The present disclosure relates to a terminal and a terminal wire assembly.
A known terminal wire assembly includes a core wire exposed at an end of the electric wire and a terminal coupled to the core wire. The terminal may include a crimping portion that is crimped on a section of the core wire that is exposed at the end of the electric wire.
To crimp the terminal on the core wire, the following steps may be performed. A sheet metal is pressed into a predefined shape to prepare the terminal. The terminal is placed on a lower die of dies that are movable relative to each other in the vertical direction. The section of the core wire exposed at the end of the electric wire is placed on the crimping portion of the terminal. The one of the dies or both dies are moved closer to each other. The crimping portion of the terminal is crimped on the section of the core wire by pressing the crimping portion of the terminal with a crimping portion of the upper die and a placing portion of the lower die. Through these steps, the terminal is coupled to the end section of the electric wire (see Patent Document 1).
[Patent Document 1]
According to the technology described above, relatively large equipment including dies and a jig is required to crimp the crimping the crimping portion of the terminal onto the core wire of the electric wire. Therefore, equipment investment may be required, which may result in an increase in production cost.
To resolve the above problem, the following terminal may be considered. The terminal includes a terminal body and a slider. The terminal body includes a holding section that is deformable in an extending direction in which the electric wire extends. The slider is slidable relative to the terminal body in the extending direction. The slider includes a pressing portion that presses the holding section against the electric wire while the electric wire is held by the holding section.
To improve reliability in electric connection between the terminal and the electric wire, the holding section may include protrusions and recesses. With the protrusions and the recesses, the electric wire is properly held. However, it is not preferable that production cost increases due to formation of the protrusions and the recesses.
The technology described herein was made in view of the above circumstances. An object is to provide a terminal that is produced at low cost.
A terminal described herein is coupled to an end of an electric wire on a front side with respect to an extending direction in which the electric wire extends. The terminal includes a terminal body and a slider. The terminal body includes a holding section that holds the electric wire. The slider is slidable relative to the terminal body in the extending direction. The slider includes a pressing portion that presses the holding section toward the electric wire. The terminal body is formed from a folded metal sheet. The holding section includes a holding protrusion that protrudes toward the electric wire and contacts the electric wire. The holding protrusion is formed from a folded metal sheet.
According to the present disclosure, a production cost of the terminal is reduced.
First, embodiments according to the present disclosure will be listed and described.
(1) The present disclosure relates to a terminal coupled to an end of an electric wire on a front side with respect to an extending direction in which the electric wire extends. The terminal includes a terminal body and a slider. The terminal body includes a holding section that holds the electric wire. The slider is slidable relative to the terminal boy in the extending direction. The slider includes a pressing portion that presses the holding section toward electric wire. The terminal body is formed from a folded metal sheet. The holding section includes a holding protrusion that protrudes toward the electric wire and contacts the electric wire. The holding protrusion is formed from a folded metal sheet.
Because the holding protrusion is formed from the folded metal sheet, a production cost of the terminal can be reduced in comparison to a holding protrusion that is prepared by hammering that is performed separately.
(2) The terminal body may include holding section. The holding sections may include holding protrusion. The holding protrusions included in the holding sections may be displaced from each other in the extending direction.
The electric wire sandwiched between the holding sections are held by the holding sections with the electric wire bent by the holding protrusions that are displaced from each other in the extending direction. The electric wire may be bent in a direction crossing the extending direction. Because the electric wire is bent, edges of the holding protrusions dig into the electric wire. According to the configuration, electrical connection between the electric wire and the terminal is properly established.
(3) The holding protrusion may be formed from the folded metal sheet folded at a side edge that extends in the extending direction.
The holding protrusion of the holding section may be formed by folding the meal sheet at a side edge that extends in a direction crossing the extending direction (e.g., a rear edge). If the electric wire is pulled rearward and the holding protrusion rubs against the electric wire, the holding protrusion may be turned over toward the rear. The holding protrusion described earlier is folded at the side edge of the holding section extending in the extending direction. Therefore, the holding protrusion is less likely to be turned over.
