168 of the respective jaws 160, 162, 164. In this manner, cam posts 138, 142, 146 can be positioned through the respective cam slots 136, 140, 144 of the drive gear 112 and through the cam post receiving apertures 168 of the respective jaws 160, 162, 164 to movably connect the jaws 160, 162, 164 to the drive gear 112. In this manner, the drive gear 112 controls movement of the jaws 160, 162, 164 between the open position and the closed position.


In one embodiment, the first cam slot 136, the second cam slot 140, and the third cam slot 144 are positioned off-center so that rotation of the drive gear 112 with the carrier component 116 in a stationary position moves the jaws 160, 162, 164 between the open position and the closed position via the sliding movement of the cam posts 138, 142, 146 within the off-center cam slots 136, 140, 144.


Referring to FIG. 3, in one embodiment, the first labeling subsystem 16 includes a stability ring 124 and a syringe positioning and alignment component 126. The stability ring 124 includes bent tabs 197 each defining an aperture 198 and a central aperture 199 adapted to receive the syringe 12 therethrough. In one embodiment, the stability ring 124 includes three bent tabs 197. The stability ring 124 is connected to the alignment disc 114. For example, in one embodiment, the retaining posts 154 of the alignment disc 114 are connected to a respective bent tab 197 through apertures 198. In one embodiment, the retaining posts 154 are threadingly connected to the respective bent tabs 197 of the stability ring 124. In this manner, the stability ring 124 provides stability to the components of the first labeling subsystem 16.


The syringe alignment component 126 is removably connected to the stability ring 124. The syringe alignment component 126 includes flexible arms 127, a wall 128 that extends downwardly from the syringe alignment component 126, a luer tip receiving portion 129, an alignment area 131, and a central aperture 133 adapted to receive the luer tip 42 of the syringe 12 therethrough. In one embodiment, the syringe alignment component 126 is removably connected to the stability ring 124 via a snap fit engagement. For example, the flexible arms 127 can be used to snap fit the syringe alignment component 126 to the stability ring 124. The flexible arms 127 can be deformed to an open position so that the syringe alignment component 126 can be removed from the stability ring 124. With the syringe 12 positioned within the syringe receiving port 104, the luer tip 42 of the syringe 12 extends beyond the central aperture 133 to the luer tip receiving portion 129 within the alignment area 131. In this manner, the luer tip 42 of the syringe 12 is properly positioned within the first labeling subsystem 16 so that an optical syringe alignment unit 250 (FIG. 12) can determine the precise position of the luer tip 42 of the syringe 12 for automatic application of the first label 100 to the luer tip 42 of the syringe 12 as discussed below.


A syringe clamp assembly of the first labeling subsystem 16 may include other embodiments to securely hold a syringe 12 within the syringe receiving port 104 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12.


Referring to FIG. 22, in another embodiment, a syringe clamp assembly 400 includes an opposing V-shaped clamp assembly. In this embodiment, a syringe 12 is placed between two spring loaded V-shaped jaws 402. Once the syringe 12 is properly placed within the jaws 402, an electromagnet would activate, locking the jaws 402 in a closed position to securely hold a syringe 12 within the syringe clamp assembly 400 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12. A roller would then make contact with the syringe 12, rotating it about its axis. The roller would be orientated at an angle to the rotation, forcing the syringe 12 to move axially until the luer tip 42 of the syringe 12 rested against a reference surface. Once the luer tip 42 of the syringe 12 was in position, the label print and apply assembly 108 would automatically apply a first label 100 to the luer tip 42 of the rotating syringe 12.


Referring to FIG. 23, in another embodiment, a syringe clamp assembly 410 includes an oblique roller clamp assembly. In this embodiment, a syringe 12 is placed in a V-shaped groove 412 of a syringe holding component 414 and a roller 416 rotatably connected to an arm 418 would be lowered until it contacted the syringe 12 and made the syringe 12 rotate about its axis. In this embodiment, the arm 418 is movably connected to a base portion 420 via a pin connection 422 at the base portion 420. The roller 416 would be orientated at an angle to the rotation, forcing the syringe 12 to move axially until the luer tip 42 of the syringe 12 rested against a reference surface. Simultaneously, the entire mechanism would move in a manner such that the outer radius of the luer tip 42 of the syringe 12 would be tangent to the tip of the label application mechanism. Once the luer tip 42 of the syringe 12 was in position, the label print and apply assembly 108 would automatically apply a first label 100 to the luer tip 42 of the rotating syringe 12.


In another embodiment, a syringe clamp assembly of the present disclosure includes a cap clamp assembly. In this embodiment, the cap clamp assembly utilizes a collet to grab a syringe cap and pull it against a datum surface for axial registration. The cap clamp assembly would also rotate the syringe 12 similar to the opposing V-shaped clamp assembly and the oblique roller clamp assembly for automatic application of a first label 100 to the luer tip 42 of the rotating syringe 12.


Referring to FIGS. 9-14, the label print and apply assembly 108 includes a first label print assembly 200 and a label apply assembly 202. The first label print assembly 200 of the label print and apply assembly 108 is activated during the printing of a first label 100 and the label apply assembly 202 of the label print and apply assembly 108 is activated during the automatic application of the first label 100 to a syringe 12. The label print and apply assembly 108 includes the first label print assembly 200, the label apply assembly 202, a sensor component 210, a print and apply state controller 218, a first printer device 229 having a label printer head 230, a mounting plate 232, a first motor 234, a second motor 236, a third motor 238, a fourth motor 240, an optical syringe alignment unit 250, and a pinch roller mechanism 260. In one embodiment, the first printer device 229 allows for thermal printing of the first label 100 for the luer tip 42 of the syringe 12.


