The invention relates to underwater oil containment especially containing deepwater sea floor oil emergencies.
In April 2010, a BP oil drilling operation suffered a disaster resulting in a major underwater oil discharge. Weeks and even months later, the deepwater oil discharge was still ongoing. Large quantities of oil escaped from the vicinity of the disaster site coordinates and traveled to various places. Escaped oil was in plain view many miles away from the drilling operation coordinates, in water and coastal areas and on wildlife.
Over the next few months, various operations were attempted which involved forcing a heavy, solid-metal structure directly onto the broken equipment directly where the high-pressure oil was being discharged. After several tries, one of the custom-made heavy, solid-metal structures was fitted successfully onto the broken equipment.
The problem remains, however, in the event of another deepwater oil emergency with oil gushing at high-pressure, of needing a containment product that is ready for quick use. It would be wanted to avoid needing to wait while a heavy, metal structure is custom-built and deployed. What is wanted is to have an off-the-shelf containment product that is ready for immediate use and easily and quickly deployed to contain a high-pressure oil emergency especially in deepwater. However, as the containment operations in spring and summer 2010 showed, containing a high-pressure oil emergency in deep water is a difficult problem.
Marine Well Containment Company, formed after the BP Gulf problem and led by ExxonMobil in partnership with Chevron, ConocoPhillips and Shell, in a Feb. 17, 2011 press release described its solution under development as including a subsea capping stack. The subsea capping stack is illustrated on its website in its Interim Containment System (as well as in its Expanded Containment System) and is a large, heavy mechanical structure that sits directly atop a failed structure that is itself about five stories tall. Although Marine Well Containment Company indicates that in the event of an incident, deployment would begin within 24 hours, given the mass and size of its subsea capping stack, at least several days probably would be needed to get the subsea capping stack from its storage location to the surface above the emergency site and then to lower the solid-metal capping stack into position. Nor is it clear what would be done in event of a situation in which there is no top part of a failed structure to receive Marine Well Containment Company's capping stack.
The invention solves the problem of containing an underwater oil discharge, particularly by using a relatively-flexible oil-impermeable, water-permeable material (such as, e.g., a fabric, an uncoated nylon material, etc.) to contain the oil discharge at its source, i.e., at approximately the longitudinal and latitude coordinates and underwater depth where the oil is spewing into the water. Tenting-over the high-pressure oil discharge at the seabed is accomplished using the oil-impermeable, water-permeable material, without the material directly contacting the oil stream where the stream is at highest pressure and instead disposing the material far-enough away that the pressure from the oil is not too high-pressure for the water-permeable material to physically tolerate. An inventive off-the-shelf oil containment product is useable for tenting-over a deepwater, high-pressure oil emergency, and advantageously, when a deepwater oil emergency occurs, such an off-the-shelf, relatively light-weight containment product can be transported immediately to the surface coordinates above the emergency, and deployed rapidly by emergency responders who have been able to previously practice using the containment product.
In one preferred embodiment, the invention provides a method of containing an underwater oil discharge, comprising: disposing a containment product comprising an oil impermeable, water-permeable material, to thereby enclose the underwater oil discharge; such as, e.g., inventive methods wherein the containment product is essentially without a base or floor, and the method includes lowering the containment product from a starting point above the underwater oil discharge until the containment product and a sea floor in a vicinity of the oil discharge form a closed shape and define a contained volume; inventive methods including containing an active oil discharge at sea floor; inventive methods including a step performed relative to an underwater oil discharge and selected from the group consisting of: doming over; tenting over; forming a bubble and forming a silo over; inventive methods further comprising evacuating oily water or oily product from the contained volume via a port in the containment product; inventive methods including lowering the containment product from a sea surface downwards towards the underwater oil discharge; inventive methods wherein the containment product comprises a weighted skirt and the disposing includes the containment product traveling from a sea surface downwards towards the underwater oil discharge; inventive methods including an assembling step before the disposing step, wherein the assembling step is performed at a sea surface or in shallow water; inventive methods including an assembling step performed in shallow water followed by transporting the containment product to be used in the disposing step towards the underwater oil discharge; and other inventive methods.
