Embodiments of the present invention relate to a technique of a terminal device, a base station device, and a method that enable efficient transmit power control and transmit control.
This application claims priority based on Japanese Patent Application No. 2014-160982 filed in Japan on Aug. 7, 2014, the contents of which are incorporated herein by reference.
The 3rd Generation Partnership Project (3GPP), which is a standardization project, standardized the Evolved Universal Terrestrial Radio Access (hereinafter referred to as EUTRA), in which high-speed communication is realized by adopting an orthogonal frequency-division multiplexing (OFDM) communication scheme and flexible scheduling using a unit of prescribed frequency and time called resource block.
Moreover, the 3GPP has been discussing Advanced EUTRA, which realizes higher-speed data transmission and has backward compatibility with EUTRA. EUTRA relates to a communication system based on a network in which base station devices have substantially the same cell configuration (cell size), but, regarding Advanced EUTRA, discussion has been made on a communication system based on a network (different-type radio network, heterogeneous network) in which base station devices (cells) having different configurations coexist in the same area.
Discussion has been made on a dual connectivity technique, in which, in a communication system where cells (macro cells) having large cell radii and cells (small cells) having smaller cell radii than those of the macro cells coexist as in a heterogeneous network, a terminal device performs communication by connecting to a macro cell and a small cell at the same time (NPL 1).
In NPL 1, discussion has advanced regarding a network based on a situation that, when a terminal device is to establish dual connectivity with a cell (macro cell) having a large cell radius (cell size) and a cell (small cell (or pico cell)) having a small cell radius, a backbone network (backhaul) between the macro cell and the small cell is slow, and a delay occurs. Specifically, there is a possibility that it is impossible or difficult to enable a function which has been enabled in prior scenarios, due to delay in exchange of control information or user information between the macro cell and the small cell.
Meanwhile, NPL 2 describes a method of, when a terminal device connects, at the same time, to a plurality of cells connected via a high-speed backhaul, feeding back channel state information of each cell.
When information sharing is restricted between cells, it is not possible to directly use the conventional transmit power control method and transmit control method.
The present invention has been made in view of the above, and an object of the present invention is to provide a terminal device, a base station device, and a method that enable efficient transmit power control and transmit control.
(1) In order to accomplish the object described above, the present invention is contrived to provide the following means. Specifically, a terminal device according to an aspect of the present invention is a terminal device configured to communicate with a base station device. The terminal device includes a transmission unit that, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being ready to be transmitted in a subframe at least one before the subframe i1, transmits the first PRACH.
(2) Further, a method according to an aspect of the present invention is a method in a terminal device configured to communicate with a base station device. The method includes the step of, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being ready to be transmitted in a subframe at least one before the subframe i1, transmitting the first PRACH.
(3) A base station device according to an aspect of the present invention is a base station device configured to communicate with a terminal device. The base station includes a reception unit that, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being configured by using a signal of a higher layer so as to be ready to be transmitted in a subframe at least one before the subframe i1, receives the first PRACH in the subframe i1.
(4) Further, a method according to an aspect of the present invention is a method in a base station device configured to communicate with a terminal device. The method includes the step of, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being configured by using a signal of a higher layer so as to be ready to be transmitted in a subframe at least one before the subframe receiving the first PRACH in the subframe i1.
According to the present invention, it is possible to improve transmission efficiency in a radio communication system in which a base station device and a terminal device communicate.
A first embodiment of the present invention will be described below. Description will be given with reference to a communication system (cellular system) in which a base station device (base station, NodeB, or eNodeB (eNB)) and a terminal device (terminal, mobile station, user device, or user equipment (UE)) communicate in a cell.
Main physical channels and physical signals used in EUTRA and Advanced EUTRA will be described. “Channel” means a medium used to transmit a signal, and “physical channel” means a physical medium used to transmit a signal. In the present embodiment, “physical channel” may be used as a synonym of “signal”. In the future EUTRA and Advanced EUTRA, the physical channel may be added or its constitution and format type may be changed or added; however, the description of the present embodiment will not be affected even if the channel is changed or added.
In EUTRA and Advanced EUTRA, scheduling of physical channels or physical signals is managed by the use of radio frames. Each radio frame is 10 ms in length and is constituted of 10 subframes. In addition, each subframe is constituted of two slots (i.e., each subframe is 1 ms in length, and each slot is 0.5 ms in length). Moreover, scheduling is managed by using a resource block as a minimum unit of scheduling for allocating a physical channel. The resource block is defined by a certain frequency domain that is constituted of a set of subcarriers (e.g., 12 subcarriers) on a frequency axis and a certain transmission time slot (one slot).
Although not illustrated here, synchronization signals, a physical broadcast channel, or a downlink reference signal (RS) may be mapped to a downlink subframe. Examples of a downlink reference signal are a cell-specific reference signal (CRS: cell-specific RS), which is transmitted through the same transmission port as that for a PDCCH, a channel state information reference signal (CSI-RS), which is used to measure channel state information (CSI), a terminal-specific reference signal (URS: UE-specific RS)), which is transmitted through the same transmission port as that of one or some PDSCHs, and a demodulation reference signal (DMRS), which is transmitted through the same transmission port as that for an EPDCCH. Moreover, carriers to which no CRS is mapped may be used. In this case, a signal (referred to as “enhanced synchronization signal”) similar to a signal corresponding to one or some transmission ports (e.g., only transmission port 0) or all the transmission ports for the CRSs can be inserted into one or some subframes (e.g., the first and sixth subframes in the radio frame) as time and/or frequency tracking signals.
A synchronization signal is constituted of three kinds of primary synchronization signals and secondary synchronization signals constituted by 31 kinds of codes that are interleaved in the frequency domain. 504 patterns of cell identifiers (physical cell identities; PCIs) for identifying base station devices, and frame timing for radio synchronization are indicated by the combinations of the primary synchronization signals and the secondary synchronization signals. The terminal device identifies the physical cell ID of a received synchronization signal by cell search.
A physical broadcast channel (PBCH) is transmitted for the purpose of notifying (configuring) a control parameter (broadcast information (system information)) commonly used among the terminal devices within the cell. The terminal devices in the cell are notified of the radio resource in which broadcast information is transmitted on the physical downlink control channel, and, for broadcast information that is not notified on the physical broadcast information channel, a layer-3 message (system information) for notifying of the broadcast information on the physical downlink shared channel is transmitted in the notified radio resource.
As broadcast information, a cell global identifier (CGI), which indicates a cell-specific identifier, a tracking area identifier (TAI) for managing a standby area in paging, random access configuration information (such as a transmission timing timer), shared radio resource configuration information, neighboring cell information, and uplink access control information of the cell, and the like are notified.
Downlink reference signals are classified into a plurality of types according to their use. For example, a cell-specific reference signal (cell-specific RS) is a pilot signal transmitted with prescribed power from each cell and is a downlink reference signal periodically repeated in the frequency domain and the time domain under a prescribed rule. The terminal device receives cell-specific RSs to measure the reception quality of each cell. The terminal device also uses cell-specific RSs as reference signals for demodulation of a physical downlink control channel or physical downlink shared channel transmitted at the same time as the cell-specific RSs. The sequence used for a cell-specific RS is a sequence distinguishable among the cells.
The downlink reference signal is also used for estimation of downlink channel variation. A downlink reference signal used for estimation of downlink channel fluctuations is referred to as “channel state information reference signal (CSI-RS).” Downlink reference signals individually configured for the terminal devices are referred to as UE-specific reference signals (URS), demodulation reference signal (DMRS), or dedicated RS (DRS), and are referenced for a channel compensation process for demodulating an enhanced physical downlink control channel or a physical downlink shared channel.
A physical downlink control channel (PDCCH) is transmitted by using several OFDM symbols (e.g., 1 to 40 OFDM symbols) from the start of each subframe. An enhanced physical downlink control channel (EPDCCH) is a physical downlink control channel allocated to the OFDM symbols to which the physical downlink shared channel PDSCH is allocated. The PDCCH or EPDCCH is used for notifying each terminal device of radio resource allocation information according to scheduling determined by the base station device and information indicating an adjustment amount for an increase or decrease in transmit power. Hereafter, the term “physical downlink control channel (PDCCH)” means both PDCCH and EPDCCH, unless otherwise specified.
The terminal device needs to monitor physical downlink control channels to find and receive a physical downlink control channel addressed to the terminal device itself, before transmitting and receiving downlink data or a layer-2 message or layer-3 message, which is higher-layer control information (such as a paging or handover command), and thereby acquire, from the physical downlink control channel, radio resource allocation information called uplink grant in the case of transmission and downlink grant (downlink assignment) in the case of reception. Note that it is also possible to configure the physical downlink control channel so that the physical downlink control channel is to be transmitted in a dedicated resource block region allocated to each terminal device by the base station device, instead of transmission in OFDM symbols described above.
The physical uplink control channel (PUCCH) is used to perform reception acknowledgment (hybrid automatic repeat request-acknowledgment; HARQ-ACK or acknowledgment/negative acknowledgment; ACK/NACK) for downlink data transmitted on the physical downlink shared channel, downlink channel (channel state) information (CSI), and uplink radio resource allocation request (radio resource request, scheduling request (SR)).
CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and a rank indicator (RI), which can be used respectively for specifying (representing) a preferable modulation scheme and coding rate, a preferable precoding matrix, a preferable PMI type, and a preferable rank. The term “indication” may be used as a notation for each of the indicators. Moreover, CQI and PMI are classified into wideband CQI and PMI assuming transmission using all the resource blocks in a single cell and subband CQI and PMI assuming transmission using some continuous resource blocks (subbands) in a single cell. Moreover, PMI may be a type of PMI that represents a single preferable precoding matrix by using two kinds of PMIs, a first PMI and a second PMI, in addition to a normal type of PMI, which represents a single preferable precoding matrix by using a single PMI.
A physical downlink shared channel (PDSCH) is also used to notify the terminal device of broadcast information (system information) that is not notified by paging or on the physical broadcast information channel, in addition to downlink data, as a layer-3 message. Radio resource allocation information on the physical downlink shared channel is provided by the physical downlink control channel. The physical downlink shared channel is allocated to OFDM symbols other than the OFDM symbols used for the transmission of the physical downlink control channel and is transmitted. In other words, the physical downlink shared channel and the physical downlink control channel are time-multiplexed in a single subframe.
The physical uplink shared channel (PUSCH) mainly transmits uplink data and uplink control information and may also include uplink control information such as CSI and ACK/NACK. Moreover, the physical uplink shared channel is also used by the terminal device to notify the base station device of a layer-2 message and layer-3 message, which are higher-layer control information, in addition to uplink data. Radio resource allocation information on the physical uplink shared channel is provided by the physical downlink control channel, as in the case of downlink.
The uplink reference signal (also referred to as “uplink pilot signal” or “uplink pilot channel”) includes a demodulation reference signal (DMRS) to be used by the base station device to demodulate the physical uplink control channel (PUCCH) and/or physical uplink shared channel (PUSCH), and a sounding reference signal (SRS) to be mainly used by the base station device to estimate an uplink channel state. Moreover, the sounding reference signal includes a periodic sounding reference signal (periodic SRS), which is transmitted periodically, and an aperiodic sounding reference signal (aperiodic SRS), which is transmitted in response to a request from the base station device.
A physical random access channel (PRACH) is a channel used to notify of (configure) a preamble sequence and includes guard time. The preamble sequence is configured so that the base station device is notified of information by using a plurality of sequences. For example, when 64 sequences are prepared, 6-bit information can be provided to the base station device. The physical random access channel is used by the terminal device to access the base station device.
The terminal device uses the physical random access channel to request an uplink radio resource when no physical uplink control channel is configured for an SR or to request the base station device for a transmission timing adjustment information (also referred to as timing advance (TA) command) necessary for matching uplink transmission timing to a reception timing window of the base station device, for example. Moreover, the base station device may use a physical downlink control channel to request the terminal device to start a random access procedure.
A layer-3 message is a message exchanged between the RRC (radio resource control) layers of the terminal device and the base station device and handled in a protocol for a control-plane (C-plane), and may be used as a synonym of RRC signaling or RRC message. A protocol handling user data (uplink data and downlink data) is referred to as user-plane (UP (U-plane)) in contrast to control-plane. Here, a transport block, which is physical-layer transmission data, includes C-plane messages and U-plane data of higher layers. Detailed description of other physical channels is omitted.
A communicable range (communication area) of each frequency controlled by a base station device is assumed as a cell. Here, the communication area covered by a base station device may be different in size and shape for each frequency. Moreover, the covered area may be different for each frequency. A radio network in which cells having different types of base station devices and different cell radii coexist in the areas of the same frequency and/or different frequencies to form a single communication system, is referred to as “heterogeneous network”.
The terminal device operates by assuming the inside of a cell as a communication area. When the terminal device moves from a cell to a different cell, the terminal device moves to an appropriate different cell through a cell reselection procedure when having no radio connection (during no communication) or through a handover procedure when having a radio connection (during communication). The appropriate cell is in general a cell that is determined that access from the terminal device is not prohibited on the basis of information specified by the corresponding base station device and that has a downlink reception quality satisfying a prescribed condition.
Moreover, the terminal device and the base station device may employ a technique for aggregating the frequencies (component carriers or frequency band) of a plurality of different frequency bands through carrier aggregation and treating the resultant as a single frequency (frequency band). The component carrier includes an uplink component carrier corresponding to the uplink and a downlink component carrier corresponding to the downlink. In this specification, “frequency” and “frequency band” may be used as synonyms.
For example, when five component carriers each having a frequency bandwidth of 20 MHz are aggregated through carrier aggregation, a terminal device capable of carrier aggregation performs transmission and reception with the five component carriers as a single frequency band of 100 MHz. Note that component carriers to be aggregated may have contiguous frequencies or frequencies some or all of which are discontiguous. For example, assuming that usable frequency bands include a band of 800 MHz, a band of 2 GHz, and a band of 3.5 GHz, a component carrier may be transmitted in the band of 800 MHz, another component carrier may be transmitted in the band of 2 GHz, and the other component carrier may be transmitted in the band of 3.5 GHz.
It is also possible to aggregate a plurality of contiguous or discontiguous component carriers in the same frequency band. The frequency bandwidth of each component carrier may be a narrower frequency bandwidth (e.g., 5 MHz or 10 MHz) than the receivable frequency bandwidth (e.g., 20 MHz) of the terminal device, and the frequency bandwidths to be aggregated may be different from each other. Each frequency bandwidth is preferably equal to any of the frequency bandwidths of traditional cells in consideration of backward compatibility, but may be a frequency bandwidth different from any of the frequency bandwidths of traditional cells.
Moreover, component carriers (carrier types) without backward compatibility may be aggregated. Note that the number of uplink component carriers to be allocated to (configured for or added for) the terminal device by the base station device is preferably the same as or fewer than the number of downlink component carriers.
A cell constituted by an uplink component carrier in which an uplink control channel is configured for a radio resource request and a downlink component carrier having a cell-specific connection with the uplink component carrier is referred to as “primary cell (PCell).” A cell constituted by component carriers other than those of the primary cell is referred to as “secondary cell (SCell).” The terminal device receives a paging message, detects update of broadcast information, carries out an initial access procedure, configures security information, and the like in a primary cell, and need not perform these operations in a secondary cell.
Although a primary cell is not a target of activation and deactivation controls (in other words, considered as being activated at any time), a secondary cell has activated and deactivated states, the change of which is explicitly specified by the base station device or is made on the basis of a timer configured for the terminal device for each component carrier. The primary cell and secondary cell are collectively referred to as “serving cell.”
Carrier aggregation is communication using a plurality of component carriers (frequency bands) by a plurality of cells and is also referred to as “cell aggregation.” The terminal device may have radio connection with the base station device via a relay station device (or repeater) for each frequency. In other words, the base station device of the present embodiment may be replaced with a relay station device.
The base station device manages a cell, which is an area where terminal devices can communicate with the base station device, for each frequency. A single base station device may manage a plurality of cells. Cells are classified into a plurality of kinds depending on the sizes of the areas (cell sizes) in which communication is possible with terminal devices. For example, cells are classified into macro cells and small cells. Moreover, small cells are classified into femto cells, pico cells, and nano cells depending on the sizes of the areas. When a terminal device can communicate with a certain base station device, a cell configured to be used for the communication with the terminal device is referred to as “serving cell” while the other cells not used for the communication are referred to as “neighboring cell”, among the cells of the base station device.
In other words, in carrier-aggregation, a plurality of serving cells thus configured include one primary cell and one or a plurality of secondary cells.
The primary cell is a serving cell in which an initial connection establishment procedure has been performed, a serving cell in which a connection re-establishment procedure has been started, or a cell indicated as a primary cell during a handover procedure. The primary cell operates at a primary frequency. At a point of time when a connection is (re)established, or later, a secondary cell may be configured. The secondary cell operates at a secondary frequency. The connection may be referred to as “RRC connection.” For the terminal device supporting CA, a single primary cell and one or more secondary cells are aggregated.
A basic configuration (architecture) of dual connectivity will be described with reference to
Note that carrier aggregation is different from dual connectivity in that one base station device 2 manages a plurality of cells and the frequencies of the respective cells are different from each other. In other words, carrier aggregation is a technique for connecting one terminal device 1 and one base station device 2 via a plurality of cells having different frequencies, while dual connectivity is a technique for connecting one terminal device 1 and a plurality of base station devices 2 via a plurality of cells having the same frequency or different frequencies.
The terminal device 1 and the base station devices 2 can apply a technique used for carrier aggregation, to dual connectivity. For example, the terminal device 1 and the base station devices 2 may apply a technique of allocation of a primary cell and secondary cells or activation/deactivation, to cells connected through dual connectivity.
In
Moreover, in
As an architecture for enabling dual connectivity, a configuration as illustrated in
Moreover, as another architecture for enabling dual connectivity, a configuration as illustrated in
Note that a configuration in which the base station device 2-2 and the MME 300 are directly connected via the MME interface N20 may be employed.
On the basis of description from a different point of view, dual connectivity is an operation whereby a prescribed terminal device consumes radio resources provided from at least two different network points (master base station device (MeNB or Master eNB) and secondary base station device (SeNB or Secondary eNB)). In other words, in dual connectivity, a terminal device is configured to establish an RRC connection to at least two network points. In dual connectivity, the terminal device may be connected via a non-ideal backhaul in an RRC connected (RRC_CONNECTED) state.
In dual connectivity, a base station device that is connected to at least the S1-MME and that acts as the mobility anchor of the core network is referred to as “master base station device.” Additionally, a base station device that is not the master base station device and that provides supplemental radio resources to the terminal device is referred to as “secondary base station device.” A group of serving cells that is associated with the master base station device may be referred to as “master cell group” (MCG), and a group of serving cells that is associated with the secondary base station device may be referred to as “secondary cell group” (SCG). Note that the cell groups may be serving cell groups.
In dual connectivity, the primary cell belongs to the MCG Moreover, in the SCG, the secondary cell corresponding to the primary cell is referred to as “primary secondary cell” (pSCell). Note that the pSCell may be referred to as “special cell” or “special secondary cell” (Special SCell). Some of the functions (for example, functions of transmitting and receiving the PUCCH) of the PCell (the base station device constituting the PCell) may be supported in the special SCell (the base station device constituting the special SCell). Moreover, only some of the functions of the PCell may be supported in the pSCell. For example, the function of transmitting the PDCCH may be supported in the pSCell. Moreover, the function of transmitting the PDCCH may be supported in the pSCell using a search space different from the CSS or the USS. For example, the search space different from a USS is a search space determined on the basis of a value defined in the specification, a search space determined on the basis of an RNTI different from a C-RNTI, a search space determined on the basis of a value configured by a higher layer that is different from the RNTI, or the like. Moreover, the pSCell may constantly be in an activated state. Moreover, the pSCell is a cell capable of receiving the PUCCH.