The label print and apply assembly 108 includes a sensor component 210 having a sensor arm 212 that is used as a photo interrupter and a cam element 214. The sensor component 210 is rotatable between a first position and a second position. In one embodiment, the sensor component 210 interfaces with a motor. The motor provides a drive mechanism to rotate the sensor component 210 between the first position and the second position. In one embodiment, with the sensor component 210 rotated to the second position, the sensor arm 212 breaks an optical beam. In this manner, the position of the sensor component 210 is determined and the label print and apply assembly 108 can be activated in accordance with the position of the sensor component 210. In one embodiment, rotation of the sensor component 210 moves the cam element 214 between a first position and a second position.


The label print and apply assembly 108 includes a print and apply state controller 218 that activates the first label print assembly 200 to print a first label 100 and activates the label apply assembly 202 to automatically apply the first label 100 to a syringe 12. In one embodiment, the print and apply state controller 218 includes a first flipper arm 220 and a second flipper arm 222 which are spring loaded. In one embodiment, the first flipper arm 220 and the second flipper arm 222 are spring loaded by a spring 224. The first flipper arm 220 and the second flipper arm 222 are movable between a first position, in which the first label print assembly 200 is activated to print a first label 100, and a second position, in which the label apply assembly 202 is activated to automatically apply the first label 100 to a syringe 12. In one embodiment, the first flipper arm 220 and the second flipper arm 222 interface with the cam element 214. Thus, rotation of the cam element 214 between a first position and a second position moves the first flipper arm 220 and the second flipper arm 222 between the first position and the second position.


The first flipper arm 220 and the second flipper arm 222 control pressure rollers on the label path that allow the first label 100 to be printed via the first label print assembly 200 or applied via the label apply assembly 202. For example, in one embodiment, with the first flipper arm 220 and the second flipper arm 222 in a first position, the flipper arms 220, 222 control a first pressure roller to force a cartridge, spool, or reel containing a label up against a label printer head 230 and feeds the label through the label printer head 230 for the printing of machine readable information on a first label 100. Referring to FIG. 13, in one embodiment, label material 109 for the printing of machine readable information 102 thereon to create first labels 100 may be contained in a cartridge 107 that allows for simple loading. In one embodiment, the cartridge 107 includes a removal device adapted to automatically remove the backing material of the first label 100. In one embodiment, the removal device comprises a knife edge portion to contact and remove the backing material of the first label 100.


After printing, the first flipper arm 220 and the second flipper arm 222 can be rotated to a second position so that the first pressure roller is disconnected from the label path and a second pressure roller clamps down and feeds the first label 100 containing machine readable information forward for the peeling off of the first label 100 from a backing material for the automatic application of the first label 100 to a syringe 12.


The label print and apply assembly 108 includes a mounting plate 232 for controlling the position and securing the components of the label print and apply assembly 108. In one embodiment, the components of the label print and apply assembly 108 can be secured to the mounting plate 232 using fasteners and methods known in the art.


The label print and apply assembly 108 includes a first motor 234, a second motor 236, a third motor 238, and a fourth motor 240 to operate the label print and apply assembly 108. In one embodiment, the first motor 234 and the second motor 236 are stepper motors which allow for the indexing and controlling of the position of the first label 100 so that the printing of the machine readable information onto the first label 100 is printed and applied properly.


In one embodiment, the third motor 238 and the fourth motor 240 provide tension to the reel of labels so that the labels are held tightly and do not wrinkle, tangle, and/or crease. In this manner, the printing of the machine readable information onto the first label 100 is printed and applied properly to the first label 100.


Referring to FIGS. 12 and 13, the label print and apply assembly 108 includes an optical syringe alignment unit 250 having a first camera 252, a second camera 254, and a mounting bracket 256. The optical syringe alignment unit 250 is positioned so that the first camera 252 and the second camera 254 are positioned adjacent the alignment area 131 of the syringe positioning and alignment component 126 as shown in FIG. 13. In this manner, with the syringe 12 positioned within the syringe receiving port 104 and the luer tip 42 of the syringe 12 extending into the alignment area 131 of the syringe positioning and alignment component 126, the first camera 252 and the second camera 254 are able to locate the luer tip 42 of the syringe 12. For example, the first camera 252 is able to locate the precise position of the syringe 12 and luer tip 42 for automatic application of the first label 100 to the luer tip 42 of the syringe 12. In one embodiment, the second camera 254 is able to inspect the machine readable information 102 on the first label 100 as the first label 100 is automatically being applied to the luer tip 42 of the syringe 12. In another embodiment, the second camera 254 is able to inspect the machine readable information 102 on the first label 100 after the first label 100 is automatically applied to the luer tip 42 of the syringe 12.


The mounting bracket 256 is adapted to connect the optical syringe alignment unit 250 so that the first camera 252 and the second camera 254 are positioned adjacent the alignment area 131 of the syringe positioning and alignment component 126. In one embodiment, the mounting bracket 256 is connectable to an interior wall portion of the housing 14 of the labeling device 10.


Referring to FIGS. 11 and 14, the label print and apply assembly 108 includes a pinch roller mechanism 260 for exerting a force on the first label 100 as the first label 100 is automatically being applied to the luer tip 42 of the syringe 12 to ensure that the first label 100 is securely applied to the syringe 12.


