1. Field of the Invention
The invention relates to a terminal block.
2. Description of the Related Art
Japanese Unexamined Patent Publication No. H11-144783 discloses a terminal block for connecting a pair of terminals. This terminal block is configured so that the respective terminals are placed one over the other on a main body formed with a metal nut insert molded inside and electrically connected to each other by being fastened together by a bolt and the nut.
According to such a terminal block, heat generated from conductive members such as terminals is transferred to the nut and accumulated in the terminal block. Thus, it has been attempted to arrange a metal bracket fixed to a case of a motor below the nut via an insulating sheet, integrally fix these three members by a resin portion, transfer heat transferred from the conductive members to the nut to the bracket via the insulating sheet and radiate this heat from the bracket to the case of the motor.
Further, the bracket needs to be directly in contact with the case to radiate the heat from the bracket to the case, and it is necessary to reduce a covered part of the bracket by the resin portion. However, if the covered part of the bracket is small, the resin portion is pulled toward the bolt together with the nut and the resin portion and the bracket are separated at the time of bolt tightening.
The invention was completed in view of the above situation and an object thereof is to prevent the separation of a bracket and a resin portion while improving a heat radiation property of the bracket.
The invention relates to a terminal block for connecting a conductive member extending from a device and a mating conductive member. The terminal block includes a fastening seat on which the conductive member and the mating conductive member are placed. A bolt fastens the fastening seat, the conductive member and the mating conductive member together with a bolt. A metal bracket is adjacent to the fastening seat and a resin portion covers a part of the fastening seat and the bracket to fix the fastening seat integrally with the bracket. The bracket has at least one mounting portion exposed from the resin portion and fixed to a metal case for housing the device and at least one embedded portion embedded in the resin portion. The resin portion includes a first locking portion for locking a first engaging portion on the mounting portion and a second locking portion for locking a second engaging portion on the embedded portion.
Heat of the bracket of the above-described terminal block can be radiated to the metal case from the mounting portion directly fixed to the metal case. There is concern that the resin portion will be pulled up with the fastening seat as the bolt is tightened into the fastening seat and that the bracket fixed to the case may be separated from the resin portion. However, the second locking portion of the resin portion locks the second engaging portion of the embedded portion from below. Therefore, the bracket and the resin portion cannot separate at the embedded portion side.
The first engaging portion of the mounting portion is locked from below by the first locking portion of the resin portion. Thus, the bracket cannot separate from the resin portion at the mounting portion side and heat radiation from the bracket to the case is improved.
The fastening seats are arranged substantially in a width direction intersecting an extending direction of the conductive member.
The resin portion preferably includes nut locking portions for locking outer peripheral edges of the fastening seats. At least one partition wall is provided between adjacent nut locking portions for partitioning between adjacent fastening seats.
The first locking portion preferably is on an end of the partition wall.
According to such a configuration, one first locking portion supports two adjacent nut locking portions to prevent separation of the bracket and the resin portion. Thus, the structure of the mounting portion is simplified by reducing the number of the first locking portions as compared with providing a first locking portion for each nut locking portion.
The lower surface of the mounting portion fixed to the case is recessed up to form at least one heat radiation recess for radiating heat of the bracket by taking in coolant for cooling the interior of the case.
The first engaging portion may be formed by cutting a built-up portion above the heat radiation recess.
An attempt could be made to form the first engaging portion above the heat radiation recess by cutting without providing the mounting portion with the built-up portion. This approach would cause a side of the mounting portion above the heat radiation recess to become thinner, and, thus, the first engaging portion could not be formed. However, the invention forms the first engaging portion by cutting the build-up portion on top of the mounting portion. Thus, the heat radiation recess and the first engaging portion can be provided vertically one above the other on the mounting portion. This approach prevents enlarging the mounting portion as compared with the case where the mounting portion and the heat radiation recess are formed without being arranged one above the other.
The first engaging portion may comprise a screw hole including a screw groove on an inner peripheral surface. Thus, the first locking portion of the resin portion can firmly lock the screw groove.
A plurality of the first engaging portions may be arranged in a width direction intersecting an extending direction of the conductive member. The first engaging portions may include cuts arranged to coincide in a width direction. The cuts can be formed in each of the first engaging portions by cutting the mounting portion in the width direction using a cutting tool. This can simplify a cutting process as compared with the case where the mounting portion is cut to individually form the cuts, for example, using a drill.