In dual connectivity, the data radio bearer (DRB) may be individually allocated to the MeNB and the SeNB. On the other hand, the signalling radio bearer (SRB) may be allocated only to the MeNB. In dual connectivity, a duplex mode may be configured individually for the MCG and the SCG or the PCell and the pSCell. In dual connectivity, the MCG and the SCG or the PCell and the pSCell need not necessarily be synchronized with each other. In dual connectivity, a plurality of parameters for timing adjustment (TAG or Timing Advance Group) may be configured for each of the MCG and the SCG In other words, the terminal device is capable of performing uplink transmission at a plurality of different timings in each CG.
In dual connectivity, the terminal device is allowed to transmit the UCI corresponding to the cells in the MCG only to the MeNB (the PCell) and to transmit the UCI corresponding to the cells in the SCG only to SeNB (the pSCell). For example, the UCI is an SR, HARQ-ACK, and/or CSI. Additionally, in each UCI transmission, a transmission method using the PUCCH and/or the PUSCH is applied to each cell group.
All signals can be transmitted and received in the primary cell, but some signals cannot be transmitted and received in the secondary cell. For example, the physical uplink control channel (PUCCH) is transmitted only in the primary cell. Moreover, unless a plurality of timing advance groups (TAG) are configured between the cells, the physical random access channel (PRACH) is transmitted only in the primary cell. Moreover, the physical broadcast channel (PBCH) is transmitted only in the primary cell. Moreover, a master information block (MIB) is transmitted only in the primary cell. Signals that can be transmitted and received in the primary cell are transmitted and received in the primary secondary cell. For example, the PUCCH may be transmitted in the primary secondary cell. Moreover, the PRACH may be transmitted in the primary secondary cell, regardless of whether a plurality of TAGs are configured. Moreover, the PBCH and the MIB may be transmitted in the primary secondary cell.
In the primary cell, radio link failure (RLF) is detected. In the secondary cell, even if conditions for the detection of RLF are in place, the detection of the RLF is not recognized. However, in the primary secondary cell, the RLF is detected if the conditions are in place. When the RLF is detected in the primary secondary cell, the higher layer of the primary secondary cell notifies the higher layer of the primary cell that the RLF has been detected. Semi-persistent scheduling (SPS) or discontinuous transmission (DRX) may be used in the primary cell. The same DRX as in the primary cell may be used in the secondary cell. Fundamentally, in the secondary cell, information/parameters on the MAC configuration are shared with the primary cell/primary secondary cell of the same cell group. Some of the parameters (for example, sTAG-Id) may be configured for each secondary cell. Some of the timers or counters may be applied only to the primary cell and/or the primary secondary cell. A timer or counter to be applied may be configured only to the secondary cell.
First, a flow of downlink data transmission and reception will be described with reference to
In the terminal device 1, an OFDM signal is received by the OFDM signal reception unit 602 via the receive antenna 601, and an OFDM demodulation process is performed on the signal. The downlink subframe processing unit 603 first detects physical-layer downlink control channels, such as the PDCCH and the EPDCCH. More specifically, the downlink subframe processing unit 603 decodes the signal by assuming that the PDCCH and the EPDCCH have been transmitted in the regions to which the PDCCH and EPDCCH can be allocated, and checks cyclic redundancy check (CRC) bits added in advance (blind decoding). In other words, the downlink subframe processing unit 603 monitors the PDCCH and the EPDCCH. When the CRC bits match the ID (a terminal-specific identifier assigned to each terminal, such as a cell-radio network temporary identifier (C-RNTI) or a semi persistent scheduling-C-RNTI (SPS-C-RNTI), or a temporary C-RNTI) assigned by the base station device in advance, the downlink subframe processing unit 603 recognizes that the PDCCH or the EPDCCH has been detected and extracts the PDSCH by the use of control information included in the detected PDCCH or EPDCCH. The control unit 606 holds MCS indicating the modulation scheme, coding rate, and the like in the downlink based on the control information, downlink resource allocation indicating RBs to be used for downlink data transmission, and information to be used for HARQ control, and controls the downlink subframe processing unit 603, the transport block extraction unit 605, and the like on the basis of such information. More specifically, the control unit 606 performs control so as to carry out an RE demapping process and a demodulation process corresponding to the RE mapping process and the modulation process in the downlink subframe generation unit 504, and the like. The PDSCH extracted from the received downlink subframe is transferred to the transport block extraction unit 605. The downlink reference signal extraction unit 604 in the downlink subframe processing unit 603 extracts the downlink reference signal from the downlink subframe. In the transport block extraction unit 605, a rate matching process, error correction decoding corresponding to the rate matching process and the error correction coding in the codeword generation unit 503, and the like are performed, and a transport block is extracted and transmitted to the higher layer 607. The transport block includes higher-layer control information, and the higher layer 607 notifies the control unit 606 of a necessary physical-layer parameter on the basis of the higher-layer control information. The plurality of base station devices 2 (base station device 2-1 and base station device 2-2) transmit separate downlink subframes, and the terminal device 1 receives the downlink subframes. Hence, the above-described processes may be carried out on the downlink subframe of each of the plurality of base station devices 2. In this case, the terminal device 1 may or need not recognize that a plurality of downlink subframes have been transmitted from the plurality of base station devices 2. If the terminal device 1 does not recognize the above, the terminal device 1 may simply recognize that a plurality of downlink subframes have been transmitted from a plurality of cells. Moreover, the transport block extraction unit 605 determines whether the transport block has been detected correctly and transmits the determination result to the control unit 606.
Next, a flow of uplink signal transmission and reception will be described. In the terminal device 1, a downlink reference signal extracted by the downlink reference signal extraction unit 604 is transferred to the channel state measurement unit 608 in accordance with an instruction from the control unit 606, the channel state and/or interference is measured in the channel state measurement unit 608, and further a CSI is calculated on the basis of the measured channel state and/or interference. The control unit 606 instructs the uplink control information generation unit 610 to generate HARQ-ACK (DTX (not transmitted yet), ACK (detection succeeded), or NACK (detection failed)) and to map the HARQ-ACK to a downlink subframe on the basis of the determination result whether the transport block is correctly detected. The terminal device 1 performs these processes on the downlink subframe of each of a plurality of cells. In the uplink control information generation unit 610, a PUCCH including the calculated CSI and/or HARQ-ACK is generated. In the uplink subframe generation unit 609, the PUSCH including the uplink data transmitted from the higher layer 607 and the PUCCH generated by the uplink control information generation unit 610 are mapped to RBs in an uplink subframe, and the uplink subframe is generated. Here, the PUCCH and the uplink subframe including the PUCCH are generated for each connectivity group (referred to also as “serving cell group” or “cell group”). Although the details of connectivity groups are to be described later, two connectivity groups are assumed here and correspond to the base station device 2-1 and the base station device 2-2. The uplink subframe of one of the connectivity groups (e.g., the uplink subframe transmitted to the base station device 2-1) is subjected to the SC-FDMA modulation to generate an SC-FDMA signal, and the SC-FDMA signal is transmitted via the transmit antenna 613 by the SC-FDMA signal transmission unit 611. The uplink subframe of the other connectivity group (e.g., the uplink subframe transmitted to the base station device 2-2) is subjected to the SC-FDMA modulation to generate an SC-FDMA signal, and the SC-FDMA signal is transmitted via the transmit antenna 614 by the SC-FDMA signal transmission unit 612. Alternatively, it is also possible to transmit uplink subframes of the two or more connectivity groups at the same time by the use of a single subframe.
Each of the base station device 2-1 and the base station device 2-2 receives an uplink subframe of one connectivity group. Specifically, the SC-FDMA signal is received by the SC-FDMA signal reception unit 509 via the receive antenna 508, and an SC-FDMA demodulation process is performed on the signal. In the uplink subframe processing unit 510, RBs to which the PUCCH is mapped are extracted in accordance with an instruction from the control unit 502, and, in the uplink control information extraction unit 511, the CSI included in the PUCCH is extracted. The extracted CSI is transferred to the control unit 502. The CSI is used for control of downlink transmission parameters (MCS, downlink resource allocation, HARQ, and the like) by the control unit 502.
The terminal device 1 and the base station devices 2 may use, for example, any of the following methods (1) to (5) as a method of grouping serving cells. Note that connectivity groups may be configured by using a method different from (1) to (5).
(1) A connectivity identifier value is configured for each serving cell, and the serving cells for which the same connectivity identifier value is configured are regarded as being in a group. Note that the connectivity identifier value of the primary cell may take a prescribed value (e.g., 0) without being configured.
(2) A connectivity identifier value is configured for each secondary cell, and the secondary cells for which the same connectivity identifier value is configured are regarded as being in a group. Secondary cells for which no connectivity identifier value is configured are regarded as being in the same group as that of the primary cell.
(3) A SCell timing advanced group (STAG) identifier value is configured for each secondary cell, and the secondary cells for which the same STAG identifier value is configured are regarded as being in a group. Moreover, secondary cells for which no STAG identifier is configured are regarded as being in the same group as that of the primary cell. Note that this group is commonly used as a group for performing timing adjustment for uplink transmission with respect to downlink reception.
(4) One of the values 1 to 7 is configured for each secondary cell as a secondary cell index (serving ell index). The primary cell is assumed to have a serving cell index of 0. Secondary cells are grouped on the basis of the serving cell indices. For example, secondary cells each having a secondary cell index of one of 1 to 4 can be regarded as being in the same group as that of the primary cell, while secondary cells each having a secondary cell index of one of 5 to 7 can be regarded as being in a group different from that of the primary cell.
(5) One of the values 1 to 7 is configured for each secondary cell as a secondary cell index (serving cell index). The primary cell is assumed to have a serving cell index of 0. The base station devices 2 make notification of the serving cell index of each cell belonging to each group.
Here, connectivity identifiers, STAG identifiers, and secondary cell indices may be configured for the terminal device 1 by the base station device 2-1 or the base station device 2-2 by the use of dedicated RRC signaling.
Next, the terminal device 1 reports the CSI. In this operation, the CSI of each serving cell belonging to each connectivity group is reported by the use of an uplink resource (PUCCH resource or PUSCH resource) in a cell of the connectivity group. Specifically, in a subframe, the CSI of the cell #0 and the CSI of the cell #1 are transmitted by the use of the PUCCH of the cell #0, which is the PS cell of the connectivity group #0 and also the primary cell. Moreover, in a subframe, the CSI of the cell #0 and the CSI of the cell #1 are transmitted by the use of the PUSCH of one of the cells belonging to the connectivity group #0. Moreover, in a subframe, the CSI of the cell #2 and the CSI of the cell #3 are transmitted by the use of the PUCCH of the cell #2, which is the PS cell of the connectivity group #1. Moreover, in a subframe, the CSI of the cell #2 and the CSI of the cell #3 are transmitted by the use of the PUSCH of one of the cells belonging to the connectivity group #1. In a sense, each PS cell can provide some of the primary cell functions (e.g., CSI transmission using the PUCCH) of traditional carrier aggregation. CSI report for each serving cell in each connectivity group behaves as CSI report for each serving cell in carrier aggregation.
The PUCCH resource for the periodic CSI of a serving cell belonging to a connectivity group is configured in the PS cell in the same connectivity group. The base station device 2 transmits information for configuring a PUCCH resource for the periodic CSI in the PS cell, to the terminal device 1. When receiving information for configuring a PUCCH resource for the periodic CSI in the PS cell, the terminal device 1 reports the periodic CSI by the use of the PUCCH resource. The base station device 2 does not transmit information for configuring a PUCCH resource for the periodic CSI in any cell other than the PS cell, to the terminal device 1. When receiving information for configuring a PUCCH resource for the periodic CSI in any cell other than the PS cell, the terminal device 1 performs error handling while not reporting the periodic CSI by the use of the PUCCH resource.
As a method of determining which one of uplink resources (PUCCH resource or PUSCH resource) is to be used to transmit a periodic CSI report and/or HARQ-ACK, the terminal device 1 can use the following methods. Specifically, the terminal device 1 determines an uplink resource (PUCCH resource or PUSCH resource) on which a periodic CSI report and/or HARQ-ACK are transmitted in accordance with any one of the following (D1) to (D6), for each connectivity group.
(D1) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is not configured, and when the uplink control information of a connectivity group only includes a periodic CSI in a subframe n and the PUSCH is not transmitted in the connectivity group, the uplink control information is transmitted on the PUCCH of the PS cell in the connectivity group.
(D2) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is not configured, and when the uplink control information of a connectivity group includes a periodic CSI and/or HARQ-ACK in the subframe n and the PUSCH is transmitted in the PS cell in the connectivity group, the uplink control information is transmitted on the PUSCH of the PS cell in the connectivity group.
(D3) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is not configured, and when the uplink control information of a connectivity group includes a periodic CSI and/or HARQ-ACK in the subframe n, the PUSCH is not transmitted in the PS cell in the connectivity group, and the PUSCH is transmitted by the use of at least one of the secondary cells other than the PS cell in the connectivity group, the uplink control information is transmitted on the PUSCH of the secondary cell having the smallest cell index in the connectivity group.
(D4) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is configured, and when the uplink control information of a connectivity group only includes a periodic CSI in the subframe n, the uplink control information is transmitted on the PUCCH of the PS cell of the connectivity group.
(D5) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is configured, and when the uplink control information of a connectivity group includes a periodic CSI and HARQ-ACK in the subframe n and the PUSCH is transmitted in the PS cell in the connectivity group, the HARQ-ACK is transmitted on the PUCCH of the PS cell in the connectivity group, and the periodic CSI is transmitted on the PUSCH of the PS cell in the connectivity group.
(D6) When more than one serving cells are configured for the terminal device 1 and concurrent transmission of the PUSCH and PUCCH is configured, and when the uplink control information of a connectivity group includes a periodic CSI and HARQ-ACK in the subframe n and the PUSCH is not transmitted in the PS cell in the connectivity group and the PUSCH is transmitted by using at least one of other secondary cells in the same connectivity group, the HARQ-ACK is transmitted on the PUCCH of the PS cell in the connectivity group, and the periodic CSI is transmitted on the PUSCH of the secondary cell having the smallest secondary cell index in the connectivity group.
As described above, in the communication system including the terminal device 1 and the plurality of base station devices 2, each of which communicates by the use of at least one serving cells, the terminal device 1 configures, in the higher-layer control information acquisition unit, a connectivity identifier for each serving cell, and calculates, in the channel state information generation unit, periodic channel state information for each serving cell. When reports of periodic channel state information of serving cells having the same connectivity identifier value collide with each other in one subframe, the uplink control information generation unit drops all the pieces of periodic channel state information other than one piece and generates uplink control information, and the uplink control information transmission unit transmits an uplink subframe including the uplink control information. At least one of the base station device 2-1 and the base station device 2-2 configures, in the higher-layer control information notification unit, a value corresponding to each of the plurality of base station devices, as a connectivity identifier for each serving cell (for example, a first value for the serving cell of the base station device 2-1 and a second value for the serving cell of the base station device 2-2). Moreover, each of the base station device 2-1 and base station device 2-2 receives, in the uplink control information reception unit, an uplink subframe, and, when reports of periodic channel state information of two or more serving cells having the connectivity identifier value corresponding to the first base station device collide with each other in one of the uplink subframes, extracts, in the uplink control information extraction unit, uplink control information including only one piece of periodic channel state information of the colliding pieces of periodic channel state information. Preferably, the CSI of each the serving cell of each of the connectivity groups is transmitted and received in an uplink subframe in the PS cell of the connectivity group.
Here, the functions of the higher-layer control information notification unit may be included in both or only one of the base station device 2-1 and the base station device 2-2. Note that the functions being included in only one of the base station device 2-1 and the base station device 2-2 means that, in dual connectivity, higher-layer control information is transmitted from one of the base station device 2-1 and the base station device 2-2 and does not mean that the base station device 2-1 or the base station device 2-2 has a configuration of not including the higher-layer control information notification unit itself. The base station device 2-1 and base station device 2-2 have a backhaul transmission/reception mechanism. When the base station device 2-2 makes a configuration associated with the serving cells provided by the base station device 2-1 (including a connectivity group configuration for the serving cells), the base station device 2-1 transmits information indicating the configuration to the base station device 2-2 via a backhaul, and the base station device 2-2 makes the configuration (configuration in the base station device 2-2 or signaling to the terminal device 1) on the basis of the information received via the backhaul. In contrast, when the base station device 2-1 makes a configuration associated with the serving cells provided by the base station device 2-2, the base station device 2-2 transmits information indicating the configuration to the base station device 2-1 via the backhaul, and the base station device 2-1 makes the configuration (configuration in the base station device 2-1 or signaling to the terminal device 1) on the basis of the information received via the backhaul. Alternatively, some of the functions of the higher-layer control information notification unit may be included in the base station device 2-2, and the other functions may be included in the base station device 2-1. In this case, the base station device 2-1 may be referred to as “master base station device”, and the base station device 2-2 may be referred to as “assist base station device.” The assist base station device is capable of providing, to the terminal device 1, a configuration associated with the serving cells provided by the assist base station device (including a connectivity group configuration for the serving cells). In contrast, the master base station device is capable of providing, to the terminal device 1, a configuration associated with the serving cells provided by the master base station device (including connectivity group configuration for the serving cells).
The terminal device 1 is capable of recognizing that the terminal device 1 is communicating only with the base station device 2-1. In other words, the higher-layer control information acquisition unit can acquire pieces of higher-layer control information notified by the base station device 2-1 and the base station device 2-2 as those notified by the base station device 2-1. Alternatively, the terminal device 1 is capable of recognizing that the terminal device 1 is communicating with two base station devices, namely, the base station device 2-1 and base station device 2-1. Specifically, the higher-layer control information acquisition unit can acquire a piece of higher-layer control information notified by the base station device 2-1 and a piece of higher-layer control information notified by the base station device 2-2 and merge the pieces together.
With this configuration, each of the base station devices 2 can receive a desired periodic CSI report directly from the terminal device 1 without involving the other base station device 2. Hence, even when the base station devices 2 are connected to each other through a low-speed backhaul, scheduling can be performed by the use of a timely periodic CSI report.
Next, non-periodic CSI report will be described. A non-periodic CSI report is transmitted on a PUSCH in accordance with an instruction made by using a CSI request field in an uplink grant transmitted in a PDCCH or EPDCCH. More specifically, the base station device 2-1 or the base station device 2-2 first configures n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) in the terminal device 1 through dedicated RRC signaling. The CSI request field can express n+2 kinds of states. The states indicate that any non-periodic CSI report is not fed back, a CSI report in the serving cell allocated by an uplink grant (or in the CSI process of the serving cell allocated by an uplink grant) is fed back, and CSI reports in the n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) configured in advance are fed back. The base station device 2-1 or the base station device 2-2 configures a value for a CSI request field on the basis of a desired CSI report, and the terminal device 1 determines a CSI report to be made on the basis of the CSI request field value and makes the CSI report. The base station device 2-1 or the base station device 2-2 receives the desired CSI report.
As an example of a non-periodic CSI report during dual connectivity, n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) are configured for each connectivity group. For example, the base station device 2-1 or the base station device 2-2 configures n kinds (where n is a natural number) of combinations of serving cells of the connectivity group #0 (or combinations of CSI processes of the connectivity group #0) and n kinds (where n is a natural number) of combinations of serving cells of the connectivity group #1 (or combinations of CSI processes of the connectivity group #0) in the terminal device 1. The base station device 2-1 or the base station device 2-2 configures a value for a CSI request field on the basis of the desired CSI report. The terminal device 1 determines the connectivity group to which the serving cell belongs, the PUSCH resource being allocated to the serving cell by an uplink grant requesting a non-periodic CSI report, determines the CSI report to be made, by the use of the n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) corresponding to the connectivity group to which the serving cell belongs, the PUSCH resource being allocated to the serving cell by the uplink grant requesting the non-periodic CSI report, and makes a non-periodic CSI report on the PUSCH allocated by the uplink grant requesting the non-periodic CSI report. The base station device 2-1 or the base station device 2-2 receives the desired CSI report.