The pinch roller mechanism 260 includes a roller contact portion 262, a pivotable frame member 264, and a solenoid 266 including an actuation member 268. The solenoid 266 is adapted to move the actuation member 268 forward and backward. The pivotable frame member 264 is movably connected to the actuation member 268 of the solenoid 266. Movement of the actuation member 268 of the solenoid 266 forward causes the frame member 264 to pivot such that the roller contact portion 262 can be positioned to contact a portion of the first label 100 as the first label 100 is automatically being applied to the luer tip 42 of the syringe 12 to ensure that the first label 100 is securely applied to the syringe 12. In one embodiment, the frame member 264 includes a receiving aperture 270 and the roller contact portion 262 includes a rod 272 that is received within the receiving aperture 270 so that the roller contact portion 262 is rotatably connected to the frame member 264.


Referring to FIGS. 15-21, in one embodiment, a tensioning control device or second labeling subsystem 18 is adapted to print a second label 300 including human readable information 302 and includes a first or supply label roll 310, a first label actuator 312, a first motor 314, a first gear system 316, a first mounting portion 318, a second or windup label roll 320, a second label actuator 322, a second motor 324, a second gear system 326, a second mounting portion 328, a substrate or movable label portion 330 between the first label roll 310 and the second label roll 320, a removal device 332 adapted to automatically remove a backing material 304 from the second label 300, an actuator or index control system 334, a mounting plate 336, a cover 338, and a second printer device 340 having a label printer head 341. Referring to FIGS. 1 and 15, the cover 338 provides for protection of the components of the second labeling subsystem 18.


In one embodiment, the second labeling subsystem 18 includes components that allow the second labeling subsystem 18 to automatically apply a second label 300 to a portion of the syringe 12. In one embodiment, the second labeling subsystem 18 automatically applies a second label 300 to a portion of the syringe 12 simultaneously with the first labeling subsystem 16 automatically applying a first label 100 to a portion of the syringe 12.


The human readable information 302 may be in full color and conforms to all applicable standards regarding layout and information contained on a label for a syringe. In this manner, the labeling device 10 provides a first label 100 having machine readable information 102 and a second label 300 having human readable information 302 so that a user and/or a machine can easily obtain the desired information regarding the syringe 12 and the contents therein. In one embodiment, the second label 300 may be printed using an inkjet printer so that the human readable information 302 may be in full color.


Referring to FIGS. 15-19, the first label roll 310 and the second label roll 320 provide label rolls that allow the movable label portion 330 between the first label roll 310 and the second label roll 320 to be controlled. In one embodiment, the first label roll 310 is rotatably connected to the first label actuator 312 and the second label roll 320 is rotatably connected to the second label actuator 322. The first label actuator 312 is drivingly connected to the first gear system 316 and the first motor 314. The second label actuator 322 is drivingly connected to the second gear system 326 and the second motor 324. The first label actuator 312, the first gear system 316, and the first motor 314 are movably secured to the first mounting portion 318. The first mounting portion 318 is adapted to secure the gears of the first gear system 316 to the first mounting portion 318 to control the position of the gears of the first gear system 316. In one embodiment, the first mounting portion 318 is formed of sheet metal.


The second label actuator 322, the second gear system 326, and the second motor 324 are movably secured to the second mounting portion 328. The second mounting portion 328 is adapted to secure the gears of the second gear system 326 to the second mounting portion 328 to control the position of the gears of the second gear system 326. In one embodiment, the second mounting portion 328 is formed of sheet metal.


In one embodiment, the first gear system 316 is adapted to provide an arrangement that can be used to increase the strength of the first motor 314. For example, the first gear system 316 is adapted to provide an arrangement that can be used to increase the power, e.g., torque, and/or speed of the first motor 314. In one embodiment, the second gear system 326 is adapted to provide an arrangement that can be used to increase the strength of the second motor 324. For example, the second gear system 326 is adapted to provide an arrangement that can be used to increase the power, e.g., torque, and/or speed of the second motor 324.


In one embodiment, the mounting plate 336 is adapted to secure the components of the second labeling subsystem 18 to the mounting plate 336 to control the position of the components of the second labeling subsystem 18. In one embodiment, the mounting plate 336 is formed of sheet metal.


The first motor 314 provides a mechanism to control the torque applied to the first label roll 310 in a first direction generally along arrow A (FIG. 17) and the second motor 324 provides a mechanism to control the torque applied to the second label roll 320 in a second direction generally along arrow B (FIG. 17). The second direction is generally opposite the first direction. In this manner, the first motor 314 and the second motor 324 apply torque to the respective first label roll 310 and the second label roll 320 in opposing directions, thereby placing the movable label portion 330 in tension. In one embodiment, the first motor 314 applies an equal torque force to the first label roll 310 as the second motor 324 applies to the second label roll 320 so that there is no bias in the tensioning force applied to the movable label portion 330. For example, an equal amount of forward tension and rearward tension is applied to the movable label portion 330 so that the net tension force applied to the movable label portion 330 is zero.


