The present invention relates to a terminal equipment provided with a wireless interface, which belongs to the International Patent Classification “H04N5/64”.
Recently, the use of a wireless LAN (local area network) is extending rapidly thanks to its convenience requiring no connection cable. Thus, as disclosed in, for example, Japanese Patent Laid-Open Publication No. 8-107369 (1996), the wireless LAN attracts wide attention as to not only its use for a so-called TCP/IP (Transmission Control Protocol/Internet Protocol) connection but its use as an audio and video transmission interface. Meanwhile, at present, frequency used in the wireless LAN is shifting from a 2.4 GHz-band to a 5 GHz-band enabling higher-capacity transmission.
Hereinafter, a conventional terminal equipment provided with a wireless interface is described with reference to
Then, operation of the conventional terminal equipment provided with the wireless interface, which has the above described arrangement, is described. A modulated wave transmitted from the wireless network to be connected to the terminal equipment is received by the built-in antenna 2 provided on the wireless module 10 and is converted into a baseband signal after its demodulation in the wireless module 10. Thereafter, via the PCMCIA connector 3 provided on the printed circuit board 4 of the terminal equipment, the baseband signal is subjected to a processing based on a predetermined protocol by a signal processing circuit formed on the printed circuit board 4 of the terminal equipment and is converted into desired digital data. At the time of transmission from the terminal equipment to the wireless network, the operation is performed in the reverse sequence of the above mentioned one.
However, in the conventional terminal equipment referred to above, since the wireless module 10 is fitted into the slot 9 of the rear panel of the housing 5 of the terminal equipment, transmission and reception radio waves are likely to be intercepted by the housing 5 in case the terminal equipment performs transmission and reception with the wireless network. Meanwhile, the conventional terminal equipment has disadvantages that since raise of gain of the built-in antenna 2 and transmission power of the wireless module 10 is limited by such physical and electrical restraints as use of the PCMCIA interface, it is difficult to secure communication quality and extend a radio signal reach distance between the terminal equipment and the wireless network.
The present invention has for its object to provide, with a view to eliminating the above mentioned drawbacks of prior art, a terminal equipment in which performance of a built-in antenna of a wireless module can be raised easily.
In order to accomplish this object of the present invention, a terminal equipment of the present invention is used by mounting thereon a wireless module including a communication device having a transmission and reception antenna for connection to a wireless network. The terminal equipment includes a first antenna unit which is connected to the transmission and reception antenna physically or spatially and a second antenna unit which is connected to the first antenna unit and transmits and receives radio signals directly to and from the wireless network.
Hereinafter, one embodiment of the present invention is described with reference to the drawings.
In FIGS. 1 to 3, in the same manner as a conventional terminal equipment, this terminal equipment includes a wireless module 10, a printed circuit board 4 and a housing 5 formed with a slot 9 for fitting the wireless module 10 thereinto. The card type wireless module 10 having an interface function includes a wireless module body 1, a communication means such as a built-in antenna 2 which is provided at one end portion of the wireless module body 1 so as to transmit and receive radio signals to and from a wireless network to be connected to the terminal equipment and a PCMCIA connector 3 which is provided at the other end portion of the wireless module body 1 so as to be connected to the terminal equipment when the wireless module 10 has been fitted into the slot 9 of the housing 5.
In contrast with the conventional terminal equipment of
Then, operation of the terminal equipment of the above described arrangement is described. A modulated wave transmitted from the wireless network to be connected to the terminal equipment is initially received by the second antenna unit 14 in the cover 15 attached to the front panel of the housing 5 of the terminal equipment and is guided to the first antenna unit 13. Since the first antenna unit 13 is electromagnetically coupled to the built-in antenna 2 of the wireless module 10 fitted into the slot 9, the modulated wave is delivered into the wireless module 10 so as to be converted into a baseband signal. Thereafter, via the PCMCIA connector 3 provided on the printed circuit board 4 of the terminal equipment, the baseband signal is subjected to a processing based on a predetermined protocol by a signal processing circuit formed on the printed circuit board 4 of the terminal equipment and is converted into desired digital data. At the time of transmission from the terminal equipment to the wireless network, the operation is performed in the reverse sequence of the above mentioned one.
As described above, since the first antenna unit 13 for performing transmission and reception with the built-in antenna 2 of the wireless module 10 and the second antenna unit 14 for performing transmission and reception with the wireless network to be connected to the terminal equipment are disposed at a location where radio waves are least likely to be intercepted, for example, the front panel of the housing 5 of the terminal equipment, communication quality can be upgraded easily.
Meanwhile, in this embodiment, the PCMCIA connector 3 is used as an interface of the wireless module 10 but it is needless to say that the same effects can be gained even if other interfaces such as a Secure Digital (SD) card and a Memory Stick are used. Furthermore, elements of various types and shapes such as dielectric, a slot and a patch can be used as the first and second antenna units 13 and 14 and degree of freedom in design of dimensions and layout of the first and second antenna units 13 and 14 is quite high.
In
Meanwhile, the first and second antenna units 13 and 14 may also be fixed to an openable cover.
As is clear from the foregoing description of the present invention, since the first antenna unit for performing transmission and reception with the built-in antenna of the wireless module and the second antenna unit for performing transmission and reception with the wireless network to be connected to the terminal equipment are disposed at the location where radio waves are least likely to be intercepted, for example, the front panel of the housing of the terminal equipment, it is possible to upgrade communication quality and extend a radio signal reach distance between the terminal equipment and the wireless network. In addition, it is possible to easily upgrade such properties as directivity and gain in the first and second antenna units provided at the location which is comparatively free from physical or electrical restrictions, for example, the front panel of the housing of the terminal equipment.
Meanwhile, in the present invention, if the high-frequency amplifier circuit is inserted between the first and second antenna units, transmission power and a carrier-to-noise ratio (C/N) for reception are improved, so that communication quality can be further upgraded.
Number | Date | Country | Kind |
---|---|---|---|
2002-290925 | Oct 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/12394 | 9/29/2003 | WO | 4/1/2005 |