As another example of a non-periodic CSI report during dual connectivity, one of the n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) is configured. Each of the n kinds (where n is a natural number) of combinations of serving cells (or combinations of CSI processes) is limited to a combination of serving cells belonging to any of the connectivity groups (or a combination of CSI processes of serving cells belonging to any of the connectivity groups). The base station device 2-1 or the base station device 2-2 configures a value for a CSI request field on the basis of the desired non-periodic CSI report, and the terminal device 1 determines the non-periodic CSI report to be made on the basis of the value for the CSI request field to thereby make the non-periodic CSI report. The base station device 2-1 or the base station device 2-2 receives the desired non-periodic CSI report.
With this configuration, each of the base station devices 2 can receive a desired non-periodic CSI report directly from the terminal device 1 without involving the other base station device 2. Moreover, each PUSCH only includes non-periodic CSI reports of the serving cells belonging to a single connectivity group (or CSI processes of the serving cells belonging to a single connectivity group), and hence each of the base station devices 2 can receive a non-periodic CSI report independent of the configuration of the other base station 2, from the terminal device 1. Hence, even when the base station devices 2 are connected to each other through a low-speed backhaul, scheduling can be performed by the use of timely periodic CSI report.
Next, uplink power control of the terminal device 1 in dual connectivity will be described. Here, uplink power control includes power control in uplink transmission. Uplink transmission includes transmission of uplink signals/uplink physical channels, such as a PUSCH, PUCCH, PRACH, and SRS. In the following description, the MeNB may collectively make notifications of (configure) parameters associated with both the MeNB and SeNB. The SeNB may collectively make notifications of (configure) parameters associated with both the MeNB and SeNB. The MeNB and SeNB may make notifications of (configure) respective parameters associated with the MeNB and SeNB.
The terminal device 1 may individually perform uplink power control for the MCG including the primary cell and the SCG including the primary secondary cell. Note that uplink power control includes transmit power control for uplink transmission. Uplink power control includes transmit power control of the terminal device 1.
For the terminal device 1, the maximum allowable output power PEMAX of the terminal device 1 is configured by the use of higher-layer dedicated signaling and/or higher-layer shared signaling (e.g., system information block (SIB)). This maximum allowable output power may be referred to as “higher-layer maximum output power.” For example, PEMAX, c, which is the maximum allowable output power in the serving cell c, is given on the basis of P-Max configured for the serving cell c. In other words, PEMAX, c takes the same value as P-Max in the serving cell c.
For the terminal device 1, a power class PPowerClass of the terminal device 1 is defined in advance for each frequency band. Power class is the maximum output power defined without taking into account allowable error defined in advance. For example, power class is defined as 23 dBm. The maximum output power may be configured for each of the MCG and SCG on the basis of the power class defined in advance. Power classes may be defined for each of the MCG and SCG independently.
For the terminal device 1, the configured maximum output power is configured for each serving cell. For the terminal device 1, the configured maximum output power PCMAX, c for the serving cell c is configured. PCMAX is the total of PCMAX, c. Note that the configured maximum output power may be referred to as “physical-layer maximum output power.”
PCMAX, c is a value equal to or greater than PCMAX_L, c and equal to or smaller than PCMAX_H, c. For example, the terminal device 1 sets PCMAX, c within the range. PCMAX_H, c is the minimum value of the PEMAX, c and PPowerClass. PCMAX_L, c is the minimum value of a value based on PEMAX, c and a value based on PPowerClass. The value based on PPowerClass is the value obtained by subtracting a value based on maximum power reduction (MPR) from PPowerClass. MPR is the maximum power reduction for maximum output power and is determined on the basis of the modulation scheme and the configuration of the transmission bandwidth for the uplink channel and/or uplink signal to be transmitted. For each subframe, MPR is evaluated for each slot and is given on the basis of evaluation for each slot and the maximum value obtained through transmission in the slot. The maximum MPR in the two slots of a subframe is used for the entire subframe. In other words, MPR may be different for each subframe, and hence PCMAX_L, c may also be different for each subframe. As a result, PCMAX, c may also be different for each subframe.
The terminal device 1 can configure or determine PCMAX for each of the MeNB (MCG) and SeNB (SCG). In other words, the total power allocation can be configured or determined for each cell group. The total configured maximum output power for the MeNB is defined as PCMAX, MeNB, and the total power allocation for the MeNB is defined as Palloc_MeNB. The total configured maximum output power for the SeNB is defined as PCMAX, SeNB, and the total power allocation for the SeNB is defined as Palloc_SeNB. PCMAX, MeNB and Palloc_MeNB may be the same value. PCMAX, SeNB and Palloc_SeNB may be the same value. In other words, the terminal device 1 performs transmit power control so that the total output power (allocation power) of the cells associated with the MeNB is to be equal to or smaller than PCMAX, MeNB or Palloc_MeNB and the total output power (allocation power) of the cells associated with the SeNB is equal to or smaller than PCMAX, SeNB or Palloc_SeNB. Specifically, the terminal device 1 performs scaling on transmit power of uplink transmission for each cell group so that the value configured for the cell group is not exceeded. Here, scaling is to stop transmission or reduce transmit power for uplink transmission with a lower priority for each cell group, on the basis of the priorities for uplink transmissions to be performed at the same time and the configured maximum output power for the cell group. Note that, when transmit power control is performed for each uplink transmission, the method described in the present embodiment is used for each uplink transmission.
PCMAX, MeNB and/or PCMAX, SeNB is configured on the basis of the minimum guaranteed power configured through higher-layer signaling. In the following, details of the minimum guaranteed power are described.
The minimum guaranteed power is configured for each cell group. When the minimum guaranteed power is not configured by higher-layer signaling, the terminal device 1 may set the minimum guaranteed power to a predefined value (e.g., 0). The configured maximum output power of the MeNB is defined as PMeNB. The configured maximum output power of the SeNB is defined as PSeNB. For example, each of PMeNB and PSeNB may be used as the minimum powers guaranteed to maintain the minimum communication quality for uplink transmission to the corresponding one of the MeNB and SeNB. The minimum guaranteed power is also referred to as “guaranteed power”, “held power”, or “required power.”
The guaranteed power may be used, when the total of the transmit power of the uplink transmission to the MeNB and the transmit power of the uplink transmission to the SeNB exceeds PCMAX, to maintain the transmission or transmission quality of a channel or signal with a higher priority on the basis of the priority levels defined in advance or the like. It is also possible to assume each of PMeNB and PSeNB as the minimum required power (i.e., guaranteed power) to be used in communication and use, in the calculation of power allocation for each CG, the power as a power value to be reserved for the CGs other than the calculation target CG.
PMeNB and PSeNB can be defined as absolute power values (e.g., represented in the unit of dBm). In the case of using absolute power values, PMeNB and PSeNB are configured. The total value of PMeNB and PSeNB is preferably equal to or smaller than PCMAX but is not limited thereto. When the total value of PMeNB and PSeNB is greater than PCMAX, the process for reducing the total power to PCMAX or lower by scaling is further required. For example, in the scaling, each of the total power value of the MCG and the total power value of SCG is multiplied by a single coefficient that is a value smaller than one.
Each of PMeNB and PSeNB may be defined as the ratio (scale or relative value) to PCMAX. For example, each of PMeNB and PSeNB may be expressed in the unit of dB with respect to the decibel value of PCMAX, or as the ratio to the true value of PCMAX. The ratio of PMeNB and the ratio of PSeNB are configured, and PMeNB and PSeNB are determined on the basis of the ratios. In the case of expression using ratios, the total value of the ratio of PMeNB and the ratio of PSeNB is preferably equal to or lower than 100%.
The above may alternatively be expressed as follows. PMeNB and/or PSeNB can be configured commonly or independently as parameters for uplink transmission via higher-layer signaling. PMeNB indicates the minimum ensured power with respect to the total transmit power allocated to each or all uplink transmissions in the cells belonging to the MeNB. PSeNB indicates the minimum ensured power with respect to the total transmit power allocated to each or all uplink transmissions in the cells belonging to the SeNB. Each of PMeNB and PSeNB is a value equal to or greater than zero. The total of PMeNB and PSeNB may be configured so as not to exceed PCMAX or prescribed maximum transmit power. In the following description, the minimum ensured power may also be referred to as “ensured power” or “guaranteed power.”
Note that guaranteed power may be configured for each serving cell. Alternatively, guaranteed power may be configured for each cell group. Alternatively, guaranteed power may be configured for each base station device (MeNB and SeNB). Alternatively, guaranteed power may be configured for each uplink signal. Alternatively, guaranteed power may be configured for higher-layer parameter. Only PMeNB may be configured through an RRC message while PSeNB is not configured through an RRC message. In this case, the value (remaining power) obtained by subtracting configured PMeNB from PCMAX may be set as PSeNB.
Guaranteed power may be set for each subframe irrespective of whether there is uplink transmission. Moreover, guaranteed power need not be applied to subframes (e.g., a downlink subframe in a TDD UL-DL configuration) for which no uplink transmission is expected (the terminal device has recognized that no uplink transmission is to be performed). In other words, to determine transmit power for a certain CG, no guaranteed power need be reserved for the other CG Moreover, guaranteed power may be applied to subframes in which periodic uplink transmission occurs (e.g., P-CSI, trigger type 0 SRS, TTI bundling, SPS, RACH transmission in higher-layer signaling, or the like). Information indicating whether the guaranteed power is valid or invalid for all subframes may be notified through a higher layer.
A subframe set to which the guaranteed power is applied may be notified as a higher-layer parameter. Note that the subframe set to which guaranteed power is applied may be configured for each serving cell. Alternatively, the subframe set to which guaranteed power is applied may be configured for each cell group. Alternatively, the subframe set to which guaranteed power is applied may be configured for each uplink signal. Alternatively, the subframe set to which guaranteed power is applied may be configured for each base station device (MeNB and SeNB). The subframe set to which guaranteed power is applied may be in common among the base station devices (MeNB and SeNB). In this case, the MeNB and SeNB may be synchronized. When the MeNB and SeNB are asynchronous, the subframe set to which guaranteed power is applied may be set separately.
When guaranteed power is configured for each of the MeNB (MCG and serving cells belonging to the MCG) and the SeNB (SCG and serving cells belonging to the SCG), whether to consistently set the guaranteed power for all the subframes may be determined on the basis of the frame structure type set for the MeNB (MCG and serving cells belonging to the MCG) and the SeNB (SCG and serving cells belonging to the SCG). For example, when the frame structure types for the MeNB and SeNB are different from each other, the guaranteed power may be set for all the subframes. In this case, MeNB and SeNB need not be synchronized. When the MeNB and SeNB (the subframes and radio frames of MeNB and SeNB) are synchronized, the guaranteed power need not be considered for FDD uplink subframes (uplink cell subframes) overlapping the downlink subframes in a TDD UL-DL configuration. In other words, the maximum value of the uplink power for the uplink transmission in an FDD uplink subframe in this case may be PUE_MAX or PUE_MAX, c.
Details of a method of configuring (method of determining) Palloc, MeNB and/or Palloc, SeNB will be described below.
An example of determination of Palloc, MeNB and/or Palloc, SeNB is carried out through the following steps. In the first step, Ppre_MeNB and Ppre_SeNB are obtained respectively in the MCG and SCG Each of Ppre_MeNB and Ppre_SeNB is given by the smallest value of the total power required for actual uplink transmission in the corresponding one of the cell groups and the guaranteed power (i.e., PMeNB or PSeNB) configured for the corresponding cell group. In the second step, the remaining power is allocated (added) to Ppre_MeNB and/or Ppre_SeNB in a prescribed method. The remaining power is power obtained by subtracting Ppre_MeNB and Ppre_SeNB from PCMAX. Part of or all the remaining power can be used. The powers determined through these steps are used as Palloc, MeNB and Palloc, SeNB.
An example of power required for actual uplink transmission is power determined on the basis of allocation of actual uplink transmission and transmit power control for the uplink transmission. For example, when uplink transmission relates to a PUSCH, the power is determined at least on the basis of the number of RBs to which the PUSCH is allocated, estimation of downlink path loss calculated in the terminal device 1, values referred to by a transmit power control command, and parameters configured through higher-layer signaling. When uplink transmission relates to a PUCCH, the power is determined at least on the basis of values dependent on the PUCCH format, values referred to by a transmit power control command, and estimation of downlink path loss calculated in the terminal device 1. When uplink transmission relates to an SRS, the power is determined at least on the basis of the number of RBs for transmitting the SRS and a state adjusted for the current power control for the PUSCH.
An example of power required for actual uplink transmission is the smallest value of the power determined on the basis of allocation of the actual uplink transmission and the transmit power control for the uplink transmission and the configured maximum output power (i.e., PCMAX, c) of the cell to which the uplink transmission is allocated. Specifically, the required power for a certain cell group (power required for an actual uplink transmission) is given according to Σ(min(PCMAX, j, PPUCCH+PPUSCH, j). Note that j indicates a serving cell associated with the cell group. When the serving cell is PCell or pSCell and no PUCCH transmission is to be carried out in the serving cell, PPUCCH is set to zero. When the serving cell is SCell (in other words, the serving cell is not PCell or pSCell), PPUCCH is set to zero. When no PUSCH transmission is to be carried out in the serving cell, PPUSCH, j is set to zero. Note that, for the method of calculating required power, the method to be described below in Steps (t1) to (t9) may be used.
An example of determination of Palloc, MeNB and/or Palloc, SeNB is carried out through the following steps. In the first step, Ppre_MeNB and Ppre_SeNB are obtained respectively in the MCG and SCG Each of Ppre_MeNB and Ppre_SeNB is given, in the corresponding one of the cell groups, by the guaranteed power (i.e., PMeNB or PSeNB) configured for the corresponding cell group. In the second step, the remaining power is allocated (added) to Ppre_MeNB and/or Ppre_SeNB in a prescribed method. For example, the remaining power is allocated by assuming that a cell group to be transmitted earlier has a higher priority. For example, the remaining power is allocated to the cell group to be transmitted earlier without considering the cell group which may be transmitted later. The remaining power is the power obtained by subtracting Ppre_MeNB and Ppre_SeNB from PCMAX. Part of or all the remaining power can be used. The powers determined through these steps are used as Palloc, MeNB and Palloc, SeNB.
The remaining power can be allocated to uplink channels and/or uplink signals that do not satisfy PMeNB or PSeNB. The remaining power is allocated on the basis of the priorities for the types of uplink transmission. The types of uplink transmission correspond to uplink channel, uplink signal, and/or UCI. The priorities are given over the cell groups. The priorities may be defined in advance or may be configured through higher-layer signaling.
An example of the case of the priorities being defined in advance is based on cell groups and uplink channels. For example, the priorities for the types of uplink transmission are defined in the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH including a UCI in the SCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG
An example of the case of the priorities being defined in advance is based on cell groups, uplink channels, and/or the types of UCI. For example, the priorities for the types of uplink transmission are defined in the order from a PUCCH or PUSCH including a UCI including at least HARQ-ACK and/or SR in the MCG, a PUCCH or PUSCH including a UCI including at least HARQ-ACK and/or SR in the SCG, a PUCCH or PUSCH including a UCI only including a CSI in the MCG, a PUCCH or PUSCH including a UCI only including a CSI in the SCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG
In an example of the case of priorities being configured through higher-layer signaling, the priorities are configured on the basis of cell groups, uplink channels, and/or the types of UCI. For example, the priorities for the types of uplink transmission are configured for each of a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH including a UCI in the SCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG
In an example of remaining power allocation based on priorities, the remaining power is allocated to the cell group having the type of uplink transmission with the highest priority in the cell groups. Note that the power still remaining after the allocation to the cell group having the type of uplink transmission with the highest priority is allocated to the other cell group. Details of operations of the terminal device 1 is as follows.
In an example of remaining power allocation based on priorities, the remaining power is allocated to the cell group having a high total of parameters (points) based on the priorities.
In an example of remaining power allocation based on priorities, the remaining power is allocated to the cell groups in accordance with the ratios determined on the basis of the totals of the parameters (points) based on the priorities. For example, when the totals of the parameters (points) based on the priorities for the MCG and SCG are respectively 15 and 5, 75% of the remaining power is allocated to the MCG, and 25% of the remaining power is allocated to the SCG Parameters based on the priorities may be determined further on the basis of the number of resource blocks allocated to uplink transmission.
In an example of remaining power allocation based on priorities, the remaining power is allocated to the types of uplink transmission in the order from the type of uplink transmission having a higher priority. The allocation is carried out over the cell groups in accordance with the priorities for the types of uplink transmission. Specifically, the remaining power is allocated to the types of uplink transmission in the order from the type of transmission having a higher priority so that required power for each type of uplink transmission is satisfied. Further, the allocation is carried out by assuming that each of Ppre_MeNB and Ppre_SeNB is allocated to the types of uplink transmission having high priorities in the corresponding cell group. On the basis of this assumption, the remaining power is allocated to the type of uplink transmission in the order from the type of uplink transmission having a higher priority among the types of uplink transmission for which the required power is not satisfied.
In an example of remaining power allocation based on priorities, the remaining power is allocated to the types of uplink transmission in the order from the type of uplink transmission having a higher priority. The allocation is carried out over the cell groups in accordance with the priorities for the types of uplink transmission. Specifically, the remaining power is allocated to the type of uplink transmission in the order from the type of uplink transmission having a higher priority so that required power for each type of uplink transmission is satisfied. Further, the allocation is carried out by assuming that each of Ppre_MeNB and PPre_SeNB is allocated to the types of uplink transmission having lower priorities in the corresponding cell group. On the basis of this assumption, the remaining power is allocated to the types of uplink transmission in the order from the type of uplink transmission having a higher priority among the types of uplink transmission for which the required power is not satisfied.
Another example of remaining power allocation based on priorities is as follows. A terminal device communicating with a base station device by using a first cell group and a second cell group includes a transmission unit that transmits a channel and/or signal on the basis of the maximum output power of the first cell group in a certain subframe. When information on uplink transmission in the second cell group is recognized, the remaining power is allocated on the basis of the priorities for the types of uplink transmission. The remaining power is given by subtracting the power determined on the basis of uplink transmission in the first cell group and the power determined on the basis of uplink transmission in the second cell group, from the total maximum output power of the terminal device. The maximum output power is the total of the power determined on the basis of the uplink transmission in the first cell group and the power allocated to the first cell group from the remaining power.
The remaining power is allocated to the cell groups in the order from the cell group having the type of uplink transmission having a higher priority.
Alternatively, the remaining power is allocated by assuming as follows. The power determined on the basis of uplink transmission in the first cell group is allocated to the types of uplink transmission having higher priorities in the first cell group. The power determined on the basis of uplink transmission in the second cell group is allocated to the types of uplink transmission having higher priorities in the second cell group.
Alternatively, the remaining power is allocated by assuming as follows. The power determined on the basis of uplink transmission in the first cell group is allocated to the types of uplink transmission having lower priorities in the first cell group. The power determined on the basis of uplink transmission in the second cell group is allocated to the types of uplink transmission having lower priorities in the second cell group.
Moreover, the remaining power is allocated on the basis of the total of parameters determined on the basis of the priorities for the types of uplink transmission in each of the cell groups.
An example of a specific method of allocating guaranteed power and remaining power (residual power) to cell groups (CGs) is as follows. In power allocation for CGs, guaranteed power allocation is carried out in the first step, and residual power allocation is carried out in the second step. The powers allocated in the first step are Ppre_MeNB and Ppre_SeNB. The totals of the powers allocated in the first step and the powers allocated in the second step are Palloc_MeNB and Palloc_SeNB. Note that guaranteed power is also referred to as “first reserve power”, “power allocated in the first step” or “first allocation power.” Residual power is also referred to as “second reserve power”, “power allocated in the second step” or “second allocation power.”
An example of guaranteed power allocation follows the following rules.
(G1) If a terminal device has recognized that, in a certain CG (first CG) (at the time of determining power to allocate to the certain CG (first CG)), uplink transmission in another CG (second CG) is not to be carried out in the subframes overlapping the subframe of the certain CG (first CG), the terminal device does not reserve (not allocate) guaranteed power for power to be allocated to the other CG (second CG) in this case.
(G2) In other cases, the terminal device reserves (allocates) guaranteed power for power to be allocated to the other CG (second CG).
An example of residual power allocation follows the following rules.