By placing the substrate or movable label portion 330 in tension in the manner described above, an actuator or index control system 334 is able to incrementally move the movable label portion 330 back and forth independent of the tension applied to the movable label portion 330. For example, the index control system 334 is adapted to move the label portion 330 in a forward direction and a backward direction. The second labeling subsystem 18 allows for precise control of the movement of the movable label portion 330. For example, the second labeling subsystem 18 allows for independent control of the tension applied to the movable label portion 330, the position of a given point on the movable label portion 330, and the speed at which the movable label portion 330 travels. The second labeling subsystem 18 allows for the precise control of the movement of the movable label portion 330 to control the application of a secondary material to the movable label portion 330, the printing of the human readable information on the movable label portion 330 to form a second label 300, and the cutting of the second label 300 from the movable label portion 330 using a cutting mechanism. The cutting mechanism may include a knife, laser, or water jet printing cutting mechanism.


In one embodiment, the first motor 314 and the second motor 324 are servomotors with closed loop feedback to maintain the proper tension applied to the movable label portion 330. In another embodiment, the first motor 314 and the second motor 324 are brushed DC motors driven by a PWM signal in a torque control mode. In other embodiments, other motors are used to apply tension to the movable label portion 330. For example, the first motor 314 and the second motor 324 may be servo or stepper motors with a closed or open loop feedback to maintain the proper tension applied to the movable label portion 330.


The index control system 334 can include any drive mechanism adapted to move the movable label portion 330 back and forth. In one embodiment, the index control system 334 is a printing mechanism. In other embodiments, other drive mechanisms may be used. In some embodiments, a laser cut printing mechanism, a water jet printing mechanism, or a knife cut printing mechanism may be used.


After the human readable information 302 is printed onto a second label 300, the second label 300 is moved towards an exit area 344 for automatic removal of the backing material 304 of the second label 300. In one embodiment, the second labeling subsystem 18 includes a removal device 332 adapted to automatically remove the backing material 304 of the second label 300. In one embodiment, the removal device 332 comprises a wall that contacts the backing material 304 of the second label 300 as the second label 300 is advanced towards the exit area 344 for removal of the second label 300 from the labeling device 10. In this manner, as the second label 300 advances towards the exit area 344, the removal device 332 contacts the backing material 304 and provides a physical barrier that removes the backing material 304 from the second label 300 as the second label 300 is able to advance beyond the removal device 332. The removal device 332 is dimensioned so that the wall of the removal device 332 contacts the backing material 304 but does not contact the second label 300 so that the second label 300 advances past the removal device 332 while the removal device 332 automatically removes the backing material 304. In one embodiment, the removal device is a wall or edge of sheet metal.


After the second label 300 advances past the removal device 332 and the backing material 304 is removed, the second label 300 advances past the label slot 76 at the front portion 54 of the housing 14 of the labeling device 10 as shown in FIG. 1. In this manner, a user is then able to pick up the second label 300 with one hand and apply the second label 300 having human readable information 302 to the syringe 12 as shown in FIG. 2C. In one embodiment, a cutting mechanism is adapted to automatically cut a portion of the second label 300 for removal of the second label 300 from the labeling device 10.


The user does not have to remove the backing material 304 from the second label 300 because the second labeling subsystem 18 has already automatically removed the backing material 304. Requiring a user such as a medical practitioner to manually remove the backing material 304 from the second label 300 can be a difficult and time consuming process, especially considering the user will be wearing gloves. Also, the user would have to dispose of the backing material 304 every time a second label 300 was printed. Further, the user would have to put down the syringe 12 the second label 300 was meant for, potentially causing confusion if placed near other, similar syringes on a table top or tray.


Referring to FIGS. 1-21, the use of labeling device 10 to print a first label 100 having machine readable information 102 and a second label 300 having human readable information 302 for a syringe will now be described.


Referring to FIG. 2A, a needle 44 is attached to syringe barrel 24 and the needle 44 is used to fill the syringe barrel 24 with a medication from a separate container, such as a vial, prior to use. Once the syringe barrel 24 is filled with a desired medication, the protective cap 46 is attached to the syringe barrel 24 to surround and cover the needle 44 to prevent accidental needle stick injuries. Next, the syringe barrel 24 and protective cap 46 can be placed within the syringe receiving port 104 of the first labeling subsystem 16 of labeling device 10. The syringe 12 is placed within the syringe clamp assembly 106 of the first labeling subsystem 16 with the gripping components 120 in the open position (FIG. 4). The top door 66 can be opened to place the syringe 12 within the labeling device 10 and closed once the syringe 12 is properly placed within the syringe receiving port 104 of the first labeling subsystem 16 of labeling device 10.


Next, the gripping components 120 are moved to the closed position to contact and grip the syringe 12. As the gripping components 120 are moved to the closed position, the gripping components 120 also center the syringe 12 to the proper orientation within the clamp assembly 106 for the automatic application of the first label 100 to the syringe 12. In one embodiment, the drive gear 112 controls the movement of the gripping components 120 between the open position and the closed position via the movable cam connection between the drive gear 112 and the gripping components 120, e.g., cam posts 138, 142, 146 connecting the gripping components 120 and the drive gear at the cam slots 136, 140, 144. In this manner, the syringe clamp assembly 106 securely holds syringe 12 while the label print and apply assembly 108 automatically applies a first label 100 to the luer tip 42 of the syringe 12. Advantageously, the automatic application of the first label 100 to the syringe 12 using labeling device 10 eliminates the potential for misapplication of the first label 100 or human error.