In another preferred embodiment, the invention provides a method of containing an underwater oil discharge, comprising: lowering a container that consists substantially of an oil-impermeable material (such as, e.g., an oil impermeable flexible material) into place to form a containment volume, thereby containing oil, such as, e.g., inventive methods wherein the lowering step comprises doming-over, tenting-over, bubbling-over or bagging-over the underwater oil discharge; inventive methods including performing the lowering step and containing a deepwater oil discharge in which failed or damaged equipment is involved, without performing direct work on the equipment; and other inventive methods.
The invention in another preferred embodiment provides a containment product for an underwater oil discharge (such as, e.g., a deepwater oil discharge), comprising: i) an oil-impermeable material formed into a shape; ii) at least one mass attached to the shape; such as, e.g., inventive containment products further comprising at least one buoy or bladder system; inventive containment products including at least one detachable buoy; inventive containment products wherein the shape defined by the oil-impermeable material is substantially water permeable; inventive containment products further comprising at least one attachment for a positioning cable that moves the containment product in a plane parallel to a sea floor; inventive containment products further comprising at least one port, shaped to receive a pipe or tubing through which travels oily water or oily product; and other inventive oil containment products.
In another preferred embodiment, the invention provides an open-ended oil containment structure useable to contain an underwater oil discharge at a sea floor, comprising: an oil-impermeable container section; an open bottom end, wherein when the containment structure contacts the sea floor, a containment volume is formed; such as, e.g., inventive containment structures further comprising at least one hollow section (such as, e.g., a hollow shaft; a hollow skirt; etc.) into which may be received weighting pellets or other masses; inventive oil containment structures comprising weighting pellets or other masses; inventive oil containment structures comprising at least one port that is connectible to tubing or piping through which oily water exits from the containment volume and/or connectible to an underwater oil containment bag that receives oily water exiting from the oil containment volume; inventive oil containment structures comprising a plurality of ports; inventive oil containment structures wherein the oil-impermeable container section is water permeable; inventive oil containment structures wherein the oil-impermeable container section includes a top part that is water permeable; inventive oil containment structures wherein the oil-impermeable container section comprises a water-permeable uncoated nylon material; inventive oil containment structures wherein the container section is sized and shaped that the containment volume when the containment structure contacts the sea floor is at least a million gallons; and other inventive containment structures.
Another preferred embodiment of the invention provides a method of containing an underwater oil discharge (such as a deepwater oil discharge) in which damaged or failed equipment is involved, comprising: constructing a containment volume in a vicinity of the equipment, thereby containing the oil discharge without needing to perform any direct work on the equipment.
The invention in another preferred embodiment provides an oil containment structure useable in deepwater in cooperation with a sea floor, wherein the oil containment structure when in contact with the sea floor has a containment volume of over a million gallons.
In another preferred embodiment the invention provides for a method of containing an an underwater (such as, e.g., a deepwater) oil discharge that is at or near a sea floor, comprising: using the sea floor as a wall in conjunction with an open-ended flexible, relatively light-weight structure to form an oil containment volume (such as, e.g., an oil containment volume of at least a million gallons, an oil containment volume of at least 10 million gallons, etc.).
The invention in another preferred embodiment provides an oil containment tent product, wherein the tent product, in a deployed condition, contains a quantity of oil being discharged at high-pressure occurring at an underwater location (x, y, z) where (x, y) are longitude and latitude coordinates that are at-sea and “z” represents a vertical distance which is at, or within a relatively short distance above, a seabed, such as, e.g., tent products comprising an open-based containment structure; tent products that are stored off-the-shelf and in advance of the high-pressure oil discharge emergency at the underwater location; tent products that are transportable from a storage location to a sea surface location (x, y) above the location (x, y, z) within less than 24 hours after an onset of the (x, y, z) oil discharge problem; tent products that are deployable from a storage location to the underwater location (x, y, z) within 48 hours of an onset of the (x, y, z) oil discharge problem; tent products including a material which is water-permeable and oil-impermeable; tent products including at least one hollow section into which may be received weighting pellets or other masses; tent products comprising at least one port that is connectible to tubing or piping through which oily water exits and/or connectible to an underwater oil containment bag that receives oily water; tent products wherein in use the product contains a containment volume of oil of at least a million gallons; and other tent products.