(R1) If a terminal device has recognized that, in a certain CG (first CG) (at the time of determining power to allocate to the certain CG (first CG)), uplink transmission with a higher priority than that of uplink transmission in the certain CG (first CG) is to be carried out in the subframes overlapping the subframe of the certain CG (first CG) in another CG (second CG), the terminal device reserves residual power for power to be allocated to the other CG (CG) in this case.
(R2) In other cases, the terminal device allocates the residual power to the certain CG (first CG) and does not reserve residual power for power to be allocated to the other CG (second CG).
An example of guaranteed power allocation follows the following rules.
(G1) If a terminal device does not recognize, in a certain CG (first CG) (at the time of determining power to allocate to the certain CG (first CG)), information on uplink transmission in another CG (second CG) in the subframes overlapping the subframe of the certain CG (first CG), the terminal device performs the following operations. On the basis of the information on the uplink transmission in the certain CG (first CG), the terminal device allocates required power (Ppre_MeNB or Ppre_SeNB) to the power to be allocated to the certain CG (first CG). The terminal device allocates guaranteed power (PMeNB or PSeNB) to power to be allocated to the other CG (second CG).
(G2) In other cases, the terminal device performs the following operations. On the basis of the information on the uplink transmission in the certain CG (first CG), the terminal device allocates required power (Ppre_MeNB or Ppre_SeNB) to the power to be allocated to the certain CG (first CG). On the basis of information on uplink transmission in the other CG (second CG), the terminal device allocates required power (Ppre_MeNB or Ppre_SeNB) to power to be allocated to the other CG (second CG).
An example of residual power allocation follows the following rules.
(R1) If a terminal device does not recognize, in a certain CG (first CG) (at the time of determining power to allocate to the certain CG (first CG)), information on uplink transmission in another CG (second CG) in the subframes overlapping the subframe of the certain CG (first CG), the terminal device performs the following operation. The terminal device allocates residual power to the power to be allocated to the certain CG (first CG).
(R2) In other cases, the terminal device allocates the residual power to the power to be allocated to the certain CG (first CG) and the power to be allocated to the other CG (second CG), in a prescribed method. As a specific method, the method described in the present embodiment can be used.
An example of defining (a method of calculating) remaining power is as follows. This example corresponds to a case in which the terminal device 1 has recognized uplink transmission allocation to the subframes overlapping in the other cell group.
In the subframe i illustrated in
In the subframe i illustrated in
Another example of defining (a method of calculating) remaining power is as follows. This example corresponds to a case in which the terminal device 1 has not recognized uplink transmission allocation to the subframes overlapping in the other cell group.
In the subframe i illustrated in
In the subframe i illustrated in
Another example of defining (a method of calculating) remaining power is as follows. A terminal device communicating with a base station device by using a first cell group and a second cell group includes a transmission unit that transmits a channel and/or signal on the basis of the maximum output power of the first cell group in a certain subframe. When information on uplink transmission in the second cell group in a subsequent subframe overlapping the certain subframe is recognized, the maximum output power for the first cell group is the total of the power determined on the basis of the uplink transmission of the first cell group in the certain subframe and the power allocated to the first cell group from the remaining power. The remaining power is given by subtracting the power determined on the basis of uplink transmission in the first cell group in the certain subframe and the power for the second cell group, from the total maximum output power of the terminal device. The power for the second cell group is the greatest value of the output power of the second cell group in the forward subframe overlapping the certain subframe and the power determined on the basis of uplink transmission of the second cell group in the later subframe overlapping the certain subframe.
Another example of defining (a method of calculating) remaining power is as follows. A terminal device communicating with a base station device by using a first cell group and a second cell group includes a transmission unit that transmits a channel and/or signal on the basis of the maximum output power of the first cell group in a certain subframe. When information on uplink transmission in the second cell group in a subsequent subframe overlapping the certain subframe is not recognized, the maximum output power for the first cell group is the total of the power determined on the basis of the uplink transmission of the first cell group in the certain subframe and the power allocated to the first cell group from the remaining power. The remaining power is given by subtracting the power determined on the basis of uplink transmission in the first cell group in the certain subframe and the power for the second cell group, from the total maximum output power of the terminal device. The power for the second cell group is the greatest value of the output power of the second cell group in the forward subframe overlapping the certain subframe and the guaranteed power of the second cell group in the subsequent subframe overlapping the certain subframe.
Another example of defining (a method of calculating) remaining power is as follows. A terminal device communicating with a base station device by using a first cell group and a second cell group includes a transmission unit that transmits a channel and/or signal on the basis of the maximum output power of the first cell group in a certain subframe. When information on uplink transmission in the second cell group in a subsequent subframe overlapping the certain subframe is not recognized, the maximum output power for the first cell group is given by subtracting the power for the second cell group from the total maximum output power of the terminal device. The power for the second cell group is the greatest value of the output power of the second cell group in the forward subframe overlapping the certain subframe and the guaranteed power of the second cell group in the subsequent subframe overlapping the certain subframe.
Another method of allocating guaranteed power and residual power will be described below.
First, as Step (s1), the power value of the MCG and the power value of the SCG are initialized, and excess power (excess power that is not allocated yet) is calculated. Moreover, excess guaranteed power (guaranteed power that is not allocated yet) is initialized. More specifically, it is assumed that PMCG=0, PSCG=0, PRemaining=PCMAX−PMeNB−PSeNB. Moreover, it is assumed that PMeNB, Remaining=PMeNB, and PSeNB, Remaining=PSeNB. Here, PMCG and PSCG are respectively the power value of the MCG and the power value of the SCG, and PRemaining is an excess power value. PCMAX, PMeNB, and PSeNB are the above-described parameters. Moreover, PMeNB, Remaining and PSeNB, PRemaining are respectively the excess guaranteed power value of the MCG and the excess guaranteed power value of the SCG Here, each power value is assumed to be a linear value.
Next, the excess power and the excess guaranteed power are sequentially allocated to the CGs in the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG In this case, when there is excess guaranteed power, the excess guaranteed power is allocated first, and, after no more excess guaranteed power exists, excess guaranteed power is allocated. The power amounts to be sequentially allocated to the CGs are basically the power values required for the respective channels (power values based on transmit power control (TPC) commands and power values based on resource assignment and the like). Note that, if the excess power or the excess guaranteed power is not sufficient for a required power value, the entire excess power or the excess guaranteed power is allocated. When power is allocated to a CG, the excess power or the excess guaranteed power decreases by the amount corresponding to the allocated power. Note that allocating excess power or excess guaranteed power having a value of zero means the same as not allocating excess power or excess guaranteed power. In the following, (s2) to (s8) will be described as more specific steps of calculating a power value for each CG.
As Step (s2), the following computation is performed. If there is PUCCH transmission in the MCG (or the terminal device 1 has recognized that there is PUCCH transmission in the MCG), the following computation is performed: PMCG=PMCG−δ1+δ2, PMeNB, Remaining=PMeNB, Remaining−δ1, PRemaining=PRemaining−δ2. Here, δ1=min(PPUCCH, MCG, PMeNB, Remaining), and δ2=min(PPUCCH, MCG−δ1, PRemaining). In other words, the power value required for PUCCH transmission is allocated to the MCG from the excess guaranteed power of the MCG In this step, if the excess guaranteed power of the MCG is insufficient for the required power of the PUCCH transmission, the entire excess guaranteed power is allocated to the MCG, and then power equivalent to the shortage is allocated for the MCG from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the MCG The power value allocated from the excess guaranteed power or the excess power is added to the power value of the MCG The power value allocated to the MCG is subtracted from the excess guaranteed power or the excess power. Note that PPUCCH, MCG is a power value required for the PUCCH transmission in the MCG, and is calculated on the basis of parameters configured by a higher layer, downlink path loss, an adjustment value determined on the basis of the UCI transmitted by the PUCCH, an adjustment value determined on the basis of the PUCCH format, an adjustment value determined on the basis of the number of antenna ports used for the transmission by the PUCCH, a value based on a TPC command, and the like.
As Step (s3), the following computation is performed. If there is PUCCH transmission in the SCG (or the terminal device 1 has recognized that there is PUCCH transmission in the SCG), the following computation is performed: PSCG=PSCG+δ1+δ2, PSeNB, Remaining=PSeNB, Remaining−δ1, PRemaining=PRemaining−δ2. Here, δ1=min(PPUCCH, SCG, PSeNB, Remaining), and δ2=min(PPUCCH, SCG−δ1, PRemaining). In other words, the power value required for PUCCH transmission is allocated to the SCG from the excess guaranteed power of the SCG In this step, if the excess guaranteed power of the SCG is insufficient for the required power of the PUCCH transmission, the entire excess guaranteed power is allocated to the SCG, and then power equivalent to the shortage is allocated to the SCG from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the SCG. The power value allocated from the excess guaranteed power or the excess power is added to the power value of the SCG The power value allocated to the SCG is subtracted from the excess guaranteed power or excess power. Note that PPUCCH, SCG is a power value required by the PUCCH transmission in the SCG and is calculated on the basis of parameters configured by a higher layer, downlink path loss, an adjustment value determined on the basis of the UCI transmitted by the PUCCH, an adjustment value determined on the basis of the PUCCH format, an adjustment value determined on the basis of the number of the antenna ports used for transmission by the PUCCH, a value on the basis of a TPC command, and the like.
As Step (s4), the following computation is performed. If there is transmission of a PUSCH including the UCI in the MCG (or the terminal device 1 has recognized that there is transmission of a PUSCH including the UCI in the MCG), the following computation is performed: PMCG=PMCG+δ1+δ2, PMeNB, Remaining=PMeNB, Remaining−δ1, PRemaining=PRemaining−δ2. Here, δ1=min(PPUSCH, j, MCG, PMeNB, Remaining), and δ2=min(PPUSCH, j, MCG−δ1, PRemaining). In other words, the power value required for the transmission of the PUSCH including the UCI is allocated to the MCG from the excess guaranteed power of the MCG In this step, if the excess guaranteed power of the MCG is insufficient for the power required for the transmission of the PUCCH including the UCI, the entire excess guaranteed power is allocated to the MCG, and then power equivalent to the shortage is allocated to the MCG from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the MCG The power value allocated from the excess guaranteed power or the excess power is added to the power value of the MCG The power value allocated to the MCG is subtracted from the excess guaranteed power or the excess power. Note that PPUSCH, j MCG is a power value required for the transmission of the PUSCH including the UCI in the MCG and is calculated on the basis of the parameters configured by a higher layer, an adjustment value determined on the basis of the number of PRBs allocated to the PUSCH transmission by resource assignment, downlink path loss and a coefficient by which the path loss is multiplied, an adjustment value determined on the basis of the parameter indicating the offset of the MCS applied to the UCI, a value based on a TPC command, and the like.
As Step (s5), the following computation is performed. If there is transmission of a PUSCH including the UCI in the SCG (or the terminal device 1 has recognized that there is transmission of a PUSCH including the UCI in the SCG), the following computation is performed: PSCG=PSCG+δ1+δ2, PSeNB, Remaining=PSeNB, Remaining−δ1, PRemaining=PRemaining−δ2. Here, δ1=min(PPUSCH, j, SCG, PSeNB, Remaining), and δ2=min(PPUSCH, SCG−δ1, PRemaining). In other words, the power value required for the transmission of the PUSCH including the UCI is allocated to the SCG from the excess guaranteed power of the SCG In this step, if the excess guaranteed power of the SCG is insufficient for the power required for the transmission of the PUSCH including the UCI, the entire excess guaranteed power is allocated to the SCG, and then power equivalent to the shortage is allocated from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the SCG The power value allocated from the excess guaranteed power or the excess power is added to the power value of the SCG The power value allocated to the SCG is subtracted from the excess guaranteed power or the excess power. Note that PPUSCH, j, MCG is a power value required for the transmission of the PUSCH including the UCI in the SCG and is calculated on the basis of the parameters configured by the higher layer, an adjustment value determined on the basis of the number of PRBs allocated to the PUSCH transmission by resource assignment, downlink path loss and a coefficient by which the path loss is multiplied, an adjustment value determined on the basis of the parameter indicating the offset of the MCS applied to the UCI, a value based on a TPC command, and the like.
As Step (s6), the following computation is performed. If there are one or more PUSCH transmissions (or PUSCH transmission not including the UCI) in the MCG (or if the terminal device 1 has recognized that there is PUSCH transmission in the MCG), the following computation 1S performed: PMCG=PMCG+δ1+δ2, PMeNB, Remaining=PMeNB, Remaining−δ1, PRemaining=PRemaining−δ2. Here, δ1=min(ΣPPUSCH, c, MCG, PMeNB, Remaining), and δ2=min(E PPUSCH, c, MCG−δ1, PRemaining). In other words, the total value of the power values required for the PUSCH transmissions is allocated to the MCG from the excess guaranteed power of the MCG In this step, if the excess guaranteed power of the MCG is insufficient for the total value of the powers required for the PUSCH transmissions, the entire excess guaranteed power is allocated to the MCG, and then power equivalent to the shortage is allocated for the MCG from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the MCG The power value allocated from the excess guaranteed power or excess power is added to the power value of the MCG The power value allocated to the MCG is subtracted from the excess guaranteed power or excess power. Note that PPUSCH, c, MCG is a power value required for the PUSCH transmission in the serving cell c belonging to the MCG and is calculated on the basis of the parameters configured by a higher layer, an adjustment value determined on the basis of the number of PRBs allocated to the PUSCH transmission by resource assignment, downlink path loss and a coefficient by which the path loss is multiplied, a value based on a TPC command, and the like. Moreover, Σ means the total, and ΣPPUSCH, c, MCG represents the total value of PPUSCH, c, MCG in the serving cell c where c≠j.
As Step (s7), the following computation is performed. If there is PUCCH transmission (PUSCH transmission not including the UCI) in the SCG (or the terminal device 1 has recognized that there is PUSCH transmission in the SCG), the following computation is performed: PSCG=PSCG+δ1+δ2, PSeNB, Remaining=PSeNB, Remaining−δ1, PRemaining PRemaining−δ2. Here, δ1=min(ΣPPUSCH, c, SCG, PSeNB, Remaining), and δ2=min(ΣPPUSCH, c, SCG−δ1, PRemaining). In other words, the total value of the power values required for PUSCH transmissions is allocated to the SCG from the excess guaranteed power of the SCG In this step, if the excess guaranteed power of the SCG is insufficient for the total value of the powers required for the PUSCH transmissions, the entire excess guaranteed power is allocated to the SCG, and then power equivalent to the shortage is allocated from the excess power. Here, if the excess power is still insufficient for the shortage, the entire excess power is allocated to the SCG. The power value allocated from the excess guaranteed power or the excess power is added to the power value of the SCG The power value allocated to the SCG is subtracted from the excess guaranteed power or the excess power. Note that PPUSCH, c, SCG is a power value required for the PUSCH transmission in the serving cell c belonging to the SCG and is calculated on the basis of the parameters configured by a higher layer, an adjustment value determined on the basis of the number of PRBs allocated to the PUSCH transmission by resource assignment, downlink path loss and a coefficient by which the path loss is multiplied, a value based on a TPC command, and the like. Moreover, E means the total, and ΣPPUSCH c, SCG represents the total value of PPUSCH, c, SCG in the serving cell c where c≠j.
As Step (s8), the following computation is performed. If the subframe that is the target of power calculation is a subframe in the MCG, PCMAX, CG, which is the maximum output power value for the target CG, is set at PCMAX, CG=PMCG. In other cases, in other words, if the subframe that is the target of power calculation is a subframe in the SCG, PCMAX, CG, which is the maximum output power value for the target CG, is set to PCMAX, CG=PSCG.
In this way, the maximum output power value for a target CG can be calculated from guaranteed power and excess power. Note that, as the initial values of the power value of the MCG, power value of the SCG, excess power, and excess guaranteed power in each of the above-described steps, the respective final values in the immediately previous step are used.
In this example, as the priority order for power allocation, the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG is used. However, the priority order is not limited to this. A different priority order may be used. For example, the priority order may be in the order from a channel in the MCG including HARQ-ACK, a channel in the SCG including HARQ-ACK, a PUSCH in the MCG (not including HARQ-ACK), and then a PUSCH in the SCG (not including HARQ). Alternatively, the order may be in the order from a channel including an SR, a channel including HARQ-ACK (not including any SR), a channel including a CSI (not including any SR or HARQ-ACK), and then a channel including data (not including any UCI), without distinguishing between the MCG and SCG In these cases, required power values in above-described Step s2 to Step s7 are replaced. When a plurality of channels are targeted in a single step, the total value of the required powers of the channels may be used as in Step s6 and Step s7. Alternatively, a method of not using one or some of the above-described steps may be used. Moreover, the priority order may be determined in consideration of a PRACH, SRS, and the like in addition to the above-described channels. In this case, a PRACH may have a higher priority than a PUCCH, and an SRS may have a lower priority than a PUSCH (not including any UCI).
Another method of allocating guaranteed power and residual power will be described below.
First, as Step (t1), the power value of the MCG, the power value of the SCG, excess power (excess power that is not allocated yet), the total required power of the MCG, and the total required power of the SCG are initialized. More specifically, it is assumed that PMCG=0, PSCG=0, and PRemaining=PCMAX. In addition, PMCG, Required=0, and PSCG, Required=0. Here, PMCG and PSCG are respectively the power value of the MCG and the power value of the SCG, and P an excess power value. PMeNB, Remaining is an excess power value. PCMAX, PMeNB, and PSeNB are the above-described parameters. Moreover, PMCG, Required and PSCG, Required are respectively the total required power value required for transmitting a channel in the MCG and the total required power value required for transmitting a channel in the SCG Here, each power value is assumed to be a linear value.
Next, the excess power is sequentially allocated to the CGs in the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG In this operation, the power amounts to be sequentially allocated to the CGs are basically the power values required for the channels (power values based on transmit power control (TPC) commands, resource assignment, and the like). Note that, if the excess power is insufficient for a required power value, the entire excess power is allocated. When power is allocated to a CG, the excess power is reduced by the amount corresponding to the allocated power. In addition, the power values required for the channels are sequentially added to the total required power of the CG Note that each required power value is added irrespective of whether the excess power is sufficient for the required value. In the following, (t2) to (t9) will be described as more specific steps of calculating a power value for each CG.
As Step (t2), the following computation is performed. If there is PUCCH transmission in the MCG, the following computation is performed: PMCG=PMCG+δ, PMCG, Required=PMCG, Required−PPUCCH, MCG, PRemaining=PRemaining−δ. Here, 6=min(PPUCCH, MCG, PRemaining). In other words, the power value required for PUCCH transmission is allocated to the MCG from the excess power. In this step, if the excess power is insufficient for the power required for the PUCCH transmission, the entire excess power is allocated to the MCG The power value required for the PUCCH transmission is added to the total required power value of the MCG The power value allocated to the MCG is subtracted from the excess power.
As Step (t3), the following computation is performed. If there is PUCCH transmission in the SCG, the following computation is performed: PSCG=PSCG+δ, PSCG, Required=PSCG Required−PPUCCH, SCG, PRemaining=PRemaining−δ. Here, δ=min(PPUCCH, SCG, PRemaining). In other words, the power value required for PUCCH transmission is allocated to the SCG from the excess power. In this step, if the excess power is insufficient for the power required for the PUCCH transmission, the entire excess power is allocated to the SCG The power value required for the PUCCH transmission is added to the total required power value of the SCG The power value allocated to the SCG is subtracted from the excess power.
As Step (t4), the following computation is performed. If there is PUCCH transmission including the UCI in the MCG, the following computation is performed: PMCG=PMCG+δ, PMCG, Required=PMCG, Required−PPUSCH, j, MCG, PRemaining=PRemaining−δ. Here, δ=min(PPUCCH, j, MCG, PRemaining). In other words, the power value required for the transmission of the PUSCH including a UCI is allocated to the MCG from the excess power. In this step, if the excess power is insufficient for the power required for the transmission of the PUSCH including a UCI, the entire excess power is allocated to the MCG The power value required for the transmission of the PUSCH including a UCI is added to the total required power value of the MCG The power value allocated to the MCG is subtracted from the excess power.