Next, the print and apply state controller 218 of the label print and apply assembly 108 activates the first label print assembly 200 to print a first label 100. After printing of the first label 100, the print and apply state controller 218 activates the label apply assembly 202 to automatically apply the first label 100 to the luer tip 42 of the syringe 12. To facilitate the automatic application of the first label 100 to the syringe 12, the components of the clamp assembly 106 rotate together to rotate the syringe 12 during the automatic application of the first label 100 to the syringe 12. In one embodiment, the syringe 12 is rotated during the automatic application of the first label 100 to the syringe 12 while the first label 100 remains in a stationary position. To ensure the first label 100 is securely applied to the syringe 12, outward movement of the actuation member 268 of the solenoid 266 causes the frame member 264 to pivot such that the roller contact portion 262 can be positioned to contact a portion of the first label 100 as the first label 100 is automatically being applied to the luer tip 42 of the syringe 12. In one embodiment, the first label 100 is of a sufficient length so that as the first label 100 is applied to the luer tip 42 of the syringe 12, the first label 100 wraps around the luer tip 42 and a portion of the first label 100 overlaps itself. In this manner, the first label 100 is securely attached to a luer tip 42 that may have a lubricant or other fluid on it.


As the operation of the printing and automatic application of the first label 100 to the syringe 12 is occurring, the second labeling subsystem 18 can print the second label 300 including human readable information 302 as described above.


As described above, the first motor 314 and the second motor 324 apply torque to the respective first label roll 310 and the second label roll 320 in opposing directions, thereby placing the movable label portion 330 in tension. By placing the movable label portion 330 in tension, an index control system 334 is able to incrementally move the movable label portion 330 back and forth independent of the tension applied to the movable label portion 330. The second labeling subsystem 18 allows for independent control of the tension applied to the movable label portion 330, the position of a given point on the movable label portion 330, and the speed at which the movable label portion 330 travels.


After the human readable information 302 is printed onto a second label 300, the second label 300 is moved towards the exit area 344 for automatic removal of the backing material 304 of the second label 300 via the removal device 332.


After the first label 100 is printed and automatically applied to the luer tip 42 of the syringe 12, a user is able to remove the syringe 12 from the labeling device 10. Next, the user can easily remove the second label 300 from the label slot 76 and position the second label 300 on the syringe 12. Advantageously, the user does not have to remove the backing material 304 from the second label 300 as the second labeling subsystem 18 has already automatically removed the backing material 304. Next, the syringe 12 may be used to administer a medication as is known in the art.


The labeling device 10 provides for a syringe 12 having a first label 100 including machine readable information 102 and a second label 300 including human readable information 302 as shown in FIG. 2C. In this manner, the labeling device 10 provides a first label 100 having machine readable information 102 and a second label 300 having human readable information 302 so that a user and/or a machine can easily obtain the desired information regarding the syringe 12 and the contents therein. The machine readable information 102 on the first label 100 may be scanned to determine the contents of the syringe 12 at any time using the same scanner used to scan drug vials. For example, in one embodiment, the scanner 20 located on the front portion 54 of the housing 14 of the labeling device 10 can be used to scan the machine readable information 102 on the first label 100 to determine the contents of the syringe 12 at any time.


A syringe 12 having a first label 100 including machine readable information 102 and a second label 300 including human readable information 302 provides encoded syringes that can be utilized along with the EMR system of a hospital to track drug administration, check for potential allergies or drug interactions, and/or other important information, all without the need for human intervention.


The labeling device 10 is envisioned to be a part of a larger system solution to combat medication errors. For example, the labeling device 10 works to eliminate the following adverse effects that can be caused by medication errors: (1) unclear syringe contents from unlabeled or poorly labeled syringes; (2) allergic reactions; (3) drug interactions; and (4) poor record keeping, e.g., which drugs were administered, concentration, and/or quantity of drug.


It is envisioned that other potential methods may be used with the labeling device 10 of the present disclosure for linking each syringe to specific information regarding the drugs contained within the syringe and patient information. For example, the machine readable information 102 on the first label 100 may comprise any mechanism for transmitting specific information regarding the drugs contained within the syringe and patient information. In one embodiment, a radio-frequency identification (RFID) system may be used. Empty syringes may come preloaded with an RFID or an RFID label would be applied. The labeling device 10 would read the code and add that information to a database, tying the syringe to the drug and concentration the syringe contains as well as which patient it was intended for. In such a system, it would also be possible to add information to the unique RFID from a database.


In one embodiment, a near field communication system may be used. Such a system would include similar implementation to the RFID system discussed above.


In one embodiment, a laser marking system may be used. The labeling device 10 may contain a laser capable of marking the syringe directly, or a blank label on the syringe, with the necessary barcode information. Such a system may or may not require custom formulation of syringe material to incorporate photosensitive materials for use with the laser.


While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.

Claims
  • 1. A labeling system for labeling a syringe, the labeling system comprising: a substrate having a label and configured to be applied to the syringe, the substrate having a first end and an opposing second end;a first motor applying a first torque to the first end of the substrate in a first direction;a second motor applying a second torque to the opposing second end of the substrate in a second direction, the second direction generally opposite the first direction thereby placing the substrate in tension; andan actuator adapted to move the substrate in the first direction and the second direction independent of the tension applied to the substrate.
  • 2. The labeling system of claim 1, further comprising a cutting mechanism for cutting a portion of the label, wherein the cutting mechanism is a knife, laser, or water jet printing cutting mechanism.
  • 3. The labeling system of claim 1, wherein the substrate comprises a removable backing layer.
  • 4. The labeling system of claim 3, further comprising a removal device adapted to automatically remove the removable backing layer from the substrate, wherein the removal device is a wall or edge of sheet metal.
  • 5. The labeling system of claim 1, wherein the first torque applied to the first end of the substrate is equal to the second torque applied to the opposing second end of the substrate.
  • 6. The labeling system of claim 1, wherein the actuator is adapted to move the substrate by predetermined increments.
  • 7. The labeling system of claim 1, wherein the label includes information relating to the syringe or contents contained within the syringe.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. application Ser. No. 15/299,796, entitled “Tensioning Control Device”, filed Oct. 21, 2016, which is a continuation of U.S. application Ser. No. 14/878,509, entitled “Tensioning Control Device”, filed Oct. 8, 2015 (now U.S. Pat. No. 9,505,233), which claims priority to U.S. Provisional Application Ser. No. 62/062,279, entitled “Tensioning Control Device”, filed Oct. 10, 2014, the entire disclosures of each of which are hereby incorporated by reference.