These and other features and advantages of the invention will become more apparent upon reading the following detailed description of preferred embodiments and accompanying drawings. It should be understood that even though embodiments are described separately, single features may be combined to additional embodiments.
A first embodiment of the invention is illustrated in
As shown in
The busbar B is a substantially flat plate that vertically penetrates the bolt insertion hole B1 in the mounting direction MD at a position to be placed on the nut 20.
As shown in
Each nut 20 is made of conductive material such as metal and, as shown in
The bolt fastening portion T1 of the terminal T for neutral point is placed on each of the nuts 20 on the opposite sides from above, the bolt BT is inserted through the bolt insertion hole T3 of the bolt fastening portion T1 and tightened into the bolt fastening hole 21 of the nut 20 so that the terminal T for neutral point is bolted to the nut 20 as shown in
The barrel T2 of the terminal T is behind or offset from the nut 20 when the bolt fastening portion T1 of each terminal T is fixed to the nut 20.
A step 22 is formed over substantially the entire periphery on an upper peripheral edge of each nut 20. As shown in
The insulating plate 30 is made of a highly heat conductive synthetic resin containing glass or talc and is sandwiched vertically by the nuts 20 and the bracket 40, as shown in
The bottom plate 31 of the insulating plate 30 has bolt escaping recesses 32, which are bottomed recesses that project down. Each bolt escaping recess 32 substantially corresponds to the bolt fastening hole 21 of the nut 20 arranged on the upper surface of the insulating plate 30, and prevents interference of the bolt BT and the insulating plate 30 by allowing the tip of the bolt BT to escape when the bolt BT is tightened into the nut 20.
The bracket 40 is formed by aluminum die casting and, as shown in
The insulating plate 30 is placed on the upper or outer surface of the embedded portion 41 and covers substantially the entire upper surface of the embedded portion 41. Fitting recesses 43 are provided substantially side by side in the width direction WD on the upper surface of the embedded portion 41 and receive the bolt escaping recesses 32 of the insulating plate 30. The insulating plate 30 is to be mounted on the upper surface of the embedded portion 41 without being displaced by fitting the bolt escaping recesses 32 into the fitting recesses 43.
As shown in
As shown in
A substantially rectangular gate mark 46 is formed on the rear surface of the mounting portion 42 when a molding die is opened (see
The resin portion 50 is made of synthetic resin and, as shown in
A substantially rectangular nut locking portion 52 is provided on an upper part of the main body 51 and locks the step 22 of each nut 20 together with the insulating plate 30. The nut locking portion 52 locks the step 22 of each nut 20 from above to prevent a clearance from being formed between the nut 20 and the insulating plate 30 when the bolt BT is tightened into the bolt fastening hole 21 of the nut 20 and the nut 20 is pulled up.
As shown in
A guide 54 is provided of an upper end of each partition wall 53 at an intermediate part in forward and backward directions FBD, as shown in
As shown in
As shown in
Further, if the terminal T is placed on the nut 20 from above and in the mounting direction MD with the barrel T2 thereof displaced in the width direction WD, the posture correcting portion 55 contacts a lateral edge of the barrel T2 in the width direction and corrects the posture of the barrel T2 in the width direction WD to a substantially proper posture in which the terminal T is straight in forward and backward directions FBD. When the terminals T are placed on the nuts 20, the adjacent barrel portions T2 are blocked by the posture correcting portions 55 and the creepage distance (insulation distance) between the barrels T2 is ensured even if the adjacent barrels T2 are displaced slightly in the width direction WD, as shown in
The terminal T may rotate following the rotation of the bolt BT when tightening the bolt BT into the nut 20. However, the posture correcting portion 55 contacts the barrel T2 in the width direction WD to limit rotation of the terminal T and ensuring the creepage distance (insulation distance) between the adjacent barrels T2.
At least one projection 56 project substantially in the width direction WD on a rear end part of each posture correcting portion 55 for reinforcement. The projection 56 is formed over the entire height of the posture correcting portion 55 and is behind the barrel T2 of the terminal T mounted in a proper posture on the nut 20.