(4) The holding protrusion may be formed from the folded metal sheet folded at a side edge that extends in a direction crossing the extending direction.
The metal sheet that protrudes in the extending direction can be used for a coupling portion coupled to a carrier. Therefore, a yield improves in comparison to a configuration in which a coupling portion protrudes in a direction of the metal sheet crossing the extending direction.
(5) The holding protrusion may include a rear receiving section that protrudes from a rear end of the holding protrusion in the extending direction toward the electric wire.
When the electric wire is pulled rearward, the holding protrusion slides rearward along with the electric wire. The holding protrusion receives a force F toward the rear and the rear receiving section contacts the holding protrusion from the rear. According to the configuration, displacement of the holding protrusion toward the rear is restricted.
(6) The holding section may include a fragile section at one of side edges of the holding section to form a section that is narrowed in a direction crossing the extending direction.
With the fragile section at a predefined position at which the holding section is designed to bend, the holding section can be bent at the predefined position. Because the electric wire is properly held by the holding section, reliability in electric connection between the terminal and the electric wire increases.
(7) The fragile section may include a first fragile section at a first side edge of the holding section and a second fragile section at a second side edge of the holding section. The first fragile section and the second fragile section may be displaced from each other in the extending direction.
Because the first fragile section and the second fragile section are displaced from each other in the extending direction, the holding sections are less likely to warp in comparison to a configuration in which the first fragile section and the second fragile section are at the same position with respect to the extending direction. According to the configuration, the holding section does not easily warp due to vibrations or any other fact. Therefore, the holding section is less likely to warp at unintended timing.
(8) The terminal body may include a bending restricting section that contacts the holding section and restricts excessive bending of the holding section when the pressing portion presses the holding section.
Because the excessive bending of the holding section is restricted by the bending restricting section, the electric wire is held by the holding section with a proper pressure. According to the configuration, the reliability in electric connection between the terminal and the electric wire further increases.
(9) The terminal body may include a sidewall that projects from a side edge of the holding section. The sidewall may include a chamfered section that is sloped outward toward the rear in the extending direction.
During insertion of the electric wire into the terminal body, the electric wire is guided by the chamfered section from the rear to the inside of the terminal body in the extending direction. According to the configuration, work efficiency in connecting of the electric wire to the terminal improves.
(10) A terminal wire assembly according to any one of above (1) to (9) and an electric wire coupled to the terminal.
Embodiments according to the present disclosure will be described. The present invention is not limited to the embodiments. All modifications within and equivalent to the technical scope of the claimed invention may be included in the technical scope of the present invention.
A first embodiment according to the present disclosure will be described with reference to
As illustrated in
As illustrated in
The terminal body 15 is formed by pressing a metal sheet into a predetermined shape. The metal of which the terminal body 15 is made may be selected from any kinds of metal including aluminum, aluminum alloy, and stainless steel where appropriate. The terminal body 15 in this embodiment may be made of copper or copper alloy. Surfaces of the terminal body 15 may be plated. The plating metal may be selected from any kinds of metal such as tin, nickel, and silver where appropriate. The terminal body 15 in this embodiment is tin-plated.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A lower surface of the upper holding section 18A and an upper surface of the lower holding section 18B dig into an oxide layer formed on the surface of the core wire 13 and locally strip the oxide layer so that the metal surface of the core wire 13 is exposed. With the metal surface contacting the upper holding section 18A and the lower holding section 18B, the core wire 13 is electrically connected to the terminal body 15.
A lower surface of the upper holding protrusion 23A and an upper surface of the lower holding protrusion 23B dig into the oxide layer formed on the surface of the core wire 13 and locally strip the oxide layer so that the metal surface of the core wire 13 is exposed. With the metal surface contacting the upper holding protrusion 23A and the lower holding protrusion 23B, the core wire 13 is electrically connected to the terminal body 15.
With the edge 50A of the rear end of the upper holding protrusion 23A and the edge 50B of the front end of the lower holding protrusion 23B digging into the core wire 13, the oxide film formed on the surface of the core wire 13 is removed. Therefore, the core wire 13 is more properly electrically connected to the terminal body 15.