As Step (t5), the following computation is performed. If there is transmission of PUSCH including the UCI in the SCG, the following computation is performed: PSCG=PSCG+δ, PSCG, Required=PSCG, Required−PPUSCH, j, SCG, PRemaining=PRemaining−δ. Here, δ=min(PPUSCH, j, SCG, PRemaining). In other words, the power value required for the transmission of the PUSCH including a UCI is allocated to the SCG from the excess power. In this step, if the excess power is insufficient for the power required for the transmission of the PUSCH including a UCI, the entire excess power is allocated to the SCG The power value required for the transmission of the PUSCH including a UCI is added to the total required power value of the SCG The power value allocated to the SCG is subtracted from the excess power.
As Step (t6), the following computation is performed. If there are one or more PUSCH transmissions (transmissions of a PUSCH not including the UCI) in the MCG, the following computation is performed: PMCG=PMCG+δ, PMCG, Required=PMCG, Required−ΣPPUSCH, c, MCG, PRemaining=PRemaining−δ. Here, δ=min(ΣPPUSCH, c, MCG, PRemaining). In other words, the total value of the power values required for the PUSCH transmissions is allocated to the MCG from the excess power. In this step, if the excess power is insufficient for the total value of the powers required for the PUSCH transmissions, the entire excess power is allocated to the MCG The power values allocated from the excess power are added to the power value of the MCG The total value of the power values required for the PUSCH transmissions is added to the total required power value of the MCG The power value allocated to the MCG is subtracted from the excess power.
As Step (t7), the following computation is performed. If there are one or more PUSCH transmissions (PUSCH transmissions not including the UCI) in the SCG, the following computation is performed: PSCG=PSCG+δ, PSCG, Required=PSCG, Required−ΣPPUSCH, c, SCG, PRemaining PRemaining−δ. Here, 6=min(ΣPPUSCH, c, SCG PRemaining). In other words, the total value of the power values required for the PUSCH transmissions is allocated to the SCG from the excess power. In this step, if the excess power is insufficient for the total value of the powers required for the PUSCH transmissions, the entire excess power is allocated to the SCG The power values allocated from the excess power are added to the power value of the SCG The total value of the power values required for the PUSCH transmissions is added to the total required power value of the SCG The power value allocated to the SCG is subtracted from the excess power.
As Step (t8), it is checked whether the power value allocated to each of the CGs is equal to or greater than (not below) the guaranteed power. Moreover, it is checked whether the power value allocated to each of the CGs is the same as (not below) the total required power value (i.e., whether there is no channel for which the excess power value is insufficient for the required power value in the channels in the CGs). When the allocated power value is not equal to or greater than the guaranteed power (is below the guaranteed power) in a certain CG (CG1) and is not the same as the total required power value (is below the total required power value), the power value equivalent to the shortage is allocated to the CG (CG1) from the power value allocated to another CG (CG2). The final power value of the other CG (CG2) is obtained by subtracting the power value equivalent to the shortage and consequently subtracting the guaranteed power value of the CG1 from the PCMAX. With this operation, when the allocated power value is sufficient for the required power in a certain CG, the allocated power value need not be sufficient for the guaranteed power, which enables efficient use of the power. As a more specific example, computations in Step (t8-1) and Step (t8-2) are performed. As Step (t8-1), if PMCG<PMeNB and PMCG<PMCG, Required, it is set PMCG=PMeNB and also set PSCG=PCMAX−PMCG (i.e., PSCG=PCMAX−PMeNB).
As Step (t8-2), if PSCG<PSeNB and PSCG<PSCG Required (or the condition of Step (t8-1) is not satisfied and if PSCG<PSeNB and PSCG<PSCG, Required), it is set PSCG=PSeNB and also set PMCG=PCMAX−PSCG (i.e., PMCG=PCMAX−PSeNB).
As Step (t9), the following computation is performed. If the subframe that is the target of power calculation is a subframe in the MCG, PCMAX, CG, which is the maximum output power value for the target CG, is set at PCMAX, CG=PMCG. In other cases, in other words, if the subframe that is the target of power calculation is a subframe in the SCG, PCMAX, CG, which is the maximum output power value for the target CG is set at PCMAX, CG=PSCG.
In this way, the maximum output power value for a target CG can be calculated from guaranteed power and excess power. Note that, as the initial values of the power value of the MCG, power value of the SCG, excess power, the total required power of the MCG, and the total required power of the SCG in each of the above-described steps, the respective final values in the immediately previous step are used.
Alternatively, the following step (Step (t10)) may be performed instead of Step (t8). Specifically, it is checked whether the power value allocated to each of the CGs is equal to or greater than (not below) the guaranteed power. When the allocated power value is not equal to or greater than the guaranteed power (is below the guaranteed power) in a certain CG (CG1), the power value equivalent to the shortage is allocated to the CG (CG1) from the power value allocated to another CG (CG2). The final power value of the other CG (CG2) is obtained by subtracting the power value equivalent to the shortage and consequently determined to be the smallest value of the value obtained by subtracting the guaranteed power value of the CG1 from the PCMAX and the total required power value of the CG2. With this operation, it is possible to surely secure guaranteed power in each CG and to hence perform stable communication. As a more specific example, computations in Step (t10-1) and Step (t10-2) are performed.
As Step (t10-1), if PMCG<PMeNB, it is set PMCG=PMeNB and also set PSCG=min(PSCG, Required, PCMAX−PMeNB).
As Step (t10-2), if PSCG<PSeNB, it is set PSCG=PSeNB and also set PMCG=min(PMCG, Required, PCMAX−PSeNB).
In this example, as the priority order for power allocation, the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG is used. However, the priority order is not limited to this. A different priority order (e.g., the above-described priority order) may be used.
Description has been given above of the method of allocating guaranteed power and residual power for determining the maximum output power value for each CG In the following, power distribution in each CG under the maximum output power value of the CG will be described.
First, power distribution within the CG in the case where dual connectivity is not configured will be described.
If the total transmit power of the terminal device 1 is assumed to exceed PCMAX, the terminal device 1 performs scaling on PPUSCH, c in the serving cell c so that the condition Σ(wPPUSCH, c)≦(PCMAX−PPUCCH) is to be satisfied. Here, w denotes a scaling factor (coefficient by which a power value is multiplied) for the serving cell c and takes a value that is equal to or greater than zero and equal to or smaller than one. When there is no PUCCH transmission, it is assumed that PPUCCH=0.
If the terminal device 1 performs transmission of PUSCH including the UCI in a certain serving cell j and performs a PUSCH transmission not including any UCI in any of the other serving cells, and the total transmit power of the terminal device 1 is assumed to exceed PCMAX, the terminal device 1 performs scaling on PPUSCH, c in the serving cell c not including any UCI so that the condition Σ(wPPUSCH, c)≦(PCMAX−PPUSCH, j) is to be satisfied. Note that the left side represents the total in the serving cells c other than the serving cell j. Here, w is a scaling factor for the serving cell c not including any UCI. Here, as long as it is not the case where Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 still exceeds PCMAX, power scaling is not applied to any PUSCH including a UCI. Note that, although w is a common value for the serving cells when w>0, w may be zero for a certain serving cell. In this case, this means that channel transmission is dropped in the certain serving cell.
If the terminal device 1 performs transmissions of a PUCCH and a PUSCH including the UCI in the certain serving cell j at the same time and performs transmission of a PUSCH not including any UCI in any of the other serving cells, and the total transmit power of the terminal device 1 is assumed to exceed PCMAX, the terminal device 1 obtains PPUSCH, c on the basis of PPUSCH, j=min (PPUSCH, j, (PCMAX−PPUCCH)) and Σ(wPPUSCH, c)≦(PCMAX PPUCCH−PPUSCH, j) In other words, the terminal device 1 reserves the power for the PUCCH first and then calculates power for the PUSCH including a UCI from the residual power. When the remaining power is higher than the power required for the PUSCH including the UCI (PPUSCH, j on the right-hand side of the first expression), the power required for the PUSCH including the UCI is assumed to be the power for the PUSCH including the UCI (PPUSCH, j on the left-hand side of the first expression, i.e., the actual power value of the PUSCH including the UCI), and when the residual power is lower than/equal to the power required for the PUSCH including the UCI, all the remaining power is determined to be the power for the PUSCH including the UCI. The residual power obtained by subtracting the power for the PUCCH and the power for the PUSCH including the UCI is allocated to the PUSCH not including any UCI. In this case, scaling is performed as needed.
If a plurality of timing advance groups (TAGs) are configured in the terminal device 1 and PUCCH/PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUSCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs, the terminal 1 adjusts the total transmit power so that the total transmit power is not to exceed PCMAX at any overlapped portion. Here, “TAG” is a group of serving cells for the adjustment of uplink transmission timing with respect to downlink reception timing. When one or more serving cells belong to a single TAG, and common adjustment is applied to the one or more serving cells in the single TAG
If a plurality of TAGs are configured in the terminal device 1 and PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUCCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs, the terminal 1 adjusts the total transmit power so that the total transmit power is not to exceed PCMAX at any overlapped portion.
If a plurality of TAGs are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell in one of the TAGs overlaps PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell in any of the other TAGs, the terminal 1 drops the SRS transmission if the total transmit power exceeds PCMAX at any overlapped portion in the symbol.
If a plurality of TAGs and two or more serving cells are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell overlaps SRS transmission in the subframe in a different subframe and PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell, the terminal 1 drops the SRS transmission if the total transmit power exceeds PCMAX at any part that the symbol overlaps.
If a plurality of TAGs are configured in the terminal device 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with SRS transmission at a symbol in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 drops the SRS transmission if the total transmit power exceeds PCMAX at any part that the symbol overlaps. Here, the PRACH transmission may be synonymous with a preamble transmission, a preamble sequence transmission, and a random access preamble transmission. That is, the preamble transmission may be called PRACH transmission.
If a plurality of TAGs are configured in the terminal 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with PUSCH/PUCCH transmission in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 adjusts the transmit power of the PUSCH/PUCCH so that the total transmit power is not to exceed PCMAX at the overlapped portion.
Next, power distribution in the CGs in the case where dual connectivity is configured will be described.
If the total transmit power of the terminal device 1 in a certain CG is assumed to exceed PCMAX, CG, the terminal device 1 performs scaling on PPUSCH, c in the serving cell c of the CG so that the condition PPUCCH=min (PPUCCH, PCMAX, CG) and Σ(wPPUSCH, c)≦(PCMAX, CG−PPUCCH) is to be satisfied. In other words, when the maximum output power value of the CG is greater than the required power of the PUCCH (PPUCCH on the right-hand side of the first expression), the required power of the PUCCH is set as the power for the PUCCH (PPUCCH on the left-hand side of the first expression, i.e., the actual power value of the PUCCH), and, when the maximum output power value of the CG is smaller than/equal to the required power of the PUCCH, the entire maximum output power value of the CG is set as the power for the PUCCH. The residual power obtained by subtracting the power of the PUCCH from PCMAX, CG is allocated to the PUSCH. In this case, scaling is performed as needed. When there is no PUCCH transmission in the CG, it is assumed that PPUCCH=0. Note that PPUCCH on the right side of the second expression is PPUCCH calculated according to the first expression.
If the terminal device 1 performs transmission of a PUSCH including the UCI in the certain serving cell j in a certain CG and performs transmission of a PUSCH not including any UCI in any of the other serving cells in the CG, and the total transmit power of the terminal device 1 in the CG is assumed to exceed PCMAX, CG, the terminal device 1 performs scaling on the PPUSCH, c in the serving cell c not including any UCI so as to satisfy the condition PPUSCH, j=min (PPUSCH, j, (PCMAX, CG−PPUCCH)) and Σ(wPPUSCH, c)≦(PCMAX, CG−PPUSCH, j). Note that the left side of the second expression represents the total in the serving cells c other than the serving cell j. Note that PPUSCH, j on the right side of the second expression is PPUSCH, j calculated according to the first expression.
If the terminal device 1 performs transmissions of a PUCCH and a PUSCH including the UCI in the certain serving cell j at the same time and performs transmission of a PUSCH not including any UCI in any of the other serving cells, in a certain CG, and the total transmit power of the terminal device 1 in the CG is assumed to exceed PCMAX, CG, the terminal device 1 obtains PPUSCH, c on the basis of PPUCCH=min (PPUCCH, PCMAX, CG), PPUSCH, j=min (PPUSCH, j, (PCMAX, CG PPUCCH)), and Σ(wPPUSCH, c)≦(PCMAX, CG−PPUCCH−PPUSCH, j). In other words, the terminal device 1 first reserves the power for the PUCCH first from the maximum output power of the CG and then calculates power for the PUSCH including a UCI from the residual power. Specifically, when the maximum output power of the CG is greater than the required power of the PUCCH, the required power of the PUCCH is set as the transmit power for the PUCCH, and, when the maximum output power of the CG is smaller than/equal to the required power of the PUCCH, the maximum output power of the CG is set as the transmit power of the PUCCH. Similarly, when the residual power is higher than the required power of the PUSCH including the UCI, the required power of the PUSCH including the UCI is set as the transmit power for the PUSCH including the UCI, and when the residual power is lower than/equal to the required power of the PUSCH including the UCI, all the residual power is set as the transmit power for the PUSCH including the UCI. The residual power obtained by subtracting the power for the PUCCH and the power for the PUSCH including the UCI is allocated to the PUSCH not including any UCI. In this case, scaling is performed as needed.
For power adjustment and SRS drop when a plurality of TAGs are configured, substantially the same process as that for the case where dual connectivity is not configured may be carried out. In this case, it is preferable that the same process be carried out for the plurality of TAGs in a CG and also substantially the same process be carried out for the plurality of TAGs in the different CG Alternatively, the following process may be carried out. Still alternatively, both processes may be carried out.
If a plurality of TAGs are configured in a CG for the terminal device 1 and PUCCH/PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs in the CG overlaps one or some of the first symbols of PUCCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs in the CG, the terminal device 1 adjusts the total transmit power so that the total transmit power is not to exceed PCMAX, CG of the CG at any overlapped portion.
If a plurality of TAGs are configured in a CG for the terminal device 1 and PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs in the CG overlaps one or some of the first symbols of PUCCH transmission in the subframe i+l for a different serving cell in any of the other TAGs in the CG, the terminal device 1 adjusts the total transmit power so that the total transmit power is not to exceed PCMAX, CG of the CG at any overlapped portion.
If a plurality of TAGs are configured in a CG for the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell in one of the TAGs in the CG overlaps PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell in any of the other TAGs in the CG, the terminal device 1 drops the SRS transmission if the total transmit power exceeds PCMAX, CG of the CG at any part that the symbol overlaps.
If a plurality of TAGs and two or more serving cells are configured in a CG for the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell in the CG overlaps SRS transmission in the subframe i for a different serving cell in the CG and PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell in the CG, the terminal device 1 drops the SRS transmission if the total transmit power exceeds PCMAX, CG of the CG at any part that the symbol overlaps.
If a plurality of TAGs are configured in a CG for the terminal device 1 and a higher layer requests that PRACH transmission in the secondary serving cell of the CG is performed in parallel with SRS transmission at a symbol in a subframe of a different serving cell belonging to a different one of the TAGs in the CG, the terminal device 1 drops the SRS transmission if the total transmit power exceeds PCMAX, CG of the CG at any part that the symbol overlaps.
If a plurality of TAGs are configured in a CG for the terminal device 1 and a higher layer requests that PRACH transmission in the secondary serving cell of the CG is performed in parallel with PUSCH/PUCCH transmission in a subframe of a different serving cell belonging to a different one of the TAGs in the CG, the terminal device 1 adjusts the transmit power of the PUSCH/PUCCH so that the total transmit power is not to exceed PCMAX, CG of the CG at the overlapped portion.
As described above, transmit power can be efficiently controlled among cell groups even when dual connectivity is configured.
Description has been given above of the case in which required power is calculated for each channel first, then the maximum output power is calculated for each CG, and lastly power scaling is performed in each CG In this example, guaranteed power and priority rules are used for the calculation of the maximum output power for each CG Moreover, power scaling in each CG is applied when the total transmit power of the CG exceeds maximum output power calculated for the CG.
In contrast to the above, description will be given below of a case in which required power is calculated for each channel first, then power scaling is performed in each CG, and lastly excess power is allocated among the CGs. Here, for power scaling in each CG, a power scaling method as that described above is applied when the total transmit power of the CG exceeds the guaranteed power of the CG that is calculated. Moreover, a similar priority rule as that described above is used for excess power allocation among CGs.
First, power scaling in the MCG in the case where dual connectivity is configured will be described. In the MCG, power scaling is applied when the total required power is assumed to exceed Ppre, MeNB. Calculation for power scaling in the MCG is performed when a power calculation target subframe is a subframe in the MCG, when a power calculation target subframe is a subframe in the SCG and the subframes in the MCG and the subframes in the SCG are synchronized (when the timing of reception between the subframes is equal to or smaller than (or smaller than) a predetermined value), or when a power calculation target subframe is a subframe in the SCG and required powers can be calculated for the MCG subframes overlapping the power calculation target subframe in the SCG (the subframe overlapping the forward part and the subframe overlapping the later part) (i.e., when the terminal device 1 has recognized the power value required for uplink transmission in the MCG subframe).
Here, Ppre, MeNB is a temporary total power value (in a previous step) to be allocated to the MCG in this step. When the terminal device 1 has recognized (can calculate) the total required power of the subframes in the MCG (the total of the required power values of the channels/signals calculated on the basis of PCMAX, c, TPC commands, and resource assignment, e.g., the total value of PPUCCH, PPUSCH, and PSRS), Ppre, MeNB can take the smaller (smallest) value of the total required power and guaranteed power PMeNB. Alternatively, when the subframes in the MCG and the subframes in the SCG are synchronized, Ppre, MeNB can take the smaller value of the total required power and guaranteed power PMeNB. In contrast, when the terminal device 1 has not recognized (cannot calculate) the total required power of the subframes in the MCG, Ppre, MeNB takes the value of the guaranteed power PMeNB. Alternatively, when the subframes in the MCG and the subframes in the SCG are synchronized and the subframes in the MCG are transmitted subsequent time points to those of the subframes in the SCG, Ppre, MeNB can take the value of the guaranteed power PMeNB.
If the total transmit power of the terminal device 1 in the MCG is assumed to exceed Ppre, MeNB (or PMeNB), the terminal device 1 performs scaling on PPUSCH, c in the serving cell c so that the condition Σ(wPPUSCH, c)≦(Ppre, MeNB−PPUCCH) (or Σ(wPPUSCH, c)≦(PMeNB−PPUCCH) is to be satisfied. Here, w denotes a scaling factor (coefficient by which a power value is multiplied) for the serving cell c and takes a value that is equal to or greater than zero and equal to or smaller than one. PPUSCH, e is power required for PUSCH transmission in the serving cell c. PPUCCH is power required for PUCCH transmission in the CG (i.e., MCG) and is set as PPUCCH=0 when there is no PUCCH transmission in the CG. Here, as long as it is not the case where Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 still exceeds Ppre, MeNB (or PMeNB), power scaling is not applied to any PUCCH. In contrast, when Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 still exceeds PMeNB, power scaling is applied to PUCCHs.
If the terminal device 1 performs transmission of PUSCH including the UCI in the certain serving cell j and performs a PUSCH transmission not including any UCI in any of the other serving cells, and the total transmit power of the terminal 1 in the MCG is assumed to exceed Ppre, MeNB (or PMeNB), the terminal device 1 performs scaling on the PPUSCH, c in the serving cell c not including any UCI so as to satisfy the condition Σ(wPPUSCH, c)≦(Ppre, MeNB−PPUSCH, j) (or the condition Σ(wPPUSCH, c)≦(PMeNB−PPUSCH, j)). Note that the left side represents the total in the serving cells c other than the serving cell j. Here, w is a scaling factor for the serving cell c not including any UCI. Here, as long as it is not the case where (wPPUSCH, c)=0 and the total transmit power of the terminal device 1 still exceeds Ppre, MeNB (or PMeNB), power scaling is not applied to the PUSCH including a UCI. In contrast, when Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 still exceeds Ppre, MeNB (or PMeNB), power scaling is applied to the PUSCH including a UCI. Note that, although w is a common value for the serving cells when w>0, w may be zero for a certain serving cell. In this case, this means that channel transmission is dropped in the certain serving cell.
