The invention relates to a tensioning device for a traction mechanism drive which is disposed on an internal combustion engine and has a drive wheel arranged on a drive shaft of a machine, one or more additional driving wheels and a continuously revolving traction means which wraps around the drive wheel and the additional driving wheels. The tensioning device comprises two tensioning arms, having tensioning wheels which are mounted thereon and apply tensioning force to the traction means in front of and behind the drive wheel in the direction of revolution, and has a spring means, which generates the tensioning force, and a tensioner housing, which movably supports at least one of the tensioning arms subjected to the force of the spring means.
Particularly in traction mechanism drives having driving wheels which alternately take up and deliver torque, and having a corresponding alternation of tight strand and slack strand, the tensioning of the slack strand calls for a tensioning device having two tensioning wheels which pretension the traction means in front of and behind the drive wheel of the alternately driving and driven drive shaft. The drive shaft is constituted typically and not necessarily by the shaft of the machine configured as a starter generator, which machine delivers torque for the starting of the internal combustion engine and takes up torque for the generation of current.
While the traction mechanism drives can basically be constituted by belt, chain or link conveyor drives, tensioning devices of the type stated in the introduction are typically known as belt tensioners in an ancillary unit belt drive in a variety of designs. In DE 199 26 615 A1, DE 10 2008 025 552 A1 and DE 10 2006 019 877 A1, for instance, are proposed tensioning devices which respectively have a tensioner housing, which is fastened to the starter generator, and two tensioning arms, which are mounted movably therein and the tensioning rollers of which are forced closer together by an intermediate spring means in order to tension the belt.
Starting from the above, the object of the present invention is to improve the design of a tensioning device of the type noted in the introduction, particularly with regard to low complexity.
The solution thereto is provided in a mounting of the tensioner housing, which mounting is pivotable about the axis of the drive shaft, being provided on the machine. In other words, the tensioner housing, which is itself rotatably mounted, partakes in the tensioning motion, and the fastening of the tensioning device to the machine, and there to the starter generator or a separate unit carrier, which fastening is necessary in the cited prior art, can be dispensed with for the benefit of reduced component complexity. Moreover, the fitting of the tensioning device into the traction mechanism drive can be considerably simplified by virtue of the fact that the tensioning device and the drive wheel are connected and are screwed as one on the drive shaft.
In a preferred embodiment of the invention, the tensioner housing shall be mounted on the drive shaft or the drive wheel by means of a roller bearing. The friction of the roller bearing, which is considerably less than that of a slide bearing, not only ensures a durable and low-friction mounting of the tensioning device on the rotating drive shaft or rotating drive wheel, but is also accompanied by a correspondingly low damping of the tensioning device during the oscillating pivot motions of the tensioner housing. The inventive tensioning device is consequently not only suitable for the tensioning of traction mechanism drives with quasistatically alternating tight and slack strand, but can also serve for a dynamic decoupling of the generator from the rotational irregularities of the internal combustion engine. For, due to the dynamic oscillating motion of the tensioning device connected in a virtually undamped manner to the generator, a torque equilibrium in the tensioning device about the generator axis is obtained. The traction means vibrations which are generated by the rotational irregularities are thereby reduced.
In the case of the mounting on the drive wheel, it is particularly advantageous if the tensioning device forms with the drive wheel and the roller bearing, which latter is inserted in a circular-ring-shaped recess of the drive wheel radially between a bearing portion of the tensioner housing, said bearing portion running in the recess, and a hub of the drive wheel, a structural unit which can be fitted onto the drive shaft. As mentioned above, the advantages lie, on the one hand, in the very simplified fitting of the tensioning device and, on the other hand—due to the components placed such that they are radially nested one inside the other—in its, in the axial direction of the drive shaft, extremely compact construction. If, moreover, the roller bearing and the outer periphery of the drive wheel, which outer periphery is wrapped around by the traction means, run in a common drive plane, the tilting moment of the tensioning device about its bearing point, given correspondingly low tilting load upon the tensioning device, is minimized. The fastening of the roller bearing in relation to the drive wheel and the bearing portion of the tensioner housing can be realized in a known manner, for instance by means of an interference fit, an axial locking ring or both.
As an alternative to the mounting of the tensioner housing on the drive shaft or the drive wheel, the mounting can be realized also on the (stationary) machine housing, for instance on a bearing journal running behind the drive wheel. This mounting can be realized both as a roller bearing and as a slide bearing arrangement, wherein, in the case of the slide bearing, a defined friction with comparatively high damping of the bearing point is also provided, where necessary.
For the benefit of simplified design, the tensioner housing, moreover, shall movably support only one of the tensioning arms, and accordingly the other tensioning arm shall be fastened in the or to the tensioner housing. In the preferred case that the machine is constituted by a starter generator of the internal combustion engine, the tensioning wheel of the movably mounted tensioning arm shall then be disposed in front of the drive wheel in the direction of revolution of the traction means. During operation of the generator, the tensioning wheel of the movably mounted tensioning arm serves to tension the slack strand. The loads and the risk of self-locking at the mounting of the movable tensioning arm are hereby kept low.