US Referenced Citations (292)
Number Name Date Kind
607941 Mayo Jul 1898 A
614703 Delory Nov 1898 A
3430625 McLeod, Jr. Mar 1969 A
3835897 Gess Sep 1974 A
4003252 Dewath Jan 1977 A
4415802 Long Nov 1983 A
4801853 Lewis et al. Jan 1989 A
4853521 Claeys et al. Aug 1989 A
4857713 Brown Aug 1989 A
4921277 McDonough May 1990 A
4978335 Arthur, III Dec 1990 A
5040422 Frankenberger et al. Aug 1991 A
5078683 Sancoff et al. Jan 1992 A
5179862 Lynnworth Jan 1993 A
5247826 Frola et al. Sep 1993 A
5317506 Coutre et al. May 1994 A
5429602 Hauser Jul 1995 A
5463906 Spani et al. Nov 1995 A
5531697 Olsen et al. Jul 1996 A
5531698 Olsen Jul 1996 A
5549401 Ishikawa et al. Aug 1996 A
5569212 Brown Oct 1996 A
5611784 Barresi et al. Mar 1997 A
5612524 Sant' Anselmo et al. Mar 1997 A
5628309 Brown May 1997 A
5651775 Walker et al. Jul 1997 A
5692640 Caulfield et al. Dec 1997 A
5720733 Brown Feb 1998 A
5740428 Mortimore et al. Apr 1998 A
5782814 Brown et al. Jul 1998 A
5792117 Brown Aug 1998 A
5845264 Nellhaus Dec 1998 A
5873731 Prendergast Feb 1999 A
5882338 Gray Mar 1999 A
5925014 Teeple, Jr. Jul 1999 A
6106498 Friedli et al. Aug 2000 A
6123686 Olsen et al. Sep 2000 A
D438634 Merry Mar 2001 S
6249299 Tainer Jun 2001 B1
6256037 Callahan Jul 2001 B1
6336752 Balopole et al. Jan 2002 B1
6341174 Callahan et al. Jan 2002 B1
6342889 Callahan Jan 2002 B1
6381029 Tipirneni Apr 2002 B1
6422094 Ganshorn Jul 2002 B1
6464667 Kamen et al. Oct 2002 B1
6482185 Hartmann Nov 2002 B1
6519569 White et al. Feb 2003 B1
RE38189 Walker et al. Jul 2003 E
6626355 Sasse et al. Sep 2003 B2
6641562 Peterson Nov 2003 B1
6644130 Imai et al. Nov 2003 B2
6675660 Mosier et al. Jan 2004 B1
6685227 Merry et al. Feb 2004 B2
6685678 Evans et al. Feb 2004 B2
6697067 Callahan et al. Feb 2004 B1
6733495 Bek et al. May 2004 B1
6742992 Davis Jun 2004 B2
6798533 Tipirneni Sep 2004 B2
6814254 Liff et al. Nov 2004 B2
6825864 Botten et al. Nov 2004 B2
6854338 Khuri-Yakub et al. Feb 2005 B2
6985870 Martucci et al. Jan 2006 B2
7000485 Ao et al. Feb 2006 B2
7074209 Evans et al. Jul 2006 B2
7077289 Ross Jul 2006 B2
7106479 Roy et al. Sep 2006 B2
7115113 Evans et al. Oct 2006 B2
7116343 Botten et al. Oct 2006 B2
7161488 Frasch Jan 2007 B2
7175081 Andreasson et al. Feb 2007 B2
7180624 Tipirneni Feb 2007 B2
7182256 Andreasson et al. Feb 2007 B2
7225683 Harnett et al. Jun 2007 B2
7236936 White et al. Jun 2007 B2
7237199 Menhardt et al. Jun 2007 B1
7264323 Tainer et al. Sep 2007 B2
7299981 Hickle et al. Nov 2007 B2
7303467 Birang et al. Dec 2007 B2
7319540 Tipirneni Jan 2008 B2
7347841 Elhadad et al. Mar 2008 B2
7358505 Woodworth et al. Apr 2008 B2
7360448 Maginnis et al. Apr 2008 B2
7375737 Botten et al. May 2008 B2
7442181 Schubert et al. Oct 2008 B2
7469598 Shkarlet et al. Dec 2008 B2
7469599 Froehlich et al. Dec 2008 B2
D588200 Langan et al. Mar 2009 S
7534239 Schneider et al. May 2009 B1
D593613 Langan et al. Jun 2009 S
D595361 Langan et al. Jun 2009 S
7559483 Hickle et al. Jul 2009 B2
7564579 Tipirneni Jul 2009 B2
D597608 Langan et al. Aug 2009 S
D602534 Langan et al. Oct 2009 S
7614545 Christoffersen et al. Nov 2009 B2
7617739 Dam Nov 2009 B1
D605228 Langan et al. Dec 2009 S
D605229 Langan et al. Dec 2009 S
D605230 Langan et al. Dec 2009 S
7645258 White et al. Jan 2010 B2
7673527 Ehring et al. Mar 2010 B2
7694565 Koerdt et al. Apr 2010 B2
7703336 Genosar Apr 2010 B2
7704231 Pongpairochana et al. Apr 2010 B2
7753880 Malackowski Jul 2010 B2
7753891 Tennican et al. Jul 2010 B2
7756724 Gropper et al. Jul 2010 B2
7763006 Tennican Jul 2010 B2
D621879 Langan et al. Aug 2010 S
D621880 Langan et al. Aug 2010 S
7776018 Bush, Jr. et al. Aug 2010 B2