If the terminal device 1 performs transmission of a PUCCH and a PUSCH including the UCI in the certain serving cell j at the same time and performs transmission of a PUSCH not including any UCI in any of the other serving cells, and the total transmit power of the terminal device 1 in the MCG is assumed to exceed Ppre, MeNB (or PMeNB), the terminal device 1 obtains PPUSCH, c on the basis of PPUSCH, j=min(PPUSCH, j, (Ppre, MeNB−PPUCCH)) and Σ(wPPUSCH, c)≦(Ppre, MeNB−PPUCCH−PPUSCH, j) (or on the basis of PPUSCH, j=min(PPUSCH, j, (PMeNB−PPUCCH)) and Σ(wPPUSCH, c)≦(PMeNB−PPUCCH−PPUSCH, j). In other words, the terminal device 1 reserves the power for the PUCCH first and then calculates power for the PUSCH including a UCI from the residual power. In this operation, when Ppre, MeNB (or PMeNB) is smaller than/equal to the power required for the PUCCH, all Ppre, MeNB (or PMeNB) is determined to be the power for the PUCCH. When the remaining power is higher than the power required for the PUSCH including the UCI (PPUSCH, j on the right-hand side of the first expression), the power required for the PUSCH including the UCI is assumed to be the power for the PUSCH including the UCI (PPUSCH, j on the left-hand side of the first expression, i.e., the actual power value of the PUSCH including the UCI), and when the residual power is lower than/equal to the power required for the PUSCH including the UCI, all the remaining power is determined to be the power for the PUSCH including the UCI. The residual power obtained by subtracting the power for the PUCCH and the power for the PUSCH including the UCI is allocated to the PUSCH not including any UCI. In this case, scaling is performed as needed.
If a plurality of timing advance groups (TAGs) in the MCG are configured in the terminal device 1 and PUCCH/PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUSCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs, the terminal 1 adjusts the total transmit power of the MCH so that the total transmit power is not to exceed Ppre, MeNB (or PMeNB) at any overlapped portion. Here, “TAG” is a group of serving cells for adjustment of uplink transmission timing with respect to downlink reception timing. One or more serving cells belong to a single TAG, and common adjustment is applied to the one or more serving cells in the single TAG
If a plurality of TAGs in the MCG are configured in the terminal device 1 and PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUCCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs, the terminal device 1 adjusts the total transmit power of the MCG so that the total transmit power is not to exceed Ppre, MeNB (or PMeNB) at any overlapped portion.
If a plurality of TAGs in the MCG are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell in one of the TAGs overlaps PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell in any of the other TAGs, the terminal 1 drops the SRS transmission if the total transmit power of the MCG exceeds Ppre, MeNB (or PMeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the MCG and two or more serving cells are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell overlaps SRS transmission in the subframe i for a different serving cell and PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell, the terminal 1 drops the SRS transmission if the total transmit power of the MCG exceeds Ppre, MeNB (or PMeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the MCG are configured in the terminal device 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with SRS transmission at a symbol in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 drops the SRS transmission if the total transmit power of the MCG exceeds Ppre, MeNB (or PMeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the MCG are configured in the terminal device 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with PUSCH/PUCCH transmission in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 adjusts the transmit power of the PUSCH/PUCCH so that the total transmit power of the MCG is not to exceed Ppre, MeNB (or PMeNB) at the overlapped portion.
Next, power scaling in the SCG will be described. In the SCG, power scaling is applied when the total required power is assumed to exceed Ppre, SeNB (PSeNB). Calculation for power scaling in the SCG is performed when a power calculation target subframe is a subframe in the SCG, when a power calculation target subframe is a subframe in the MCG and the subframes in the MCG and the subframes in the SCG are synchronized (when the timing of reception between the subframes is equal to or smaller than (or smaller than) a predetermined value), or when a power calculation target subframe is a subframe in the MCG and required powers can be calculated for the SCG subframes overlapping the calculation target subframe in the MCG (the subframe overlapping the first part and the subframe overlapping the later part) (i.e., when the terminal device 1 has recognized the power values required for uplink transmission in the SCG subframes).
Here, Ppre, SeNB is a temporary total power value (in a previous step) to be allocated to the SCG in this step. When the terminal 1 has recognized (can calculate) the total required power of the subframes in the SCG (the total of the required power values of the channels/signals calculated on the basis of PCMAX, c, TPC commands, and resource assignment, e.g., the total value of PPUCCH, PPUSCH, and PSRS), Ppre, SeNB can take the smaller (smallest) value of the total required power and guaranteed power PSeNB. Alternatively, when the subframes in the MCG and the subframes in the SCG are synchronized, Ppre, SeNB can take the smaller value of the total required power and guaranteed power PMeNB. In contrast, when the terminal device 1 has not recognized (cannot calculate) the total required power of the subframes in the SCG, Ppre, SeNB takes the value of the guaranteed power PSeNB. Alternatively, when the subframes in the MCG and the subframes in the SCG are synchronized and the subframes in the SCG are transmitted later time points to those of the subframes in the MCG, Ppre, SeNB can take the value of the guaranteed power PSeNB.
If the total transmit power of the terminal device 1 in the SCG is assumed to exceed Ppre, SeNB (or PSeNB), the terminal device 1 performs scaling on PPUSCH, e in the serving cell c so that the condition Σ(wPPUSCH, c)≦(Ppre, SeNB−PPUCCH) (or the condition Σ(wPPUSCH, c)≦(PSeNB−PPUCCH) is to be satisfied. Here, w denotes a scaling factor (coefficient by which a power value is multiplied) for the serving cell c and takes a value that is equal to or greater than zero and equal to or smaller than one. PPUSCH, c is power required for PUSCH transmission in the serving cell c. PPUCCH is power required for PUCCH transmission in the CG (i.e., SCG) and is set as PPUCCH=0 when there is no PUCCH transmission in the CG Here, as long as it is not the case where Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 in the SCG still exceeds Ppre, SeNB (or PSeNB), power scaling is not applied to any PUCCH. In contrast, when Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 in the SCG still exceeds Ppre, SeNB (or PSeNB), power scaling is applied to the PUCCHs.
If the terminal device 1 performs transmission of PUSCH including the UCI in the certain serving cell j and performs transmission of a PUSCH not including any UCI in any of the other serving cells, and the total transmit power of the terminal 1 in the SCG is assumed to exceed Ppre, SeNB (or PSeNB), the terminal device 1 performs scaling on the PPUSCH, c in the serving cell c not including any UCI so as to satisfy the condition Σ(wPPUSCH, c) (Ppre, SeNB−PPUSCH, j) (or condition Σ(wPPUSCH, c)≦(PSeNB−PPUSCH, j)). Note that the left-hand side represents the total in the serving cells c other than the serving cell j. Here, w is a scaling factor for the serving cell c not including any UCI. Here, as long as it is not the case where Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 in the SCG still exceeds Ppre, SeNB (or PSeNB), power scaling is not applied to the PUSCH including a UCI. In contrast, when Σ(wPPUSCH, c)=0 and the total transmit power of the terminal device 1 in the SCG still exceeds Ppre, SeNB (or PSeNB), power scaling is applied to the PUSCH including a UCI. Note that, although w is a common value for the serving cells when w>0, w may be zero for a certain serving cell. In this case, this means that channel transmission is dropped in the certain serving cell.
If the terminal device 1 performs transmission of a PUCCH and a PUSCH including the UCI in the certain serving cell j at the same time and performs transmission of a PUSCH not including any UCI in any of the other serving cells, and the total transmit power of the terminal device 1 in the SCG is assumed to exceed Ppre, SeNB (or PSeNB), the terminal device 1 obtains PPUSCH c on the basis of PPUSCH, j=min(PPUSCH, j, (Ppre, SeNB−PPUCCH)) and Σ(wPPUSCH, c)≦(Ppre, SeNB−PPUCCH−PPUSCH, j) (or on the basis of PPUSCH, j=min(PPUSCH, j, (PSeNB−PPUCCH)) and Σ(wPPUSCH, c)≦(PSeNB−PPUCCH−PPUSCH, j). In other words, the terminal device 1 reserves the power for the PUCCH first and then calculates power for the PUSCH including a UCI from the residual power. In this operation, when Ppre, SeNB (or PSeNB) is smaller than/equal to the power required for the PUCCH, all Ppre, SeNB (or PSeNB) is determined to be the power for the PUCCH. When the remaining power is higher than the power required for the PUSCH including the UCI (PPUSCH, j on the right-hand side of the first expression), the power required for the PUSCH including the UCI is assumed to be the power for the PUSCH including the UCI (PPUSCH, j on the left-hand side of the first expression, i.e., the actual power value of the PUSCH including the UCI), and when the residual power is lower than/equal to the power required for the PUSCH including the UCI, all the remaining power is determined to be the power for the PUSCH including the UCI. The residual power obtained by subtracting the power for the PUCCH and the power for the PUSCH including the UCI is allocated to the PUSCH not including any UCI. In this case, scaling is performed as needed.
If a plurality of timing advance groups (TAGs) in the SCG are configured in the terminal device 1 and PUCCH/PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUSCH transmission in the subframe i+1 for a different serving cell in any of the other TAGs, the terminal device 1 adjusts the total transmit power of the SCG so that the total transmit power is not to exceed Ppre, SeNB (or PSeNB) at any overlapped portion. Here, a TAG is a group of serving cells for adjustment of uplink transmission timing with respect to downlink reception timing. One or more serving cells belong to a single TAG, and common adjustment is applied to the one or more serving cells in the single TAG
If a plurality of TAGs in the SCG are configured in the terminal device 1 and PUSCH transmission of the terminal device 1 in the subframe i for a certain serving cell in one of the TAGs overlaps one or some of the first symbols of PUCCH transmission in the subframe 1+1 for a different serving cell in any of the other TAGs, the terminal device 1 adjusts the total transmit power of the SCG so that the total transmit power is not to exceed Ppre, SeNB (or PSeNB) at any overlapped portion.
If a plurality of TAGs in the SCG are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell in one of the TAGs overlaps PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell in any of the other TAGs, the terminal 1 drops the SRS transmission if the total transmit power of the SCG exceeds Ppre, SeNB (or PSeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the SCG and two or more serving cells are configured in the terminal device 1 and SRS transmission of the terminal device 1 at one symbol in the subframe i for a certain serving cell overlaps SRS transmission in the subframe i for a different serving cell and PUCCH/PUSCH transmission in the subframe i or the subframe i+1 in a different serving cell, the terminal device 1 drops the SRS transmission if the total transmit power of the SCG exceeds Ppre, SeNB (or PSeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the SCG are configured in the terminal device 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with SRS transmission at a symbol in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 drops the SRS transmission if the total transmit power of the SCG exceeds Ppre, SeNB (or PSeNB) at any part that the symbol overlaps.
If a plurality of TAGs in the SCG are configured in the terminal device 1 and a higher layer requests that PRACH transmission in a secondary serving cell is performed in parallel with PUSCH/PUCCH transmission in a subframe of a different serving cell belonging to a different one of the TAGs, the terminal device 1 adjusts the transmit power of the PUSCH/PUCCH so that the total transmit power of the SCG is not to exceed Ppre, SeNB (or PSeNB) at the overlapped portion.
In the next step, excess power in the previous step (e.g., the residual power obtained by subtracting Ppre, MeNB and Ppre, SeNB from PCMAX) is distributed among the CGs. In this operation, the excess power is distributed to the channels/signals on which power scaling was performed in the previous step, in the order of the predetermined priorities. In this operation, the excess power is not distributed to the channels/signals of any CG to which power scaling is not applied in the previous step (for which required power is not recognized (cannot be calculated) or which has the total required power that is equal to or greater than guaranteed power).
When the terminal device 1 has recognized (cannot calculate), in the calculation of the power of a subframe of one of the CGs, required power of the subframe of the other CG overlapping the later part of the subframe, all the excess power in this step is allocated to the power calculation target CG as long as the total output power of the terminal device 1 does not exceed PCMAX at any part of the subframe (including the part overlapping the earlier subframe in the other CG in terms of time). When the excess power is allocated in the order of a PUCCH, a PUSCH including a UCI, and then a PUSCH not including any UCI, the result of allocation of the excess power matches the result of performing power scaling similar to the power scaling in the previous step except that Ppre, MeNB or Ppre, SeNB is replaced with a value obtained by adding the excess power to Ppre, MeNB or Ppre, SeNB. However, when power scaling was not applied to the power calculation target CG in the previous step, in other words, required power is already allocated to each of all the uplink channels/signals in the CG, the allocation of the excess power need not be performed. In this case, power scaling in this step need not be performed either.
When the terminal device 1 has obtained (can calculate), in the calculation of the power of a subframe of one of the CGs, required power of the subframe of the other CG overlapping the later part of the subframe (or a TPC command, which is information for calculating required power, resource assignment information, and the like), the excess power in this step is allocated to the channels/signals to which power scaling was applied, in the order of priority over the CGs as long as the total output power of the terminal device 1 does not exceed PCMAX at any part of the subframe. However, when power scaling was not applied to the power calculation target CG in the previous step, in other words, required power is already allocated to each of all the uplink channels/signals in the CG, the allocation of the excess power need not be performed. Here, as the order of priority, the above-described order of priority (the order of priority based on the CGs, channels/signals, contents, and the like) can be used.
In any of the above cases, power higher than that allocated in the previous step can be allocated by replacing the scaling factor w in the previous step with a greater value (value closer to one) or replacing the scaling factor with one (i.e., being equivalent to not performing multiplication with the scaling factor). Additionally, the scaling factor w can be replaced with a scaling factor greater than zero (including one) for channels/signals for which the scaling factor w of zero was used (dropped channels/signals) in the previous step. In this way, it is also possible to prevent uplink transmission that was dropped in the previous step, from being dropped (to perform the uplink transmission). Alternatively, for simplicity, it is also possible not to allocate excess power to the channels/signals for which the scaling factor w of zero was used in the previous step. In this case, the excess power is allocated only for the channels/signals for which the scaling factor w of a value greater than zero was used in the previous step.
For example, the excess power is sequentially allocated to the CGs in the order from a PUCCH in the MCG, a PUCCH in the SCG, a PUSCH including a UCI in the MCG, a PUSCH not including any UCI in the MCG, and then a PUSCH not including any UCI in the SCG More specifically, allocation of excess power is performed in the following procedure.
As Step (x1), excess power is initialized. More specifically, it is assumed that PRemaining=PCMAX−Ppre, MeNB−Ppre, SeNB. Note that, when a power calculation target is a subframe in the MCG, Ppre, SeNB is the value of the SCG subframe overlapping the later part of the subframe. In this case, it may be assumed that PRemaining=PCMAX−Ppre, MeNB−max (PSCG(i−1), Ppre, SeNB). Here, PSCG(i−1) denotes the actual total transmit power of the SCG subframe overlapping the forward part of the power calculation target MCG subframe. Moreover, when a power calculation target is a subframe in the SCG, Ppre, MeNB is the value of the MCG subframe overlapping the later part of the subframe. In this case, it may be assumed that PRemaining=PCMAX−max(PMCG(i−1), Ppre, MeNB)−Ppre, SeNB. Here, PMCG(i−1) denotes the actual total transmit power of the MCG subframe overlapping the forward part of the power calculation target SCG subframe.
As Step (x2), the following computation is performed. If there is PUCCH transmission in the MCG, and scaling using the scaling factor w is applied to the PUCCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH does not exceed PRemaining is determined. Here, w<w′≦1, and PPUCCH denotes the required power of the PUCCH in the MCG By setting PRemaining=PRemaining−(w′−w)PPUCCH, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (x3), the following computation is performed. If there is PUCCH transmission in the SCG, and scaling using the scaling factor w is applied to the PUCCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH does not exceed PRemaining is determined. Here, w<w′≦1, and PPUCCH denotes the required power of the PUCCH in the SCG By setting PRemaining=PRemaining−(w′−w)PPUCCH, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (x4), the following computation is performed. If there is transmission of a PUSCH including the UCI in the MCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH, j does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, j denotes the required power of the PUSCH including the UCI in the MCG By setting PRemaining=PRemaining−(w′−W)PPUSCH, j, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (x5), the following computation is performed. If there is transmission of a PUSCH including the UCI in the SCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH, j does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, j denotes the required power of the PUSCH including the UCI in the SCG By setting PRemaining=PRemaining−(w′−w)PPUSCH, j, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (x6), the following computation is performed. If there is PUSCH transmission not including the UCI in the MCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)ΣPPUSCH, c does not exceed PRemaining is determined. Here, w<w″≦1, and PPUSCH, c denotes the required power for the PUSCH in the serving cell c in the MCG By setting PRemaining=PRemaining−(w′−w)ΣPPUSCH, c, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (x7), the following computation is performed. If there is PUSCH transmission not including the UCI in the SCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)ΣPPUSCH, c does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, c denotes the required power for the PUSCH in the serving cell c in the SCG. By setting PRemaining=PRemaining−(w′−w)ΣPPUSCH, c, the excess power value is updated in such a manner as to be reduced by the allocated power.
As another example, the excess power is sequentially allocated to the CGs in the order from a channel including HARQ-ACK in the MCG, a channel including HARQ-ACK in the SCG, a PUSCH not including HARQ-ACK in the MCG, and then a PUSCH not including HARQ-ACK in the SCG More specifically, allocation of excess power is performed in the following procedure.
As Step (y1), excess power is initialized. Note that Step (y1) is carried out through a similar process as that in Step (x1).
As Step (y2), the following computation is performed. If there is PUCCH transmission carrying HARQ-ACK in the MCG, and scaling using the scaling factor w is applied to the PUCCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH does not exceed PRemaining is determined. Here, w<w′≦1, and PPUCCH denotes the required power of the PUCCH in the MCG By setting PRemaining=PRemaining−(w′−W)PPUCCH, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (y3), the following computation is performed. If there is PUSCH transmission carrying HARQ-ACK in the MCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUSCH does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, j denotes the required power of the PUSCH carrying HARQ-ACK in the MCG By setting PRemaining=PRemaining−(w′−w)PPUSCH, j, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (y4), the following computation is performed. If there is PUCCH transmission carrying HARQ-ACK in the SCG, and scaling using the scaling factor w is applied to the PUCCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUCCH does not exceed PRemaining is determined. Here, w<w′≦1, and PPUCCH denotes the required power of the PUCCH in the SCG By setting PRemaining=PRemaining−(w′−w)PPUCCH, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (y5), the following computation is performed. If there is PUSCH transmission carrying HARQ-ACK in the SCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)PPUSCH, j does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, j denotes the required power of the PUSCH carrying HARQ-ACK in the SCG By setting PRemaining=PRemaining−(w′−w)PPUSCH, j, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (y6), the following computation is performed. If there is PUSCH transmission not including HARQ-ACK in the MCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)ΣPPUSCH, c does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, c denotes the required power for the PUSCH in the serving cell c in the MCG By setting PRemaining=PRemaining−(w″−w)ΣPPUSCH, c, the excess power value is updated in such a manner as to be reduced by the allocated power.
As Step (y7), the following computation is performed. If there is PUSCH transmission not including HARQ-ACK in the SCG, and scaling using the scaling factor w is applied to the PUSCH and PRemaining>0 (i.e., there is excess power), a new scaling factor w′ with which (w′−w)ΣPPUSCH, c does not exceed PRemaining is determined. Here, w<w′≦1, and PPUSCH, c denotes the required power for the PUSCH in the serving cell c in the SCG By setting PRemaining=PRemaining−(w′−w)ΣPPUSCH, c, the excess power value is updated in such a manner as to be reduced by the allocated power.
As described above, required powers of the channels/signals of both CGs are calculated first, and subsequently, temporary power scaling is performed for each CG as needed (when the total required power of the CG exceeds the guaranteed power of the CG). Lastly, the excess power is allocated in order, to the channels/signals which was multiplied by a scaling factor in the previous step. In this way, uplink transmit power can be used effectively.