A left fragile section 51 is formed in a front end of the lower holding section 18B. The left fragile section 51 is a notch that is recessed rightward from the left edge 32 of the lower holding section 18B (see
As illustrated in
As illustrated in
As illustrated in
As illustrated in
When the holding protrusions 28 of the terminal body 15 are held in the temporary receiving holes 26 of the slider 16, the slider 16 is held at a temporary holding position relative to the terminal body 15 (see
When the holding protrusions 28 of the terminal body 15 are held in the permanent receiving holes 27 of the slider 16, the slider 16 is held at the permanent holding position relative to the terminal body 15 (see
As described above, while the slider 16 is fitted on a section of the terminal body 15 including the upper holding section 18A and the lower holding section 18B, the slider 16 is slidable in the front-rear direction between the temporary holding position and the permanent holding position.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Next, steps of producing the terminal wire assembly 10 according to this embodiment will be described. The steps of the terminal wire assembly 10 are not limited to those described below.
A metal sheet 40 in a shape illustrated in
As illustrated in
The slider 16 is prepared by a known method.
The slider 16 is attached to the terminal body 15 from the rear. The front edge of the slider 16 contacts the holding protrusions 28 of the terminal body 15 from the rear and the sidewalls of the slider 16 deform to expand. When the slider 16 is pushed further forward, the sidewalls of the slider 16 recover. As a result, the holding protrusions 28 of the terminal body 15 are fitted in the temporary receiving holes 26 of the slider 16 and the slider 16 is held at the temporary holding position relative to the terminal body 15. The terminal 12 is obtained (see
The section of the core wire 13 of the electric wire 11 is exposed by striping the section of the insulating sheath with a known method. The front end of the core wire 13 is inserted into the slider 16 from the rear end of the slider 16. The core wire 13 is guided into the slider 16 with the drawing sections 47 of the slider 16 contacting the core wire 13. When the core wire 13 is pushed further forward, the front end of the core wire 13 enters the inside of the terminal body 15 and reaches the gap between the upper holding section 18A and the lower holding section 18B.
When the slider 16 is held at the temporary holding position relative to the terminal body 15, the gap between the upper holding section 18A and the lower holding section 18B is greater than the outer diameter of the core wire 13.
As illustrated in
When the slider 16 is moved forward, the sidewalls of the slider 16 recover and the holding protrusions 28 of the terminal body 15 are elastically fitted in the permanent receiving holes 27 of the slider 16. As a result, the slider 16 is held at the temporary holding position relative to the terminal body 15.
With the slider 16 held at the permanent holding position relative to the terminal body 15, the upper pressing portion 25A of the slider 16 contacts the upper holding section 18A of the terminal body 15 from above and presses the upper holding section 18A downward. The lower pressing portion 25B of the slider 16 contacts the lower holding section 18B of the terminal body 15 from below and presses the lower holding section 18B upward. Therefore, the core wire 13 is sandwiched between the upper holding section 18A and the lower holding section 18B in the top-bottom direction (see
As illustrated in
When the core wire 13 is sandwiched between the upper holding section 18A and the lower holding section 18B in the top-bottom direction, the core wire 13 is sandwiched between the upper holding protrusion 23A on the upper holding section 18A and the lower holding protrusion 23B on the lower holding section 18B. The core wire 13 is stretched in the front-rear direction and bent in the top-bottom direction. According to the configuration, the core wire 13 is firmly held and thus the electric wire 11 and the terminal 12 are held together with a greater force even when the electric wire 11 is pulled. The terminal wire assembly 10 is complete.
Next, operation and effects of this embodiment will be described. This embodiment includes the terminal 12 coupled to the front end of the electric wire 11 with respect to the extending direction. The terminal 12 includes the terminal body 15 and the slider 16. The terminal body 15 includes the upper holding section 18A and the lower holding section 18B that holds the electric wire 11. The slider 16 is slidable on the terminal body 15 in the extending direction in which the electric wire 11 extends. The slider 16 includes the upper pressing portion 25A and the lower pressing portion 25B that press the upper holding section 18A and the lower holding section 18B toward the electric wire 11, respectively. The terminal body 15 is formed from the metal sheet that is bent. The upper holding section 18A and the lower holding section 18B include the upper holding protrusion 23A and the lower holding protrusion 23B, respectively. The upper holding protrusion 23A and the lower holding protrusion 23B contact the core wire 13 of the electric wire 11. The upper holding protrusion 23A is formed by folding the metal sheet.