D624595 Langan et al. Sep 2010 S
D624596 Langan et al. Sep 2010 S
7799010 Tennican Sep 2010 B2
7815123 Conner et al. Oct 2010 B2
7815605 Souter Oct 2010 B2
7819838 Ziegler et al. Oct 2010 B2
7822096 Kuksenkov Oct 2010 B2
7859473 Gibson Dec 2010 B2
D633151 Langan et al. Feb 2011 S
7887513 Nemoto et al. Feb 2011 B2
D634367 Langan et al. Mar 2011 S
D634368 Langan et al. Mar 2011 S
D634369 Langan et al. Mar 2011 S
7905861 Rhinehart et al. Mar 2011 B2
7918830 Langan et al. Apr 2011 B2
7927313 Stewart et al. Apr 2011 B2
7933780 De La Huerga Apr 2011 B2
7941949 Cloninger May 2011 B2
D639861 Langan et al. Jun 2011 S
D639862 Langan et al. Jun 2011 S
D639863 Langan et al. Jun 2011 S
7967778 Nemoto et al. Jun 2011 B2
D641421 Langan et al. Jul 2011 S
D641422 Langan et al. Jul 2011 S
7976508 Hoag Jul 2011 B2
D643468 Langan et al. Aug 2011 S
D643469 Langan et al. Aug 2011 S
D643470 Langan et al. Aug 2011 S
D643471 Langan et al. Aug 2011 S
D643472 Langan et al. Aug 2011 S
7991627 Hutchinson et al. Aug 2011 B2
D645094 Langan et al. Sep 2011 S
8031347 Edwards et al. Oct 2011 B2
D649196 Langan et al. Nov 2011 S
8059297 Tipirneni Nov 2011 B2
8063925 Tainer et al. Nov 2011 B2
8065924 Ziegler et al. Nov 2011 B2
8069060 Tipirneni Nov 2011 B2
8111159 Andreasson et al. Feb 2012 B2
8140349 Hanson et al. Mar 2012 B2
8235938 Eggers et al. Aug 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8355753 Bochenko et al. Jan 2013 B2
8356434 Alipour Jan 2013 B2
8385972 Bochenko et al. Feb 2013 B2
8394053 Bochenko et al. Mar 2013 B2
8494093 Zhang Jul 2013 B1
8524333 Fujinami Sep 2013 B2
8582171 Srnka et al. Nov 2013 B2
8606596 Bochenko et al. Dec 2013 B1
8639525 Levine et al. Jan 2014 B2
8662626 Kahl et al. Mar 2014 B2
8702674 Bochenko Apr 2014 B2
8734039 Castells et al. May 2014 B2
8752088 Harvey et al. Jun 2014 B1
8945066 Bochenko et al. Feb 2015 B2
9039655 Prince et al. May 2015 B2
9044977 McLaughlin et al. Jun 2015 B2
9078809 Bochenko et al. Jul 2015 B2
9101534 Bochenko Aug 2015 B2
20010020148 Sasse et al. Sep 2001 A1
20010049608 Hochman Dec 2001 A1
20010056258 Evans Dec 2001 A1
20020040208 Flaherty et al. Apr 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020188259 Hickle et al. Dec 2002 A1
20030055685 Cobb et al. Mar 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030139701 White et al. Jul 2003 A1
20030160698 Andreasson et al. Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20040082918 Evans et al. Apr 2004 A1
20040105115 Edwards et al. Jun 2004 A1
20040179051 Tainer et al. Sep 2004 A1
20040179132 Fujino et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040212834 Edwards et al. Oct 2004 A1
20040238631 Andreasson et al. Dec 2004 A1
20050070978 Bek et al. Mar 2005 A1
20050088306 Andreasson et al. Apr 2005 A1
20050101905 Merry May 2005 A1
20050118048 Traxinger Jun 2005 A1
20050151652 Frasch Jul 2005 A1
20050151823 Botten et al. Jul 2005 A1
20050154368 Lim et al. Jul 2005 A1
20050277873 Stewart et al. Dec 2005 A1
20050277890 Stewart et al. Dec 2005 A1
20060032918 Andreasson et al. Feb 2006 A1
20060065713 Kingery Mar 2006 A1
20060079843 Brooks et al. Apr 2006 A1
20060102503 Elhadad et al. May 2006 A1
20060143051 Eggers et al. Jun 2006 A1
20060144942 Evans et al. Jul 2006 A1
20060178617 Adams et al. Aug 2006 A1
20060190302 Eggers et al. Aug 2006 A1
20060206356 Vanderveen Sep 2006 A1
20060224125 Simpson et al. Oct 2006 A1
20060229551 Martinez et al. Oct 2006 A1
20060270997 Lim et al. Nov 2006 A1
20060287887 Hutchinson et al. Dec 2006 A1
20070008399 Botten et al. Jan 2007 A1
20070100316 Traxinger May 2007 A1
20070134044 Colbrunn et al. Jun 2007 A1
20070167919 Nemoto et al. Jul 2007 A1