So far, description has been given of a case in which required power is calculated for each channel first, then power scaling is performed in each CG, and lastly excess power is allocated among the CGs.
In contrast to the above, description will be given below of an example of a case in which required power is firstly calculated for each channel, and excess power is allocated while performing power scaling. Here, it is possible to use a priority rule similar to that described above for excess power allocation among CGs. In an order based on the priority rule, the excess power is sequentially allocated to the channel. In this case, when the total transmit power at this time in the target CG exceeds a power value obtained by subtracting the total power already allocated to the other CG from PCMAX, the power scaling is applied. When the power is allocated to the target channel that is the irrespective of whether to perform the power scaling, the power allocated from the excess power is subtracted. These are repeated until there is no excess power any more.
Firstly, the power is allocated to a PUCCH of a certain serving cell (for example, PCell) belonging to the MCG Here, the power for a PUCCH of a certain serving cell belonging to the MCG may be referred to as PPUCCH, MCG. The total transmit power of the MCG at this time (power required for the PUCCH) does not exceed the PCMAX or the PCMAX, c, and thus, PPUCCH of the MCG is allocated. Note that when there is no PUCCH transmission in the MCG, it is assumed that PPUCCH, MCG=0.
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power for the PUCCH of a certain serving cell belonging to the MCG is configured so as not to exceed an upper limit value (PCMAX or PCMAX, e) of the power for the PUCCH of the MCG In other words, PPUCCH, MCG is configured on the basis of a minimum value (smaller value) between the power required by the PUCCH and the upper limit value of the power.
When the power required by the PUCCH of the MCG is larger than PCMAX, the scaling factor of the power required by the PUCCH is calculated so as not to exceed the upper limit value of the power for the PUCCH of the MCG and is applied to the power required by the PUCCH. When the power required by the PUCCH of the MCG is scaled, that is, when the scaling factor is applied to the power required by the PUCCH of the MCG, the power need not be allocated to another physical uplink channel (e.g., PUSCH including the UCI and PUSCH not including the UCI).
Next, the power is allocated to the PUCCH of a certain serving cell (for example, pSCell) belonging to the SCG Here, the power for the PUCCH of a certain serving cell (for example, pSCell) belonging to the SCG may be referred to as PPUCCH, SCG. Note that the PCell and the pSCell are a different serving cell. Unless the total transmit power at this time in the SCG (power required by the PUCCH) exceeds a value obtained by subtracting the power already completed to be allocated from the PCMAX to the MCG, the PPUCCH of the SCG is allocated. On the other hand, when the value is exceeded, the power is scaled or dropped. Note that when there is no PUCCH transmission in the SCG, it is assumed that PPUCCH, SCG=0. Further, the power already completed to be allocated to the MCG may be referred to as PCMAX, MCG. PCMAX, MCG may be constituted by PPUCCH, MCG and/or PPUSCH, j, MCG and/or PPUSCH, c, MCG. That is, PCMAX, MCG may be constituted by using any one or any two or all of PPUCCH, MCG, PPUSCH, j, MCG, and PPUSCH, c, MCG. For example, PCMAX, MCG may be PPUCCH, MCG+PPUSCH, j, MCG may be PPUCCH, MCG+PPUSCH, j, MCG+PPUSCH, c, MCG, and may be 0 (zero) when there is no power already completed to be allocated to the MCG
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power PPUCCH, SCG for the PUCCH of a certain serving cell belonging to the SCG is configured so as not to exceed an upper limit value of the power for the PUCCH of the SCG (PCMAX or PCMAX−PCMAX, MCG). In other words, PPUCCH, SCG is configured on the basis of a minimum value between the power required by the PUCCH and the upper limit value of the power. Further, when the excess power allocatable to the power for the PUCCH of a certain serving cell belonging to the SCG is smaller than a prescribed value (or a threshold value) relative to the power required by the PUCCH, the PUCCH transmission of a certain serving cell belonging to the SCG may be dropped. Note that the prescribed value may be configured as a higher layer parameter, or may be previously configured, as a default value, to a terminal device, and when the prescribed value is not configured by a higher layer signaling, a default value may be used.
When the power required by the PUCCH of the SCG is larger than PCMAX and PCMAX−PCMAX, MCG, the scaling factor of the power required by the PUCCH of the SCG is calculated so as not to exceed an upper limit value of the power for the PUCCH of the SCG and is applied to the power required by the PUCCH of the SCG When the power required by the PUCCH of the SCG is scaled, that is, when the scaling factor is applied to the power required by the PUCCH of the SCG, the power need not be allocated to another physical uplink channel (e.g., PUSCH including the UCI and PUSCH not including the UCI).
Next, the power is allocated to a PUSCH including UCI of a certain serving cell j belonging to the MCG Here, the power for the PUSCH including the UCI of a certain serving cell j belonging to the MCG may be referred to as PPUSCH, j, MCG. Note that the certain serving cell j belonging to the MCG is a serving cell different at least from the pSCell, that is, different from the serving cell belonging to the SCG Unless a total transmit power in the MCG at this time (a sum of PPUCCH and PPUSCH, j, that is, a sum of PPUCCH, MCG and PPUSCH, j, MCG) exceeds a value obtained by subtracting the power already completed to be allocated to the SCG from the PCMAX, PPUSCH, MCG is allocated. On the other hand, when the value is exceeded, the power is scaled or dropped. Note that when there is no transmission of a PUSCH including the UCI in the MCG, it is assumed that PPUSCH, j, MCG=0. Further, the power already completed to be allocated to the SCG may be referred to as PCMAX, SCG. PCMAX, SCG may be constituted by PPUCCH, SCG and/or PPUSCH, k, SCG and/or PPUSCH, d, SCG. That is, PCMAX, SCG may be constituted by using any one or any two or all of PPUCCH, SCG. PPUSCH, k, SCG, and PPUSCH, d, SCG. For example, PCMAX, SCG may be PPUCCH, SCG+PPUSCH, k, SCG, may be PPUCCH, SCG+PPUSCH, k, SCG+PPUSCH, d, SCG, and may be 0 (zero) when there is no power already completed to be allocated to the SCG
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power PPUSCH, j, MCG for the PUSCH including the UCI of a certain serving cell j belonging to the MCG is configured so as not to exceed an upper limit value of the power for the PUSCH including the UCI of a certain serving cell j belonging to the MCG (PCMAX or PCMAX−PPUCCH, MCG or PCMAX−PCMAX, SCG or PCMAX−PPUCCH, MCG−PCMAX, SCG). In other words, PPUSCH, j, MCG is configured on the basis of a minimum value between the power required by the PUSCH and the upper limit value of the power for the PUSCH including the UCI of a certain serving cell j belonging to the MCG Further, when the excess power allocatable to the power for the PUSCH including the UCI of a certain serving cell j belonging to the MCG is smaller than a prescribed value (or a threshold value) relative to the power required by the PUSCH, the transmission of a PUSCH including the UCI of a certain serving cell j belonging to the MCG may be dropped.
When the power required by the PUSCH including the UCI of a certain serving cell j belonging to the MCG is larger than the upper limit value of the power for the PUSCH including the UCI of the serving cell j, the scaling factor of the power required by the PUSCH including the UCI of the serving cell j is calculated so as not to exceed the upper limit value of the power for the PUSCH including the UCI of the serving cell j, and applied to the power required by the PUSCH including the UCI of the serving cell j. When the power required by the PUSCH including the UCI of the serving cell j is scaled, that is, when the scaling factor is applied to the power required by the PUSCH including the UCI of the serving cell j, the power need not be allocated to another physical uplink channel (e.g., PUSCH not including the UCI).
Next, the power is allocated to a PUSCH including UCI of a serving cell k belonging to the SCG Here, the power for the PUSCH including the UCI of the certain serving cell k belonging to the SCG may be referred to as PPUSCH, k, SCG. Note that the certain serving cell k belonging to the SCG is a serving cell different from the PCell and the serving cell j, that is, different from the serving cell belonging to the MCG Unless the total transmit power in the SCG at this time (sum of PPUCCH and PPUSCH, k in the SCG, that is, sum of PPUCCH SCG and PPUSCH, k, SCG) exceeds a value obtained by subtracting the power already completed to be allocated to the MCG from the PCMAX, PPUSCH, j, SCG is allocated. On the other hand, when the value is exceeded, the power is scaled or dropped. Note that when there is no transmission of a PUSCH including the UCI in the SCG, it is assumed that PPUSCH, k, SCG=0.
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power PPUSCH, k, SCG for the PUSCH including the UCI of a certain serving cell k belonging to the SCG is configured so as not to exceed an upper limit value of the power for the PUSCH including the UCI of a certain serving cell k belonging to the SCG (PCMAX or PCMAX−PPUCCH, SCG or PCMAX−PCMAX, MCG or PCMAX−Ppuce, SCG−PCMAX, MCG). In other words, PPUSCH, k, SCG is configured on the basis of a minimum value between the power required by the PUSCH and the upper limit value of the power for the PUSCH including the UCI of a certain serving cell k belonging to the SCG Further, when the excess power allocatable to the power for the PUSCH including the UCI of a certain serving cell k belonging to the SCG is smaller than a prescribed value (or a threshold value) relative to the power required by the PUSCH, the transmission of a PUSCH including the UCI of a certain serving cell k belonging to the SCG may be dropped.
When the power required by the PUSCH including the UCI of a certain serving cell k belonging to the SCG is larger than the upper limit value of the power for the PUSCH including the UCI of the serving cell k, the scaling factor of the power required by the PUSCH including the UCI of the serving cell k is calculated so as not to exceed the upper limit value of the power for the PUSCH including the UCI of the serving cell k, and is applied to the power required by the PUSCH including the UCI of the serving cell k. When the power required by the PUSCH including the UCI of the serving cell k is scaled, that is, when the scaling factor is applied to the power required by the PUSCH including the UCI of the serving cell k, the power need not be allocated to another physical uplink channel (e.g., PUSCH not including the UCI).
Next, the power is allocated to a PUSCH not including UCI of a certain serving cell c belonging to the MCG, that is, including only UL-SCH data. Note that the power for the PUSCH not including the UCI of the certain serving cell c belonging to the MCG may be referred to as PPUSCH, c, MCG. Note that the certain serving cell c belonging to the MCG is a serving cell different from the pSCell nor the serving cell k, that is, a serving cell different from the serving cell belonging to the SCG and different also from the above serving cell j. Unless the total transmit power in the MCG at this time (a sum of PPUCCH, PPUSCH, j, and PPUSCH c in the MCG, that is, a sum of PPUCCH, MCG, PPUSCH, j, MCG, and PPUSCH, c, MCG) exceeds a value obtained by subtracting the power already completed to be allocated to the SCG from the PCMAX, PPUSCH, c, MCG is allocated. On the other hand, when the value is exceeded, the power is scaled or dropped. Note that when there is no PUSCH transmission not including the UCI in the MCG, it is assumed that PPUSCH, c, MCG=0. Note that the UL-SCH data may be referred to as a transport block.
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power PPUSCH, c, MCG for the PUSCH not including the UCI of a certain serving cell c belonging to the MCG is configured so as not to exceed an upper limit value of the power for the PUSCH not including the UCI of the serving cell c belonging to the MCG (PCMAX or PCMAX−PPUCCH, MCG or PCMAX−PPUSCH, j, MCG or PCMAX−PPUCCH, MCG−PPUSCH, j, MCG or PCMAX−PCMAX, SCG or PCMAX−PPUCCH, MCG−PCMAX, SCG or PCMAX−PPUCCH, MCG−PPUSCH, t, MCG−PCMAX, SCG). In other words, PPUSCH, c, MCG is configured on the basis of a minimum value between the power required by the PUSCH and the upper limit value of the power for the PUSCH not including the UCI of the certain serving cell c belonging to the MCG Note that transmissions of the PUSCH not including the UCI occur simultaneously in a plurality of serving cells, it is so configured that the minimum value is not exceeded by using the scaling factor having the same value. Further, when the excess power allocatable to the power for the PUSCH not including the UCI of the certain serving cell c belonging to the MCG is smaller than a prescribed value (or a threshold value) relative to the power required by the PUSCH, the PUSCH transmission not including the UCI of the certain serving cell c belonging to the MCG may be dropped.
When the power required by the PUSCH not including the UCI of the certain serving cell c belonging to the MCG is larger than the upper limit value of the power for the PUSCH not including the UCI of the serving cell c, the scaling factor of the power required by the PUSCH not including the UCI of the serving cell c is calculated so as not to exceed the upper limit value of the power for the PUSCH not including the UCI of the serving cell c, and applied to the power required by the PUSCH not including the UCI of the serving cell c. When the power required by the PUSCH not including the UCI of the serving cell c is scaled, that is, when the scaling factor is applied to the power required by the PUSCH not including the UCI of the serving cell c, the power need not be allocated to another physical uplink channel (e.g., an SRS).
Next, the power is allocated to a PUSCH not including UCI of a certain serving cell d belonging to the SCG, that is, including only UL-SCH data. Note that the power for the PUSCH not including the UCI of the certain serving cell d belonging to the SCG may be referred to as PPUSCH, d, SCG. Note that the certain serving cell d belonging to the SCG is a serving cell different from the PCell, the serving cell j, and the serving cell c, that is, a serving cell different from the serving cell belonging to the MCG, and different also from the above serving cell k. Unless the total transmit power in the SCG at this time (a sum of PPUCCH, PPUSCH, k, and PPUSCH, d in the SCG, that is, a sum of PPUCCH, SCG, PPUSCH, k, SCG, and PPUSCH, d, SCG) exceeds a value obtained by subtracting the power already completed to be allocated to the SCG from the PCMAX, PPUSCH, d, SCG is allocated. On the other hand, when the value is exceeded, the power is scaled or dropped. Note that when there is no PUSCH transmission not including the UCI in the SCG, it is assumed that PPUSCH, d, SCG=0.
When the MCG and the SCG are configured, that is, when a plurality of CGs are configured, the power PPUSCH, d, SCG for the PUSCH not including the UCI of the certain serving cell d belonging to the SCG is configured so as not to exceed an upper limit value of the power for the PUSCH not including the UCI of the serving cell d belonging to the SCG (PCMAX or PCMAX−PPUCCH, SCG or PCMAX−PPUSCH, k, SCG or PCMAX−PPUCCH, SCG−PPUSCH, k, SCG or PCMAX−PCMAX, MCG or PCMAX−PPUCCH, SCG−PCMAX, MCG or PCMAX−PPUCCH, SCG−PPUSCH, k, SCG−PCMAX, MCG). In other words, PPUSCH, d, SCG is configured on the basis of a minimum value between the power required by the PUSCH and the upper limit value of the power for the PUSCH not including the UCI of the certain serving cell d belonging to the SCG Further, when the excess power allocatable to the power for the PUSCH not including the UCI of the certain serving cell d belonging to the SCG is smaller than a prescribed value (or a threshold value) relative to the power required by the PUSCH, the PUSCH transmission not including the UCI of the certain serving cell d belonging to the SCG may be dropped.
When the power required by the PUSCH not including the UCI of the certain serving cell d belonging to the SCG is larger than the upper limit value of the power for the PUSCH not including the UCI of the serving cell d, the scaling factor of the power required by the PUSCH not including the UCI of the serving cell d is calculated so as not to exceed the upper limit value of the power for the PUSCH not including the UCI of the serving cell d, and applied to the power required by the PUSCH not including the UCI of the serving cell d. When the power required by the PUSCH not including the UCI of the serving cell d is scaled, that is, when the scaling factor is applied to the power required by the PUSCH not including the UCI of the serving cell d, the power need not be allocated to another physical uplink channel (e.g., SRS).
When a minimum guaranteed power PMCG, PSCG is configured to each of the MCG and the SCG, if it is so configured that the excess power greatly falls short of the minimum guaranteed power, upon allocation of the power to the PPUCCH, SCG or PPUSCH, j, MCG, PPUSCH, k, SCG, PPUSCH, c, MCG, and PPUSCH, d, SCG, then the following power allocation may not be performed. For example, when most of the power is allocated to the transmit power of the PUCCH for each of the CGs, the power may not be allocated to the transmit power of the PUSCH for the MCG or the SCG That is, when the following is satisfied: PMCG (or PSCG)>>PCMAX−PCMAX, MCG−PCMAX, SCG (or, PCMAX−PCMAX, MCG, PCMAX−PCMAX, SCG, the upper limit value of the power for each physical uplink channel), the power may not be allocated to the physical uplink channel for the MCG or the SCG That is, the transmission of the physical uplink channel to which the power is not allocated may be dropped.
When a minimum guaranteed power PMCG, PSCG is configured to each of the MCG and the SCG, if it is so configured that the excess power greatly falls short of the minimum guaranteed power, upon allocation of the power to the PPUCCH SCG or PPUSCH, j, MCG, PPUSCH, k, SCG, PPUSCH, c, MCG, and PPUSCH, d, SCG, then the following power allocation may not be performed. For example, when most of the power is allocated to the transmit power of the PUCCH for each of the CGs, the power may not be allocated to the transmit power of the PUSCH for the MCG or the SCG That is, when the following is satisfied: the power required by the physical uplink channel (PUSCH, PUCCH)>>PCMAX−PCMAX, MCG−PCMAX, SCG (or, PCMAX−PCMAX, MCG, PCMAX−PCMAX, SCG, the upper limit value of the power for each physical uplink channel), the power may not be allocated to the physical uplink channel for the MCG or the SCG That is, the transmission of the physical uplink channel to which the power is not allocated may be dropped.
When a minimum guaranteed power PMCG, PSCG is configured to each of the MCG and the SCG and when the power required by the physical uplink channel of the serving cell belonging to the certain CG exceeds the minimum guaranteed power of the certain CG, if it is so configured that the excess power greatly falls short of the minimum guaranteed power, upon allocation of the power to the PPUCCH, SCG or PPUSCH, t, MCG, PPUSCH, k, SCG, PPUSCH, c, MCG, and PPUSCH, d, SCG, then the following power allocation may not be performed. For example, when most of the power is allocated to the transmit power of the PUCCH for each of the CGs, that is, when the excess power is very small, the power may not be allocated to the transmit power of the PUSCH for the MCG or the SCG That is, when the following is satisfied: PMCG (or PSCG)>>PCMAX−PCMAX, MCG−PCMAX, SCG (or, PCMAX−PCMAX, MCG, PCMAX−PCMAX, SCG, the upper limit value of the power for each physical uplink channel), the power may not be allocated to the physical uplink channel for the MCG or the SCG That is, the transmission of the physical uplink channel to which the power is not allocated may be dropped.
When a plurality of CGs are configured and the transmissions of a plurality of physical uplink channels overlap between the CGs and/or within the CG, the upper limit value of the power for the physical uplink channel changes in accordance with the priority of the CG and the priority of the physical uplink channel.
Note that the above-described PCMAX, PCMAX, MCG, PCMAX, SCG, PPUCCH, SCG, PPUSCH, j, MCG, PPUSCH, k, SCG, PPUSCH, c, MCG, PPUSCH, d, SCG, or the like may be indicated as a linear value rather than a relative value or a ratio. For example, a unit (may be referred to as a dimension) of the linear value may be dBm, W, or mW.
In the above-described example, description has been given of a case in which in the allocation of the power to the channel, when the total transmit power at this time in the target CG exceeds a power value obtained by subtracting the total power already allocated to the other CG from PCMAX, the power scaling is applied to the power allocated to the channel. As another example, when the power required for the target channel exceeds the power value obtained by subtracting from PCMAX a sum of the total power already allocated to the target CG and the total power already allocated to the other CG, the power scaling may be applied to the power allocated to the channel.
Further, as another example, in the above-described method, the allocation of the power to the target channel may be further determined in consideration of the guaranteed power configured to each CG For example, when the required power of the channel in question exceeds the power value obtained by subtracting from the PCMAX a sum of the power regarding the target CG and the power regarding the other CG, the power scaling may be applied to the power allocated to the channel. The power regarding the target CG is a maximum value of the total power already allocated to the target CG and the guaranteed power in the target CG The power regarding the other CG is a maximum value of the total power already allocated to the other CG and the guaranteed power in the other CG.