Nevertheless, particularly in the case of a starter generator belt drive, it can also conversely be advantageous to dispose the tensioning wheel, mounted fixedly on the tensioner housing, in front of the drive wheel in the direction of revolution of the belt. In this arrangement of the tensioning wheels, the risk of tilting, which is accompanied by striking acoustics and increased wear, of the belt portion taken up on the drive wheel of the starter generator is significantly less than in the aforementioned tensioning wheel arrangement. For in the housing-fixed tensioning wheel there is no bearing clearance, which promotes tilting of the belt, between the tensioning arm and the tensioning wheel.
Where, alternatively, both tensioning arms are movably mounted in or on the tensioner housing, a relative motion between tensioning arm and tensioner housing can be spread over both tensioning arms and the frictional load on the bearing portions of the tensioning arms can accordingly diminish.
The movably mounted tensioning arm shall have a circular-arc-shaped bearing portion, the spring means shall be configured as a bow spring, and the tensioner housing shall have a correspondingly circular-arc-shaped duct, in which the bearing portion of the tensioning arm and the bow spring are movably accommodated on the circular arc. The tensioning arm, the duct and the bow spring shall run preferably concentrically to the axis of the drive shaft. By a bow spring should be understand, as is known, a helical compression spring, which in its longitudinal direction is curved in the shape of a circular arc. Particularly if the tensioner housing movably supports both tensioning arms, one or both bearing portions of the tensioning arms can be of hollow-cylindrical construction and can receive the bow spring, which is supported therebetween, for the benefit of a maximum possible spring length combined with correspondingly low spring stiffness.
For the purpose of protecting the bow spring from wear, the circular-arc-shaped duct shall be lined, at least in the radially outward direction of the bow spring, with one or more sliders. Expediently, the duct is also provided with sliders on the bearing portion of the movably mounted tensioning arm(s). Through a suitable choice and pairing of materials, a desired friction/damping between tensioner housing and tensioning arm, and between tensioner housing and bow spring, can also hereby be purposefully set.
For the benefit of simple producibility and installability, the tensioner housing can comprise two joined together half shells, which form the duct and preferably have an almost or fully mirror-symmetrical shape. With a view to low manufacturing costs, half shells produced, in particular, as sheet metal formed parts or—for the benefit of a comparatively small mass moment of inertia about the pivot axis—as injection-molded plastics parts are provided. The bearing portion for the mounting of the tensioner housing on the machine can either be produced as a separate part and joined with the half shells or be formed in one piece onto one of the half shells. Alternatively, a tensioner housing having a tubular duct produced in one piece and, according to the design of the bearing portion, having single-part or multipart construction is also conceivable. The term “joining” shall embrace all known methods for the establishment of joining connections.
Further features of the invention emerge from the following description and from the drawings, in which an illustrative embodiment of an inventive tensioning device for a belt drive of an internal combustion engine with starter generator is represented, wherein:
a shows the tensioning arm mounted movably in the tensioner housing, with associated sliders;
b shows the tensioning arm according to
For the starting of the internal combustion engine in the starter mode, the crankshaft sprocket 5 is driven by the starter generator 4, in a manner which is known per se, so as to drive the starter generator 4 in the generator mode when the internal combustion engine is then started. The drive wheel 3, which accordingly alternately delivers torque or takes up torque, produces an alternation of tight strand and slack strand, which is synchronous thereto, at the starter generator 4. In the starting operation of the internal combustion engine, that strand 7 which, in the direction of revolution, runs in front of the drive wheel 3 which is then driving the crankshaft sprocket 5 is the tight strand, and the strand 8 which, in the direction of revolution, runs behind the drive wheel 3 is the slack strand. Conversely, during the generator mode, the strand 7 which, in the direction of revolution, runs in front of the drive wheel 3 that is then driven by the crankshaft sprocket 5 is the slack strand, and the strand which, in the direction of revolution, runs behind the drive wheel 3 is the tight strand.
As mentioned in the introduction, the tensioning of the alternating slack strand calls for a tensioning device having two tensioning wheels 9 and 10, which apply tensioning force to the belt 2, in its direction of revolution, in front of and behind the drive wheel 3. The design of an inventive tensioning device 11, which according to
The tensioner housing 12 comprises the upper half shell 12a and a lower half shell 12b, which latter is facing the starter generator 4. The half shells 12a, 12b, which are produced as sheet metal formed parts in mirror symmetry to each other and are axially joined together by means of welding, are shaped such that they form inside the tensioner housing 12 a circular-arc-shaped closed duct 15. A spring means in the form of a correspondingly curved bow spring 16, and a correspondingly circular-arc-shaped bearing portion 17 of the movably mounted tensioning arm 13, are accommodated in the duct 15 concentrically to the drive wheel 3 and movably in the direction of the circular arc.