The terminal wire assembly 10 according to this embodiment includes the terminal 12 and the electric wire 11 coupled to the terminal 12.
Because the upper holding protrusion 23A and the lower holding protrusion 23B are formed by folding the metal sheet, the production cost of the terminal 12 is reduced in comparison to holding protrusions that are prepared by hammering that is performed separately.
According to this embodiment, the terminal body 15 includes the upper holding section 18A and the lower holding section 18B. The upper holding section 18A and the lower holding section 18B include the upper holding protrusion 23A and the lower holding protrusion 23B, respectively. The upper holding protrusion 23A and the lower holding protrusion 23B are displaced from each other in the extending direction in which the electric wire 11 extends.
The core wire 13 held by the upper holding section 18A and the lower holding section 18B is bent in the direction that crosses the extending direction in which the electric wire 11 extends by the upper holding protrusion 23A and the lower holding protrusion 23B that are displaced from each other in the extending direction. With the core wire 13 of the electric wire 11 bent, the edges 50A and 50B of the upper holding protrusion 23A and the lower holding protrusion 23B dig into the core wire 13 of the electric wire 11. According to the configuration, the terminal 12 is electrically connected to the electric wire 11 with reliability. Because the terminal body 15 is prepared by pressing the metal sheet, the edges 50A and 50B are sharply formed. Therefore, the edges 50A and 50B can easily dig into the core wire 13.
The lower holding section 18B includes the lower holding protrusion 23B at the rear edge 18C that is the side edge that crosses the extending direction in which the electric wire 11 extends. The lower holding protrusion 23B is formed by folding the metal sheet.
Because the metal sheet that protrudes in the extending direction in which the electric wire 11 extends may be used for a coupling portion that is coupled to a carrier. In comparison to a configuration in which a coupling portion of a metal sheet protrudes in a direction crossing the extending direction in which the electric wire extends, yield improves.
In this embodiment, the left fragile section 51 and the right fragile section 52 are formed at the left edge 32 and the right edge 33 of the lower holding section 18B to reduce the width of the lower holding section 18B in the right-left direction (the direction that crosses the extending direction in which the electric wire 11 extends).
With the left fragile section 51 and the right fragile section 52 formed at a predefined position at which the lower holding section 18B is designed to bend, the lower holding section 18B can be bent at the predefined position. According to the configuration, the upper holding section 18A and the lower holding section 18B properly holds the electric wire 11. Therefore, the reliability in electric connection between the terminal 12 and the electric wire 11 increases.
In this embodiment, the upper holding section 18A includes the upper holding protrusion 23A that is folded at the left edge 30 of the upper holding section 18A.
With the upper holding protrusion 23A in the area of the upper holding section 18A that is not designed to be bent, the upper holding section 18A is less likely to be bent at an unintended position. Because the upper holding protrusion 23A is formed by folding the metal sheet, an increase in production cost is less likely to occur.
A terminal 62 and an terminal wire assembly 60 according to a second embodiment will be described with reference to
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Other configurations are similar to the configurations of the first embodiment. Components of the second embodiment the same as the components of the first embodiment will be indicated by the reference signs that indicate the components of the first embodiment and will not be described.
Next, operation and effects of this embodiment will be described. In this embodiment, the upper holding section 68A includes the upper holding protrusion 73A that is folded at the left edge 30 of the upper holding section 68A.
With the upper holding protrusion 73A provided in the area of the upper holding section 68A that is not designed to be bent, the upper holding section 68A is less likely to bend at an unintended position. The upper holding protrusion 73A is formed by holding the metal sheet and thus the increase in production cost is less likely to occur.