In another preferred embodiment, the invention provides a method of containing an underwater, high-pressure oil discharge at a location (x, y, z) where (x, y) are longitude and latitude coordinates that are at-sea and “z” represents a vertical distance which is at, or within a relatively short distance above, a seabed, comprising: tenting-over the high-pressure oil discharge at the location (x, y, z) (such as, e.g., a tenting-over step that comprises positioning a tent product comprising an oil impermeable, water-permeable material, the material being kept beyond and outside of a zone near the high-pressure discharge in which the oil would exert pressure on the material in a range too high for the material).
The invention in another preferred embodiment provides a method of containing an underwater oil spill near a seabed and involving a failed manmade structure (such as a failed structure from which the oil is exiting), comprising: containing a volume exterior to the failed structure, wherein the containing is performed by a tent product, without the tent product touching the failed structure.
The invention in another preferred embodiment provides an underwater oil containment kit to be used for containing oil discharge at an underwater location (x, y, z), the kit being selected from the group consisting of: a) a kit wherein no component in pre-deployment, storage form is singly too heavy to be transported by helicopter to a sea surface (x, y) above the underwater location (x, y, z); b) a kit comprising a tent product; and weighting pellets insertible into the tent product, the weighting pellets being separable into loads for transportation from storage to (x, y) or (x, y, z); c) an at-the-ready kit that when deployed at a seabed oil emergency (x, y, z) that involves a piece of failed equipment from which oil is escaping, contains the escaping oil without a responder who deployed the kit having needed to know particulars of what was wrong with the piece of equipment other than the (x, y, z) coordinates; d) a kit in which when the (x, y, z) location is a deepwater location is in place at the (x, y, z) location and containing oil same-day as a start of the seabed oil emergency; e) a kit in which when the location (x, y, z) is a deepwater location with an oil discharge emergency, the kit when deployed and assembled contains the oil at the underwater location (x, y, z), and whereas for variables characterizing the emergency, the kit is useable regardless of a value of the variables; f) a kit useable to contain the oil at the underwater location (x, y, z) regardless of values of variables characterizing the emergency, wherein the variables are selected from the group consisting of: water depth “z”; from where oil is escaping; rate at which oil is escaping; maximum pressure of escaping oil; size of opening from which oil is escaping; shape of opening from which oil is escaping; g) a rapid-response kit deployable by a responder to a set of coordinates (x, y, z) of a seabed oil emergency, wherein the set of coordinates (x, y, z) of the seabed oil emergency is sufficient for the responder deploying the kit to contain the escaping without the responder having needed to lose time to investigate: type of failed equipment; oil mixture; location of failure in equipment; and/or rate at which oil is escaping; h) a kit useable for performing a method of containing an underwater oil spill near a seabed and involving a failed manmade structure, wherein the method comprises containing a volume exterior to the failed structure, wherein the containing is performed by a tent product, without the tent product touching the failed structure; and i) a kit consisting of a set of components, each component being packaged so as to float when delivered to a sea surface location (x,y).
The invention may be appreciated with reference to the following figures, without the invention being limited thereto. Figures are not drawn to scale.
Referring to
In the invention, advantageously molecules of oil which are liquid or solid from the oil discharge 100 are stopped near (such as on the order of yards, or dozens of yards, away from) the oil discharge 100 which is near sea floor 101 rather than being permitted to follow their otherwise natural trajectory of traveling upwards to the sea surface where they would otherwise undesirably spread out and occupy a vast surface area. The stopping of the oil molecules is performed using a filtration-type approach, such as, e.g., use of a water permeable, oil impermeable physically robust membrane or other material. The membrane or other material, while selected to be relatively physically robust, would not be expected to withstand the high-pressure if put in immediate contact, or too close to where, the oil is first spewing into the water, and therefore should be kept at a sufficient distance from where the oil is first spewing into the water that the oil molecules have had an opportunity to disperse across a larger volume and are not exerting too high a pressure. That is, a tent structure should be constructed in a size big enough, and a shape such that any face of the tent structure that is to block oil molecules will not be too close to the origin of the high-pressure oil stream. That is, the inventive tent structure is constructed so that it will not touch, or even be snugly near, a failed manmade structure or equipment. Considering the size of manmade structures and structures that are candidates for failure and having high-pressure oil emerge therefrom, preferably an inventive tent structure is of a multi-story size, such as, e.g., a tall cylindrical shape that leaves substantial headroom above the top of a structure that could fail.