Projections 56 is provided on each of opposite widthwise sides of each of the two posture correcting portions 55 arranged in the intermediate position out of the posture correcting portions 55 to prevent the posture correcting portion 55 from being inclined in the width direction WD and broken when a lateral force acts on the posture correcting portion 55. Further, one projection 56 is provided on each of the two posture correcting portions 55 arranged on opposite widthwise sides and projects toward the center to cooperate with the crank portion 55A to reinforce the posture correcting portion 55. Thus, the two posture correcting portions 55 arranged on the opposite widthwise sides prevent the posture correcting portions 55 from being inclined in the width direction WD to be broken when a lateral force acts on the posture correcting portions 55.
The strength of the posture correcting portion in the width direction WD could be increased by setting the thickness of the entire posture correcting portion to the thickness of the part where the projecting portions are provided. However, if the thickness of the entire posture correcting portion is increased, the clearance between the posture correcting portion and the barrel becomes smaller. Even a slight displacement of the terminal T in the width direction WD may cause the barrel T2 to move onto the posture correcting portion when placing the nut 20 on the terminal T. However, the clearance between the posture correcting portion 55 and the barrel T2 is made larger by thinning the posture correcting portion 55 except at the part where the projections 56. Thus the barrel T2 easily can be arranged between the posture correcting portions 55 even if the terminal T is displaced slightly in the width direction WD when being placed on the nut 20. This can improve mounting operability in placing the terminal T on the nut 20.
The creepage distance between the barrels of adjacent terminals T may become shorter if the bolt insertion hole T3 of the bolt fastening portion T1 is large relative to the bolt BT and the terminal T is bolted in a state slightly displaced backward. However, if the terminal T is displaced backward, the projecting portions 56 contact the barrel T2 in the width direction WD and the posture of the terminal T can be corrected to approach a proper posture where the terminal T is substantially straight in forward and backward directions FBD. Thus, the required creepage distance (insulation distance) between the barrels T2 is assured.
The projection 56 has two functions, namely, reinforcing the posture correcting portion 55 and correcting the posture of the terminal T. Thus, the structure of the posture correcting portion 55 becomes less complicated, as compared with the case where the reinforcing function and the posture correcting function are provide separately.
A first lock 57 is provided on a lower end part of the posture correcting portion 55 and engages a bottomed screw hole 47 provided on the mounting portion 42.
The screw hole 47 of the mounting portion 42 has a screw groove 47A on the inner peripheral surface and is formed by recessing the upper surface of a substantially cylindrical build-up portion 48 projecting from the upper surface of the mounting portion 42.
As shown in
Further, the first locking portions 57 and the screw holes 47 particularly are arranged substantially between adjacent nut locking portions 52, and two nut locking portions 52 are supported by one first locking portion 57 and one screw hole 47. That is, e.g. five nut locking portions 52 are supported by four first locking portions 57 and e.g. four screw holes 47 on the rear end side of the resin portion 50 and the numbers of the first locking portions 57 and the screw holes 47 can be reduced as compared with the case where the first locking portion is formed for each nut locking portion. This can prevent the bracket 40 and the resin portion 50 from being separated while simplifying the structure of the rear end side of the resin portion 50.
The screw holes 47 are arranged in correspondence with and above the heat radiation recess 44 of the mounting portion 42 and formed in the build-up portions 48 on top of the mounting portion 42 so that a sufficient thickness is ensured between the heat radiation recess 44 and the screw holes 47.
Although a screw hole is formed by cutting using a drill or the like, it is generally not possible to form a screw groove with a tip part of the drill. Hence, the depth of the screw hole is larger than the height of a part where the screw groove is provided. Thus, if it is attempted to form a screw hole with a predetermined dimension of a screw groove ensured above a heat radiation recess without providing a build-up portion on a mounting portion, a sufficient thickness cannot be ensured between the heat radiation recess and the screw hole and the screw hole cannot be provided above the heat radiation recess. However, the screw hole 47 is formed in the build-up portion 48 provided on top of the mounting portion 42. Thus, the heat radiation recess 44 and the screw hole 47 can be formed vertically one above the other on the mounting portion 42 while ensuring a sufficient thickness between the heat radiation recess 44 and the screw hole 47. Thus, the mounting portion 42 is not enlarged as compared with the case where the mounting portion and the heat radiation recess are displaced in forward and backward directions.