In this embodiment, the left wall 34 and the right wall 35 of the terminal body 65 include the left restricting section 83 and the right restricting section 84, respectively. The left restricting section 83 and the right restricting section 84 contact the upper holding section 68A when the upper pressing portion 25A presses the upper holding section 68A so that the upper holding section 68A is less likely to excessively warp.
Because the left restricting section 83 and the right restricting section 84 restrict the upper holding section 68A from excessive warping, the upper holding section 68A holds the electric wire with a proper pressure. According to the configuration, the reliability in electric connection between the terminal 62 and the electric wire 11 increases.
In this embodiment, the left wall 34 and the right wall 35 of the terminal body 65 project from the left edge 30 and a right edge 31 of the upper holding section 68A. The rear ends of the left wall 34 and the right wall 35 include the chamfered sections 85 that is sloped outward from the inner side of the terminal body 65 toward the rear.
When the core wire 13 of the electric wire 11 is inserted into the terminal body 65 from the rear end with respect to the extending direction in which the electric wire extends, the core wire 13 is guided to the inner side of the terminal body 65 by the chamfered sections 85. According to the configuration, work efficiency in connecting of the electric wire 11 to the terminal 62 improves. Further, because the burrs that may be produced during the pressing of the metal sheet can be removed and thus the core wire 13 is less likely to contact the burrs.
Next, a terminal body 95 according to a third embodiment will be described with reference to
As illustrated in
Other configurations are similar to the configurations of the first embodiment. Components of the third embodiment the same as the components of the first embodiment will be indicated by the reference signs that indicate the components of the first embodiment and will not be described.
In this embodiment, the first upper fragile section 96 is at the left edge 30 of the upper holding section 18A and the second upper fragile section 97 is at the right edge of the upper holding section 18A. The first upper fragile section 96 and the second upper fragile section 97 are displaced from each other in the front-rear direction (the extending direction in which the electric wire 11 extends).
Because the first upper fragile section 96 and the second upper fragile section 97 are displaced from each other in the front-rear direction, the upper holding section 18A is less like to warp in comparison to a configuration in which the first upper fragile section 96 and the second upper fragile section 97 are at the same position with respect to the front-rear direction. Namely, the upper holding section 18A does not easily warp due to vibrations or any other fact. Therefore, the upper holding section 18A is less likely to warp at unintended timing.
In this embodiment, the first lower fragile section 98 is at the left edge 32 of the lower holding section 18B and the second lower fragile section 99 is at the right edge of the lower holding section 18B. The first lower fragile section 98 and the second lower fragile section 99 are displaced from each other in the front-rear direction (the extending direction in which the electric wire 11 extends).
Because the first lower fragile section 98 and the second lower fragile section 99 are displaced from each other in the front-rear direction, the lower holding section 18B is less like to warp in comparison to a configuration in which the first lower fragile section 98 and the second lower fragile section 99 are at the same position in the front-rear direction. Namely, the lower holding section 18B does not easily warp due to vibrations or any other fact. Therefore, the lower holding section 18B is less likely to warp at unintended timing.
Terminal Body 105
A terminal body 105 according to a fourth embodiment will be described with reference to
The lower holding protrusion 123B is formed by folding a section that projects farther than the left edge 132 (a side edge) that extends in the front-rear direction (i.e., the extending direction in which the electric wire 11 extends) onto the upper surface of a lower holding section 118B to closely contact the upper surface of the lower holding section 118B. A structure of connection between the terminal body 105 and the electric wire 11 is similar to the first embodiment and thus the electric wire 11 is not illustrated in this embodiment. The right edge of the lower holding section 118B does not project from a right edge 113 of the holding section 118B.
Next, steps of producing the terminal body 105 according to this embodiment will be described. The steps of producing the terminal body 105 are not limited to those described below.
A metal sheet 140 in a shape illustrated in
As illustrated in
As illustrated in
Other configurations are similar to the configurations of the first embodiment. Components of the fourth embodiment the same as the components of the first embodiment will be indicated by the reference signs that indicate the components of the first embodiment and will not be described.