The duct 15 is lined in the radially outward direction of the bow spring 16 with a slider, and here a sliding shell 18 of semicircular cross section. The sliding shell 18, which is injection molded from polyamide, not only serves to protect the bow spring 16 from wear, but also, by means of a suitable material/surface pairing, produces a defined friction/damping behavior in the relative motions between bow spring 16 and tensioner housing 12. For the same reasons, the bearing portion 17 of the movable tensioning arm 13 is also encased in clamp-like sliders 19 and 20 of polyamide, which are formed of two pairs of identical half clamps 19a, 19b and 20a, 20b and the peripheral position of which in the duct 15 is a further parameter for purposefully influencing the friction/damping behavior in the relative motions between tensioning arm 13 and tensioner housing 12.
The sliders 19, 20 emerge in enlarged representation from
The securement of the sliding shell 18 and of the sliders 19, 20 in the tensioner housing 12 is realized in a positive-locking manner by means of bosses formed axially thereon, which bosses, according to
From
As can be seen from
The tensioning device 11 forms with the drive wheel 3 and the ball bearing 31 a structural unit which can be fitted extremely easily onto the drive shaft 30 and which, with the central screw connection, is attached to the starter generator 4. As can be seen from
With renewed reference to
In the event of a load change in the belt drive 1, induced by the momentary operating mode of the starter generator 4, i.e. when the tight strand is exchanged for the slack strand, the inventive mounting of the tensioning device 11 causes the tensioner housing 12 to pivot on the starter generator 4 about the drive shaft axis 29 thereof. In the case of the present illustrative embodiment comprising just one movable tensioning arm 13, the force which produces the pivoting flows, for instance, via the tensioning wheel 9, the tensioning arm 13, the bow spring 16, the tensioner housing 12 and the fixed tensioning arm 14, to the tensioning wheel 10. The pivot motion can be optimized by the friction parameters, which can be set independently of one another, at the roller bearing 31 and at the sliding couplings between the movable tensioning arm 13 and the bow spring 16, on the one hand, and the tensioner housing 12, on the other hand.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 048 206 | Oct 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/067064 | 9/30/2011 | WO | 00 | 4/8/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/049030 | 4/19/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
976115 | Bard | Nov 1910 | A |
1557486 | Valentine | Oct 1925 | A |
3473399 | Buchwald | Oct 1969 | A |
3888217 | Hisserich | Jun 1975 | A |
4351636 | Hager | Sep 1982 | A |
4758208 | Bartos et al. | Jul 1988 | A |
4826471 | Ushio | May 1989 | A |
5045029 | Dec et al. | Sep 1991 | A |
5045031 | Thomey | Sep 1991 | A |
5083983 | Hirai et al. | Jan 1992 | A |
5377796 | Friedmann et al. | Jan 1995 | A |
6648783 | Bogner | Nov 2003 | B1 |
6830524 | Tamai | Dec 2004 | B2 |
6857979 | Macnaughton et al. | Feb 2005 | B2 |
7468013 | Di Giacomo et al. | Dec 2008 | B2 |
7494434 | Mc Vicar et al. | Feb 2009 | B2 |
7678001 | Seeber | Mar 2010 | B2 |
7682272 | Park | Mar 2010 | B2 |
7824286 | Schmid et al. | Nov 2010 | B2 |
7892125 | Nelson et al. | Feb 2011 | B2 |
8002657 | Antchak et al. | Aug 2011 | B2 |
8602930 | Deneszczuk et al. | Dec 2013 | B2 |
8821328 | Jud et al. | Sep 2014 | B2 |
8968128 | Wolf et al. | Mar 2015 | B2 |
20020039944 | Ali et al. | Apr 2002 | A1 |
20020086751 | Bogner et al. | Jul 2002 | A1 |
20060100051 | Di Giacomo et al. | May 2006 | A1 |
20060217222 | Lolli et al. | Sep 2006 | A1 |
20070037648 | Di Giacomo et al. | Feb 2007 | A1 |
20080220919 | Antchak et al. | Sep 2008 | A1 |
20090215564 | Pflug et al. | Aug 2009 | A1 |
20090275432 | Dell | Nov 2009 | A1 |
20090298631 | Jud et al. | Dec 2009 | A1 |
20100022340 | Schmidl et al. | Jan 2010 | A1 |
20100331127 | Dec et al. | Dec 2010 | A1 |
20110070985 | Deneszczuk et al. | Mar 2011 | A1 |
20110070986 | Maguire et al. | Mar 2011 | A1 |
20120004059 | Ma et al. | Jan 2012 | A1 |
20130040770 | Wolf et al. | Feb 2013 | A1 |
20130079185 | Schauerte et al. | Mar 2013 | A1 |
20130095967 | Wolf et al. | Apr 2013 | A1 |
20130203535 | Mack et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2481907 | Mar 2002 | CN |
101072961 | Nov 2007 | CN |
19926615 | Dec 2000 | DE |
10044645 | Mar 2002 | DE |
102006019877 | Oct 2007 | DE |
102008025552 | Dec 2009 | DE |
1600228 | Nov 2005 | EP |
1122794 | Jan 1999 | JP |
2005064202 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20130203535 A1 | Aug 2013 | US |