For providing a base of an underwater containment volume, a dimension d1 (
For a height of an underwater containment volume, a dimension h1 (
An inventive containment product is constructed, wherein the inventive containment product is sized and shaped to cooperate with sea floor 101 to form an underwater containment volume around equipment 102 and oil discharge 100. The inventive containment product preferably is constructed generally along the lines of what on land might be called an air-supported dome (e.g., a Yeadon air-supported dome) or a tent. The inventive containment product preferably has a collapsed form, before being put into use. The inventive containment product in its expanded form in underwater use provides a large containment volume around oil discharge 100 and equipment 102.
Examples of an open bottom of an inventive containment product are, e.g., a circular open bottom of diameter d1; a square open bottom with sides d1; etc.
Examples of a containment shape (in usage at sea floor 101) are, e.g., a silo having height h1; a cylinder having height 1; a tent having sides of height h1; a pyramid having height h1; a dome having height h1; a rain hat shape having height h1; a composite shape having height at least h1; an irregular shape having height at least h1; etc.
The containment shape used for the inventive containment product consists of an oil impermeable material. Preferably the containment shape used for the inventive containment product comprises a water-permeable, oil-impermeable material, such as, e.g., a water-permeable, oil-impermeable uncoated nylon material; etc.
By “oil impermeable”, what is meant herein is that through which the solid and liquid components of oil do not pass in substantial quantity. The passage of methane (CH4) molecules through a material is not considered to disqualify material from being “oil impermeable”. The passage of a small number of occasional molecules of other components of oil, as may happen through seepage in above-ground oil storage, is not considered to disqualify a material from being “oil impermeable”.
An example of a water-permeable, oil-impermeable material is, e.g., a material having openings or pores slightly larger than the size of water molecules but without larger openings or pores. A water-permeable, oil-impermeable material that is physically robust is preferred. Water-permeable, oil-impermeable materials that are physically robust are commercially available, e.g., from Synder Filtration and Granite Environmental. Optionally a water-permeable, oil-impermeable material that is too weak for use singly may layered with, or sandwiched between, one or more layers of water-permeable material.
Preferably an underwater containment volume is, e.g., millions of gallons, or more.
Preferably an inventive containment product includes at least one port for evacuating oily water, such as port 4 (
Advantageously, a relatively light-weight inventive flexible structure (such as, e.g., a large-volume oil containment bubble, dome, tent, silo, etc., preferably a flexible structure comprising an oil-impermeable, water-permeable material such as uncoated nylon) is arrayed at sea surface, and dispatched progressively downwards to deepwater such as by adding weighting pellets in at least one hollow region (such as, e.g., a hollow shaft, a hollow skirt, etc.) of the flexible structure. When a “tent” is mentioned herein, that means and includes a variety of shapes inclusive of bubble, silo, etc.
An inventive containment product preferably includes hook-ups for cable attachments for horizontally positioning the product, especially horizontal positioning during downwards travel of the product towards oil discharge 100. In one embodiment, the arraying of the flexible structure at sea surface may be performed in shallow water followed by pulling the array out to sea over oil discharge 100, followed by causing the flexible structure to descend downwards to deep water. In another embodiment, the arraying of the flexible structure at sea surface may be performed at sea relatively near to coordinates of oil discharge 100, followed by causing the flexible structure to descend downwards to deep water.
Advantageously, inventive oil containment products and methods may be “off-the-shelf” and useable relatively quickly in a variety of oil discharge 100 contexts, including those in deepwater, and regardless of, for example, exactly where in an existing product a failure may have happened.
Also advantageously, inventive oil containment products and methods are useable in a training context in advance of an emergency.
Further, advantageously when using the invention, performance of work (such as by underwater robotic vehicles) at areas of extremely high pressure right at oil discharge 100 and broken equipment 102 can be avoided.