In the first embodiment, the lower holding protrusion 23B on the lower holding section 18B is formed by folding the portion of the metal sheet at the side edge that extends in the direction that crosses the extending direction in which the electric wire 11 extends (e.g., the rear edge 18C). In such a configuration, the lower holding protrusion 23B may rub against the electric wire 11 and the lower holding protrusion 23B may be turned over toward the rear when the electric wire 11 is pulled rearward. In this embodiment, the lower holding protrusion 123B is folded at the left edge 132 of the lower holding section 118B extending in the extending direction in which the electric wire 11 extends. Therefore, the lower holding protrusion 123B is less likely to be turned over.
[Terminal Body 205]
A terminal body 205 according to a fifth embodiment of this disclosure will be described with reference to
A lower holding section 218B includes a rear receiving section 253. The rear receiving section 253 protrudes from a rear end of a lower holding protrusion 223B (a holding protrusion) toward the electric wire 11 in the front-rear direction (i.e., the extending direction in which the electric wire 11 extends). A connecting structure of the terminal body 105 to the electric wire 11 is similar to the first embodiment and thus the electric wire 11 is not illustrated in this embodiment. The rear receiving section 253 is formed by folding a section that protrudes rearward from the rear end of the lower holding protrusion 223B upward.
The rear receiving section 253 and the lower holding protrusion 223B are opposed to each other in the front-rear direction and adjacent to each other or closely attached to each other. An upper edge of a front end of the rear receiving section 253 is at a height equal to or slightly below the upper edge of the lower holding protrusion 223B. According to the configuration, when the core wire 13 of the electric wire 11 is inserted into the gap between the upper holding section 18A and the lower holding section 218B, the core wire 13 is less likely to touch the front end of the rear receiving section 253.
For example, when the electric wire 11 is pulled rearward, the lower holding protrusion 223B slides with the electric wire 11. When the lower holding protrusion 223B is pulled rearward along with the electric wire 11, the lower holding protrusion 223B receives a force F toward the rear. In such a situation, the rear receiving section 253 contacts the lower holding protrusion 223B from the rear.
Other configurations are similar to the configurations of the fourth embodiment. Components of the fifth embodiment the same as the components of the fourth embodiment will be indicated by the reference signs that indicate the components of the fourth embodiment and will not be described.
According to this embodiment, when the electric wire 11 is pulled rearward and the lower holding protrusion 223B slides with the electric wire 11, the force F toward the rear is applied. Therefore, the rear receiving section 253 contacts the lower holding protrusion 223B from the rear and thus displacement of the lower holding protrusion 223B toward the rear is restricted.
The present disclosure is not limited to the embodiment described above and illustrated in the drawings. The following embodiments may be included in the technical scope of the technology described herein.
Number | Date | Country | Kind |
---|---|---|---|
2019-109706 | Jun 2019 | JP | national |
2019-155819 | Aug 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/022136 | 6/4/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/250800 | 12/17/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2959766 | Jacobsen | Nov 1960 | A |
4597622 | Coe | Jul 1986 | A |
5489225 | Julian | Feb 1996 | A |
6142838 | Shinchi | Nov 2000 | A |
7084346 | Pabst | Aug 2006 | B2 |
7306495 | Hashimoto et al. | Dec 2007 | B2 |
7901257 | Okamura et al. | Mar 2011 | B2 |
20050026515 | Hashimoto et al. | Feb 2005 | A1 |
20100035485 | Okamura et al. | Feb 2010 | A1 |
20210234286 | Miyamura et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
111684663 | Sep 2020 | CN |
202016104726 | Aug 2017 | DE |
15-000085 | Jan 1940 | JP |
H10-199581 | Jul 1998 | JP |
2005-050736 | Feb 2005 | JP |
2009123622 | Jun 2009 | JP |
2010-073348 | Apr 2010 | JP |
2015-056209 | Mar 2015 | JP |
Entry |
---|
Translated abstract of JP2009123622A (Year: 2009). |
Jul. 28, 2020 International Search Report issued in International Patent Application No. PCT/JP2020/022136. |
Number | Date | Country | |
---|---|---|---|
20220231434 A1 | Jul 2022 | US |