20070179448 Lim et al. Aug 2007 A1
20070187475 MacLeod Aug 2007 A1
20070191787 Lim et al. Aug 2007 A1
20070255199 Dewey Nov 2007 A1
20070280710 Tainer et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080043088 Botten et al. Feb 2008 A1
20080071219 Rhinehart et al. Mar 2008 A1
20080118141 Sommer et al. May 2008 A1
20080191013 Liberatore Aug 2008 A1
20080243088 Evans Oct 2008 A1
20080255523 Grinberg Oct 2008 A1
20080294108 Briones et al. Nov 2008 A1
20080306439 Nelson et al. Dec 2008 A1
20090018494 Nemoto et al. Jan 2009 A1
20090043253 Podaima Feb 2009 A1
20090112178 Behzadi Apr 2009 A1
20090112333 Sahai Apr 2009 A1
20090126866 Stenner et al. May 2009 A1
20090137956 Souter May 2009 A1
20090143673 Drost et al. Jun 2009 A1
20090149744 Nemoto et al. Jun 2009 A1
20090156931 Nemoto et al. Jun 2009 A1
20090159654 Grimard Jun 2009 A1
20090200185 Follman et al. Aug 2009 A1
20090204028 Richards Aug 2009 A1
20090259176 Yairi Oct 2009 A1
20090288497 Ziegler et al. Nov 2009 A1
20090296540 Gilbert et al. Dec 2009 A1
20090306620 Thilly et al. Dec 2009 A1
20100022953 Bochenko et al. Jan 2010 A1
20100022987 Bochenko et al. Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100036313 Shener et al. Feb 2010 A1
20100065633 Nelson et al. Mar 2010 A1
20100076310 Wenderow et al. Mar 2010 A1
20100095782 Ferencz et al. Apr 2010 A1
20100114951 Bauman et al. May 2010 A1
20100145165 Merry Jun 2010 A1
20100194812 Castells et al. Aug 2010 A1
20100204659 Bochenko et al. Aug 2010 A1
20100280486 Khair et al. Nov 2010 A1
20100286599 Ziegler et al. Nov 2010 A1
20100305499 Matsiev et al. Dec 2010 A1
20110009800 Dam et al. Jan 2011 A1
20110009817 Bennett et al. Jan 2011 A1
20110028937 Powers et al. Feb 2011 A1
20110060198 Bennett et al. Mar 2011 A1
20110111794 Bochenko et al. May 2011 A1
20110112473 Bochenko et al. May 2011 A1
20110112474 Bochenko et al. May 2011 A1
20110137288 Tallarida et al. Jun 2011 A1
20110152824 DiPerna et al. Jun 2011 A1
20110152825 Marggi Jun 2011 A1
20110152834 Langan et al. Jun 2011 A1
20110161112 Keefe et al. Jul 2011 A1
20110166511 Sharvit et al. Jul 2011 A1
20110185821 Genosar Aug 2011 A1
20110259954 Bartz et al. Oct 2011 A1
20110264069 Bochenko Oct 2011 A1
20110315611 Fulkerson et al. Dec 2011 A1
20120004602 Hanson et al. Jan 2012 A1
20120004637 Krulevitch et al. Jan 2012 A1
20120006127 Nielsen Jan 2012 A1
20120022458 Oh et al. Jan 2012 A1
20120035535 Johnson et al. Feb 2012 A1
20120037266 Bochenko Feb 2012 A1
20120046295 Charrier et al. Feb 2012 A1
20120065617 Matsiev et al. Mar 2012 A1
20120199275 Giuliani et al. Aug 2012 A1
20120287431 Matsiev et al. Nov 2012 A1
20120323208 Bochenko et al. Dec 2012 A1
20120325330 Prince et al. Dec 2012 A1
20130018356 Prince et al. Jan 2013 A1
20150211904 Forster Jun 2015 A1
20150204705 Forster et al. Jul 2015 A1
Foreign Referenced Citations (25)
Number Date Country
2487221 May 2005 CA
101663173 Mar 2010 CN
101830127 Sep 2010 CN
202966821 Jun 2013 CN
205293324 Jun 2016 CN
2183046 May 1987 GB
2504288 Jan 2014 GB
2504295 Jan 2014 GB
2504297 Jan 2014 GB
6450935 Mar 1989 JP
2117558 May 1990 JP
3075464 Nov 2000 JP
2005154061 Jun 2005 JP
2006327199 Dec 2006 JP
2010179932 Aug 2010 JP
205154061 Oct 2012 JP
201461647 Apr 2014 JP
2007124821 Nov 2007 WO
2009114115 Sep 2009 WO
2010144482 Dec 2010 WO
2011018804 Feb 2011 WO
2012034084 Mar 2012 WO
2014016311 Jan 2014 WO
2014016315 Jan 2014 WO
2014016316 Jan 2014 WO
Related Publications (1)
Number Date Country
20190135474 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62062279 Oct 2014 US
Continuations (2)
Number Date Country
Parent 15299796 Oct 2016 US
Child 16238916 US
Parent 14878509 Oct 2015 US
Child 15299796 US