On the other hand, as shown in
The engaging portion 49 is stepped to be raised slightly from the lower surface of the bracket 40 and is recessed slightly inward of the outer peripheral surfaces of the embedded portion 41 and the mounting portion 42.
The second locking portion 58 is formed on an outer peripheral edge of the main body portion 51 except at a front edge part of the main body 51 to correspond to the engaging portion 49, and at least partly covers the engaging portion 49 from below. That is, as shown in
Specifically, the first and second locking portions 57, 58 of the main body 51 lock the bracket 40 from below in such a manner as to surround the embedded portion 41 over substantially the entire circumference and reliably prevent the resin portion 50 and the bracket 40 from being separated vertically.
To prevent the separation of a resin portion and a bracket, it is thought to provide a stepped engaging portion over the entire circumference on a lower outer peripheral edge part of the bracket and lock the engaging portion over the entire circumference from below by a locking portion of a main body portion by covering the side surfaces of the bracket and the engaging portion over the entire circumference by the resin portion. However, a heat radiation property of the bracket may be reduced if the outer peripheral surface of the bracket is covered over the entire circumference with resin. Further, a gate mark 46 formed when the bracket 40 is formed by die casting may be left on the rear surface of the mounting portion 42. If that gate mark 46 is covered with resin, the resin portion may be broken, such as due to the formation of cracks from fine edge parts formed on an outer peripheral edge part of the gate mark 46.
However, the mounting portion 42 is exposed from the resin portion 50 according to this embodiment. Thus, the resin portion 50 will not break while a heat radiation property of the bracket 40 is improved.
The busbars B extending from the connection device (such as the inverter) are placed on the upper surfaces (mounting surfaces) of the nuts 20 of the terminal block 10 mounted and fixed to the mounting device (such as the motor case) and, then, the terminals T connected to ends of the enameled wires extending from the mounting device (particularly the motor) are placed on the busbars B.
The busbars B may be displaced slightly in the width direction WD when the busbars B are placed on the nuts 20 from above and in the mounting direction MD. However, the lateral edges of the busbars B contact the oblique surfaces 54A of the guides 54 and the busbars B are guided and placed onto the upper surfaces of the nuts 20. Further, even if the terminals T are displaced slightly in the width direction WD, the lateral edges of the bolt fastening portions T1 of the terminals T contact the oblique surfaces 54A of the guiding portions 54 and the terminals T are guided and placed onto the upper surfaces of the nuts 20 similarly to the busbars B.
Further, in the case of the terminal T, even if the barrel T2 is displaced in the width direction WD due to rotational displacement of the terminal T in the width direction WD, the posture correcting portion 55 contacts the lateral edge of the barrel T2 in the width direction WD so that the posture of the barrel portion T2 in the width direction WD is corrected and the terminal T is placed on the nut 20 in a state where adjacent barrels T2 are blocked by the posture correcting portion 55.
The busbar B and the terminal T can be guided onto the nut 20 by the guiding portion 54 and the posture of the barrel T2 of the terminal T can be corrected by the posture correcting portion 55 when the busbar B and the terminal T are placed on the nut 20. Thus, the terminal T and the busbar B can be placed on the nut 20 while ensuring the creepage distance (insulation distance) between adjacent barrel portions T2.
The posture correcting portion 55 corrects the posture of the terminal T by contacting the barrel T2 of the terminal T, and it is necessary to prevent the posture correcting portion 55 from being inclined in the width direction WD to be broken. It is thought to increase the thickness of the entire posture correcting portion to prevent the inclination of the posture correcting portion. However, if the thickness of the posture correcting portion is increased, the clearance between the posture correcting portion and the barrel becomes smaller and even only a slight displacement of the terminal T in the width direction WD may cause the terminal T to move onto the posture correcting portion, so that operability in mounting the terminal T on the nut 20 is reduced.
However, the projections 56 are provided only on the rear part of each posture correcting portion 55 and a part of the posture correcting portion 55 where the barrel T2 is arranged is thinner. Thus, the barrel T2 easily can be arranged between adjacent posture correcting portions 55 even if the barrel T2 is displaced slightly in the width direction WD. This can improve operability in mounting the terminal T on the nut 20 while ensuring the strength of the posture correcting portion 55 in the width direction WD, as compared with the case where the thickness of the entire posture correcting portion is increased.