Advantageously the invention may be practiced in some embodiments in the form of various kits, such as, e.g., an underwater oil containment kit useable for containing oil discharge at an underwater location (x, y, z), wherein no component in pre-deployment faun is singly too heavy to be transported by helicopter to a sea surface (x, y) above the underwater location (x, y, z) (such as, e.g., an inventive kit comprising a tent product component; and weighting pellets insertible into the tent product, the weighting pellets being separable into loads each load being a component for transportation from storage to (x, y) or (x, y, z)); an at-the-ready deepwater oil containment response kit for a deepwater oil discharge emergency at an underwater location (x, y, z), wherein the kit when deployed and assembled contains the oil at the underwater location (x, y, z), and whereas for a set of variables characterizing the emergency, the kit is useable regardless of a value of the variables (such as, e.g., wherein the variables characterizing the emergency comprise: water depth “z”; from where oil is escaping; rate at which oil is escaping; maximum pressure of escaping oil; size of opening from which oil is escaping; shape of opening from which oil is escaping) (such as, e.g., an at-the-ready kit that when deployed at a seabed oil emergency (x, y, z) that involves a piece of failed equipment from which oil is escaping, contains the escaping oil without a responder who deployed the kit having needed to know particulars of what was wrong with the piece of equipment other than the (x, y, z) coordinates; a kit which is in place at the (x, y, z) location and containing oil same-day as a start of the seabed oil discharge); a rapid-response kit deployable by a responder to a set of coordinates (x, y, z) of a seabed oil emergency, wherein the set of coordinates (x, y, z) of the seabed oil emergency is sufficient for the responder deploying the kit to contain the escaping without the responder having needed to lose time to investigate: type of failed equipment; oil mixture; location of failure in equipment; and/or rate at which oil is escaping; etc.
The invention may be appreciated with reference to the following examples, without the invention being limited thereto.
In this inventive example, referring first to
The oil impermeable material 1 most preferably is also water-permeable.
Shape-wise, the oil impermeable material 1 preferably is non-planar and in underwater use assumes a three-dimensional shape, e.g., a bag, a bubble, a dome, a tent, a silo, etc. In
The weighted perimeter region 2 preferably is integral with the oil impermeable material 1. Weighted perimeter region 2 has a total mass sufficient to hold the oil impermeable material 1 in relatively static position over an underwater oil discharge site (such as oil discharge 100 in
Buoyant counter-balancing system 3 is illustrated in
Preferably, the oil containment structure 10 (
In
Containment structure 10 when weighted perimeter 2 is in contact with a sea floor defines a volume which is an inventive containment volume. When containment structure 10 initially contacts the sea floor, the contained volume defined by the structure comprises somewhat oily water. As the oil discharge continues with the containment structure 10 in place, water molecules exit via where the material 1 is water-permeable, but oil is prevented from exiting and remains within the contained volume. As more oil is discharged and occupies the contained volume, relatively more water molecules will be expelled from, than will enter, the contained volume, and pressure management preferably is performed.
To manage the pressure as the oil content increases in the contained volume, port 4 receives pipe or tubing 5 (
In this inventive example, as shown in
Advantageously, a bag 50 may be used at a deepwater location, so that a plurality of bags 50 each bag 50 connected to a respective port 4 can service an underwater oil discharge 100 even when a processing station 6 on a water surface may be required to detach and travel to safety due to approaching bad weather.
In this inventive example, referring to
The inventive product 7 of this example comprises skirt 72 attached to containment dome 70. Skirt 72 preferably is hollow, and may contain air when the product 72 is on a water surface, and may receive a quantity of masses (such as, e.g., weighting pellets, etc.) to accomplish controllable lowering of the product 7 from a water surface down to a sea floor 101.
In this inventive example, referring to
The inventive product 8 of this example comprises hollow shafts 82. Shafts 82 may extend along the height h1 of the product 80 as shown in
Shaft 82 comprises opening 83 through which masses (such as, e.g., weighting pellets) are received, to accomplish controllable lowering of the product 8 down to a sea floor 101.
Shaft bottom end 84 may be provided with a shaft floor so that weighting pellets accumulate in shaft 82. Alternately, shaft bottom end 84 may be provided with a shaft bottom opening so that weighting pellets pass into a hollow skirt (not shown) and accumulate in the skirt.
Shafts 82 and hollow skirt (if any) are provided so that the total volume of the shafts 82 and hollow skirt (if any) is sufficient to receive enough mass (such as, e.g. weighting pellets) for the product 8 to generally transport itself downwards, as weight is delivered into it, to the depth of sea water at which the product 8 is to be used for oil containment of oil discharge 100.
While the invention has been described in terms of a preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
This application claims benefit of U.S. Ser. No. 12/845,839 filed Jul. 29, 2010 which claims benefit of U.S. provisional application No. 61/350,001 filed May 31, 2010.
Number | Date | Country | |
---|---|---|---|
61350001 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12845839 | Jul 2010 | US |
Child | 13050292 | US |