The bolt BT then is inserted through the busbar B and the bolt insertion hole T3 of the bolt fastening portion T1 and tightened into the bolt fastening hole 21 of the nut 20.
The terminal T may try to rotate with the bolt BT when tightening the bolt BT into the nut 20. However, the posture correcting portion 55 contacts the barrel T2 in the width direction WD to prevent the terminal T from rotating.
Further, in case of plural terminals T, a distance between adjacent terminals T may become shorter and the creepage distance (insulation distance) cannot be ensured if the bolt insertion hole T3 of the bolt fastening portion T1 is large relative to the bolt BT and the terminal T is displaced slightly backward. However, the projecting portions 56 contact the barrel T2 in the width direction WD and the posture of the terminal T can be corrected to approach the proper posture in which the terminal T is straight in forward and backward directions FBD if the terminal T is displaced backward. This can reliably ensure the creepage distance (insulation distance) between the barrels T2.
When the bolt BT is tightened completely into the bolt fastening hole 21 of the nut 20, the busbar B and the bolt fastening portion T1 are fastened together and electrically connected by the bolt BT and the nut 20.
In the process of tightening the bolt BT into the nut 20, the resin portion 50 is pulled up together with the nut 20 and the bracket 40 fixed to the mounting device (e.g. the motor case) and the resin portion 50 may be separated. However, the first locking portions 57 lock the upper ends 47B of the screw grooves 47A in the screw holes 47 provided on the mounting portion 42 from below on the rear edge of the main body portion 51 of the resin portion 50 and the second locking portion 58 locks the engaging portion 49 from below on the front edge and the opposite widthwise side edges of the bracket 40. Specifically, the first and second locking portions 57, 58 provided on the main body 51 of the resin portion 50 lock the embedded portion 41 from below and surround the embedded portion 41 over substantially the entire circumference. Thus, the bracket 40 and the resin portion 50 cannot separate.
A second particular embodiment of the present invention is described with reference to
In a terminal block 11 of the second embodiment, the shapes of the build-up portions 48 and the first locking portions 57 of the first embodiment are changed. Configurations, functions and effects similar or common to the first embodiment are not repeatedly described. Further, the similar or same components as those of the first embodiment are denoted by the same reference signs.
Build-up portions 148 of a bracket 140 of the second embodiment are provided with one or more cuts 147 extending in the width direction WD instead of the screw holes. The cuts 147 are recessed forward from the rear end surfaces of the build-up portions 148.
On the other hand, first locking portions 157 of the second embodiment cover the build-up portions 148 from above and enter the cuts 147 from behind. When a resin portion 50 is pulled up, the first locking portions 157 lock the cut portions 147 from below.
When forming vertically recessed cuts in build-up portions, it is thought to form the cut portions in the respective build-up portions individually, for example, using a cutting tool such as a drill, but as many cutting processes as the build-up portions are necessary. However, the cuts 147 of this embodiment can be formed in the build-up portions 148 by cutting the build-up portions 148 straight in the width direction, for example, using a cutting tool such as a T-shaped cutter. This can simplify the cutting process as compared with the case where the cuts are cut individually vertically, for example, using a drill or the like.
The invention is not limited to the above described embodiments. For example, the following embodiments also are included in the scope of the invention.
The busbar B and the terminal T are connected electrically in the above embodiments, but terminals may be electrically connected to each other.
Although the coolant of the motor case is circulated in the heat radiation recess 44 in the above embodiments, the present invention is not limited to such a mode. For example, the entire lower surface of the mounting portion may be held in close contact with the motor case to radiate heat of the bracket to the motor case without providing the radiation recess on the lower surface of the mounting portion.
Although the nut has a substantially rectangular plan view in the above embodiments, the present invention is not limited to such a mode. For example, the nut may have a substantially circular or elliptic plan view.
Although the nuts 20 for neutral point are provided on the opposite widthwise sides of the terminal block 10, 11 in the above embodiments, the present invention is not limited to such a mode. For example, the nut for neutral point may be provided only on one side.
Number | Date | Country | Kind |
---|---|---|---|
2012-249567 | Nov 2012 | JP | national |