Specific description is as follows. Description will be given below of another example in which required power is calculated for each channel first, then the excess power is allocated while performing the power scaling. Note that in the description below, some contents overlapping in the description in the above example will be omitted. Here, it is possible to use a priority rule similar to that described above for excess power allocation among CGs. In an order based on the priority rule, the excess power is sequentially allocated to the channel. At this time, when the power required for the channel in question exceeds a power value obtained by subtracting from the PCMAX a sum of the power regarding the target CG and the power regarding the other CG, the power scaling is applied. When the power is allocated to the target channel irrespective of whether to perform the power scaling, the power allocated from the excess power is subtracted. These are repeated until there is no excess power any more.
Note that in the above-described description, the power regarding the MCG is a maximum value of the total power already allocated to the MCG and the guaranteed power in the MCG The power regarding the SCG is a maximum value of the total power already allocated to the SCG and the guaranteed power in the SCG
The base station device assumes maximum output PCMAX configured by the terminal device from a power head room report, and on the basis of the physical uplink channel received from the terminal device, assumes the upper limit value of the power for each physical uplink channel. The base station device determines, on the basis of the assumptions, a value of transmit power control command for the physical uplink channel, and uses the PDCCH accompanying a downlink control information format to transmit the value to the terminal device. In this way, the power of the transmit power of the physical uplink channel transmitted from the terminal device is adjusted.
Next, a second embodiment of the present invention will be described below.
In the second embodiment, description will be given of the transmission timing of the PRACH when a plurality of CGs are configured and transmit power control of the terminal device when the PRACH transmission overlaps the PUSCH/PUCCH/PRACH transmissions among the plurality of CGs.
When the PRACH transmission and the PUSCH/PUSCH transmission overlap among a plurality of synchronized/unsynchronized CGs, the power is preferentially allocated to the transmission of the physical uplink channel allocated first. For example, when the PRACH transmission and the PUSCH transmission overlap, if the PUSCH is allocated first, then irrespective of the degree of priority between the physical uplink channels, the power may be preferentially allocated to the PUSCH transmission, and the remaining power is allocated to the PRACH transmission. If the remaining power is insufficient power for the PRACH transmission, then the PRACH transmission may not be received by the base station device, which possibly degrades communication efficiency.
The channel or the signal used in the present embodiment, the schematic configuration of the terminal device and the base station device, or the like are similar to those described in the first embodiment, and thus, detailed description may not be provided.
A random access procedure will be described. Before performing an random access procedure (unsynchronized physical random access procedure, L1 random access procedure) in the physical layer, a layer 1 (physical layer of the terminal device) receives information (PRACH configuration and frequency position) on a parameter of a random access channel from the higher layer and information on a parameter for determining a root sequence or a cyclic shift in a preamble sequence set for a primary cell (index for a logical root sequence index table, cyclic shift (NCS), set type (non-restricted or restricted set)).
The random access procedure is started by a PDCCH order or the MAC layer.
The random access procedure in the SCell is started only by the PDCCH order. When the terminal device receives the PDCCH transmission for a certain serving cell and that which matches the PDCCH order masked with the C-RNTI, the terminal device starts the random access procedure for the serving cell. In response to the random access procedure in the PCell, the PDCCH order or the RRC layer instructs a random access preamble index (ra-PreambleIndex) and a random access PRACH mask index (ra-PRACH-MaskIndex), and in response to the random access procedure in the SCell, the PDCCH order instructs a random access preamble index having a value different from “000000” and the random access PRACH mask index. A pTAG preamble transmission in the PRACH and reception of the PDCCH order are supported only for the PCell.
In view of the physical layer, the L1 random access procedure includes transmission of a random access preamble and a random access response. The remaining message is scheduled to be transmitted by the higher layer in a shared date channel, and is not considered as a part of the L1 random access procedure. The random access channel (here, the PRACH) occupies six resource blocks, reserved for transmission of the random access preamble, in a particular single subframe or a set of a contiguous (plurality of) subframes. Note that the single subframe is used for a preamble format 0,4, and the set of contiguous (plurality of) subframes is used for a preamble format 1,2,3. In the resource block reserved for transmission of the random access preamble (or transmission of a random access channel preamble), the base station device does not prohibit scheduling of the data (UL-SCH data). That is, the base station device may schedule the PUSCH using the resource block reserved for transmission of the random access preamble, to the terminal device. The terminal device may use the resource block reserved for transmission of the random access preamble to transmit the UL-SCH data (that is, UL-SCH transport block, PUSCH).
The L1 random access procedure is performed in the following steps.
(H1) The L1 random access procedure is triggered when there is a request for a preamble transmission by a higher layer.
(H2) As a part of the request for the preamble transmission, a value of a parameter necessary for the random access procedure is instructed by the higher layer. Here, examples of the necessary parameter include a parameter necessary for transmit power configuration of the PRACH (target preamble reception power (PREAMBLE_RECEIVED_TARGET_POWER), an initial power value, ramp-up value, or the like), RNTI corresponding to a random access (RA-RNTI), a parameter necessary for a resource configuration of a random access and a sequence generation (preamble index, a mask index, a root sequence index, a zero correlation zone configuration (cyclic shift), a high-speed flag, a frequency offset, or the like).
(H3) The transmit power PPRACH of the preamble is determined. PPRACH is indicated as min {PCMAX, c (i), PREAMBLE_TARGET_RECEIVED_POWER+PLc}. PCMAX, c (i) is the transmit power (maximum output power) of the configured terminal device in the subframe i of the serving cell c. Target preamble reception power is set on the basis of the initial power value, the ramp-up value, and a transmission count of the preamble. PLc is an estimated value, for the serving cell c, of downlink path loss calculated by the terminal device.
(H4) The preamble sequence is selected from the preamble sequence set using the preamble index.
(H5) A single preamble is transmitted with the transmit power PPRACH set in the step (H2), in the instructed PRACH resource, by using the preamble sequence selected in the step (H4).
(H6) Detection of the PDCCH accompanying the instructed RA-RNTI is performed within a window controlled by the higher layer. When the PDCCH is detected, the corresponding DL-SCH transport block is passed over to the higher layer. The higher layer analyzes the transport block, and notifies the higher layer of a 20-bit uplink grant.
Next, an uplink transmission timing of the terminal device after the random access preamble transmission (that is, the PRACH transmission, the preamble sequence transmission) in response to the L1 random access procedure will be described.
If the PDCCH accompanying the RA-RNTI related in a subframe n is detected and a response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted (that is, the random access response) is included, then the terminal device transmits, in response to the information in the response, the UL-SCH transport block in a first subframe n+k1 (k1≧6). Here, if a UL delay field is set to “0”, then the first subframe is an uplink subframe initially applicable to the PUSCH transmission. For a TDD serving cell, a first uplink subframe (initially applicable subframe) for the PUSCH transmission is determined on the basis of a UL/DL configuration (that is, a subframe assignment of a higher layer parameter) instructed by the higher layer. If the UL delay field is set to “1”, then the terminal device postpones the PUSCH transmission until a subsequently applicable uplink subframe after a subframe n+k1.
If the random access response is received in a subframe n and the response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted is not included, then the terminal device makes a preparation, upon being requested by the higher layer, so that a new preamble sequence can be transmitted without delay in a subframe n+5.
If the random access response is not received in the subframe n, then the terminal device makes a preparation, upon being requested by the higher layer, so that a new preamble sequence can be transmitted without delay in a subframe n+4. Here, the subframe n can be considered as the last subframe in a random access response window.
When the random access procedure is performed by the “PDCCH order” in the subframe n, the terminal device transmits, upon request by the higher layer, the random access preamble in a first subframe n+k2 (k2≧6) to which the PRACH resource is applicable (allocatable). Here, the PDCCH order is a downlink control information format (that is, PDCCH accompanying a downlink control information format) in which a prescribed field is set to a prescribed value in order to perform scheduling of the random access preamble transmission. The PDCCH order performs the scheduling of the random access preamble transmission, on the basis of the downlink control information included in the PDCCH.
If a plurality of TAGs are configured to the terminal device and a carrier indicator field for a certain serving cell is configured, then the terminal device uses the carrier indicator field included in the detected “PDCCH order” in order to determine the serving cell for the corresponding random access preamble transmission. That is, on the basis of a value of the carrier indicator field included in the “PDCCH order”, the serving cell in which the random access preamble transmission is performed is determined.
Next, an uplink transmission timing of the terminal device after the random access preamble transmission (that is, the PRACH transmission) in response to the L1 random access procedure about a case where a plurality of CGs are configured to the terminal device will be described.
If the PDCCH accompanying the RA-RNTI related in a subframe n is detected and a response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted is included, then the terminal device transmits, in response to the information in the response, the UL-SCH transport block in a first subframe n+k3 (k3≧X1 (X1 is a prescribed value)). Here, if a UL delay field is set to “0”, then the first subframe is an uplink subframe initially applicable to the PUSCH transmission. For a TDD serving cell, a first uplink subframe (initially applicable subframe) for the PUSCH transmission is determined on the basis of a UL/DL configuration (that is, a subframe assignment of a higher layer parameter) instructed by the higher layer. If the UL delay field is set to “1”, then the terminal device postpones the PUSCH transmission until a subsequently applicable uplink subframe after a subframe n+k3. However, when a value of k3 is sufficiently large, the terminal device to which a plurality of CGs are configured may transmit, irrespective of the value of the UL delay field, the UL-SCH transport block, in a first subframe n+k3.
When a plurality of CGs are configured to the terminal device, if the random access response is received in a subframe n and the response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted is not included, then the terminal device makes a preparation, upon being requested by the higher layer, so that a new preamble sequence can be transmitted without delay in a subframe n+k4 (k4≧X2 (X2 is a prescribed value)). k3 or X may be configured in consideration of a timing of PUSCH/PUCCH transmission in a serving cell belonging to another non-synchronized CG For example, when the scheduling information for the PUSCH in the serving cell belonging to another CG is received in the subframe i, the PUSCH is transmitted in an initial uplink subframe after a subframe i+4. When the PRACH transmission in the serving cell belonging to a certain CG overlaps the PRACH transmission in the subframe i+4, in order to allocate an appropriate transmit power to the PRACH, it may be determined whether or not it is necessary to transmit a new preamble sequence at the same timing as the subframe i or in a subframe prior thereto. For example, if it is known that a response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted is not included in a subframe i−1, it is possible to preferentially allocate the power to the PRACH transmission. In other words, if the random access response is received in a subframe n and the response to the preamble sequence in which the corresponding DL-SCH transport block is transmitted is not included, then upon preparation being made so that a new preamble sequence is transmitted without delay in a subframe n+6, it is possible to preferentially allocate the power to the PRACH transmission.
If the random access response is not received in the subframe n, then the terminal device makes a preparation, upon being requested by the higher layer, so that a new preamble sequence can be transmitted without delay in a subframe n+k5 (k5≧X3 (X3 is a prescribed value)). k4 or Y may be configured in consideration of a timing of PUSCH/PUCCH transmission in a serving cell belonging to another non-synchronized CG For example, when the scheduling information for the PUSCH in the serving cell belonging to another CG is received in the subframe i, the PUSCH is transmitted in an initial uplink subframe after a subframe i+4. When the PRACH transmission in the serving cell belonging to a certain CG overlaps the PUSCH transmission in the subframe i+4, in order to allocate an appropriate transmit power to the PRACH, it may be determined whether or not it is necessary to transmit a new preamble sequence at the same timing as the subframe i or in a subframe prior thereto. For example, if it is known that the random access response is not received in the subframe i−1, it is possible to preferentially allocate the power to the PRACH transmission. In other words, if the random access response is not received in the subframe n, then upon preparation being made so that a new preamble sequence is transmitted without delay in a subframe n+5, it is possible to preferentially allocate the power to the PRACH transmission.
When the random access procedure is performed by the “PDCCH order” in the subframe n, the terminal device transmits, upon being requested by the higher layer, the random access preamble in a first subframe n+k6 (k6>X4 (X4 is a prescribed value)) to which the PRACH resource is applicable (allocatable). Here, the PDCCH order is a downlink control information format (that is, PDCCH accompanying a downlink control information format) in which a prescribed field is set to a prescribed value in order to perform scheduling of the random access preamble transmission.
When a plurality of CGs are configured, if the transmission of the random access response in the subframe n+k3, the subframe n+k4, the subframe n+k5, and the subframe n+k6 or the UL-SCH transport block for the “PDCCH order” and the PRACH transmission (the preamble sequence transmission and the random access preamble transmission), and in the subframe of the serving cell belonging to the other CG, the transmission of an uplink signal (for example, the PUSCH and the PUCCH) overlap, then the k3 (or X1), k4 (or X2), k5 (or X3), k6 (or X4) may be determined on the basis of the subframe number or a time period required from receiving the random access response and the “PDCCH order” in the subframe n of the serving cell belonging to a certain CG after which the random access response and the “PDCCH order” are demodulated and decoded to generate the UL-SCH transport block and the preamble sequence corresponding thereto to transmitting the generated UL-SCH transport block and the preamble sequence. For example, when the PUSCH grant (uplink grant) and PDSCH are received in a subframe m of a serving cell belonging to the other CD overlapping the subframe n, even if the PRACH transmission and the PUSCH/PUCCH transmission overlap in the subframe n+k and the subframe m+k, a value of k may be determined so that the power is preferentially allocated to the PRACH transmission. For example, values of k3 to k6 may be all configured to a common value (the same value).
When the subframe n in which to receive the PDCCH order and the random access response for a first serving cell and the subframe m in which to receive the DL-SCH transport block for a second serving cell do not overlap, where the first serving cell is a certain serving cell belonging to a certain CG and the second serving cell is a serving cell belonging to the other CG, and the PRACH transmission thereto and the PUSCH/PUCCH transmission overlap, the subframe n+k of the PRACH transmission may be configured with the sufficient subframe number or time period for the preamble sequence generation and the transmit power configuration. That is, the value of k may be a time period required to generate the preamble sequence and a time period required during which the power is preferentially allocated to the PRACH transmission. For example, in consideration of a reception timing of the PUSCH grant (uplink grant) for the serving cell belonging to the other CG, a time period required for demodulating and decoding the RAP grant (random access response grant) for its own cell or the “PDCCH order”, and a time period required from demodulating and decoding the RAP grant or the like to generate the preamble sequence to arrange a preparation for transmission, the value of k for the PRACH transmission of the serving cell belonging to a certain CG (that is, its own cell) preferably is 4 or more. When a required time period differs depending on whether or not a plurality of CGs are configured, the value of k is switched depending on whether or not a plurality of CGs are configured, and on the basis of the value of k, the random access procedure is performed.
When not possible to extract the preamble sequence, the base station device may transmit, to the DL-SCH transport block, the DL-SCH transport block without including a response corresponding to the preamble sequence. Further, when transmitting the DL-SCH transport block including the random access response for the preamble sequence of a certain terminal device in the subframe n, the base station device may be configured to receive, on the assumption that detection of the response is failed, in the terminal device, a new preamble sequence in a subframe n+t (t is the above-described prescribed value). Alternatively, the base station device may be configured to receive, on the assumption that detection of the response is successful, in the terminal device, the UL-SCH transport block for the response in the subframe n+t (t is the above-described prescribed value).
An interactive model, related to the random access procedure, between the physical layer (L1 layer) and the higher layers (L2/L3 layer, MAC/RRC layer) of the terminal device 1 will be described. The higher layer 1207 instructs the physical layer (that is, the uplink subframe generation unit 1209, the preamble sequence generation unit 1215, the SC-FDMA transmission unit 1211, and the transmit antenna 1213), via the control unit 10206, to transmit the random access preamble. In response to the instruction, the preamble sequence generation unit 1215 generates, on the basis of the higher layer parameter, the preamble sequence, maps the preamble sequence to the resource of the PRACH, and transmits the random access preamble via the SC-FDMA transmission unit 1211 and the transmit antenna 1213. When receiving in the transport block extraction unit 1205, after the random access preamble is transmitted, the random access response from the received DL-SCH transport block, it is possible to consider that the ACK is established (the random access preamble transmission is successful) and the information (determination result) is output from the transport block extraction unit 1205 to the higher layer 1207. When receiving the information, the higher layer 1207 instructs transmission of an RRC connection request. When not receiving the random access response in the transport block extraction unit 1205, it is possible to consider that the DTX reception is made and the information (determination result) is output to the higher layer 1207. Upon receiving the information, the higher layer 1207 instructs the random access preamble transmission to the physical layer.
By using
When a plurality of CGs are configured, the higher layer 1207 instructs, via the control unit 1206, to change a timing at which the PRACH is transmitted after the PDCCH order is received and/or a timing at which the PRACH of a new preamble sequence is transmitted after success/failure of reception of the random access response and/or a timing at which the UL-SCH transport block is transmitted after successful reception of the random access response.
As in the second embodiment, when a plurality of CGs are configured, when the conventional PRACH transmission timing is changed, even if the transmission is overlapped with the PUSCH/PUCCH transmission in a CG different in synchronization/non-synchronization, it is possible to preferentially allocate the power to the PRACH transmission.
Note that, in the above-described embodiments, the power required by each PUSCH transmission is described as being calculated on the basis of the parameters configured by a higher layer, an adjustment value determined on the basis of the number of PRBs allocated to the PUSCH transmission by resource assignment, downlink path loss and a coefficient by which the path loss is multiplied, an adjustment value determined on the basis of the parameter indicating the offset of the MCS applied to the UCI, a value based on a TPC command, and the like. Moreover, the description is provided that the power value required by each PUCCH transmission is calculated on the basis of the parameter configured by a higher layer, downlink path loss, an adjustment value determined on the basis of the UCI transmitted by the PUCCH, an adjustment value determined on the basis of the PUCCH format, an adjustment value determined on the basis of the antenna port number used for transmission of the PUCCH, the value based on the TPC command, and the like. However, the required power values are not limited to these. An upper limit value may be set for the required power value, and the smallest value of the value based on the above-described parameters and the upper limit value (e.g., PCMAX, c, which is the maximum output power value of the serving cell c) may be used as the required power value.
Although the description has been given of the case where the serving cells are grouped into connectivity groups in the above-described embodiments, the configuration is not limited to this. For example, it is possible to group, in a plurality of serving cells, only downlink signals or only uplink signals. In this case, connectivity identifiers are configured for downlink signals or uplink signals. It is also possible to group downlink signals and uplink signals separately. In this case, connectivity identifiers are configured separately for downlink signals and uplink signals. Alternatively, it is possible to group downlink component carriers or group uplink component carriers. In this case, connectivity identifiers are configured separately for component carriers.
Moreover, although the description has been given by using connectivity groups in each of the above-described embodiments, a set of serving cells provided by the same base station device (transmission point) need not always be defined by using a connectivity group. Connectivity identifiers or cell indices may be used for defining instead of connectivity groups. For example, in the case of using connectivity identifiers for defining, each connectivity group in each of the above-described embodiments may be rephrased as a set of serving cells having the same connectivity identifier value. In a case of using cell indices for defining, each connectivity group in each of the above-described embodiments may be rephrased as a set of serving cells having a prescribed cell index value (or a cell index value within a prescribed range).
Moreover, although the description has been given in each of the above-described embodiments by using the terms “primary cell” and “PS cell”, these terms need not always be used. For example, “primary cell” in each of the above-described embodiments may be referred to as “master cell”, and “PS cell” in each of the above-described embodiments may be referred to as “primary cell”.
A program running on each of the base station device 2-1 or base station device 2-2 and the terminal device 1 according to the present invention may be a program that controls a central processing unit (CPU) and the like (a program for causing a computer to operate) in such a manner as to realize the functions according to the above-described embodiments of the present invention. The information handled in these devices is temporarily stored in a random access memory (RAM) while being processed. Thereafter, the information is stored in various types of read only memory (ROM) such as a flash ROM or a hard disk drive (HDD) and when necessary, is read by the CPU to be modified or rewritten.
Note that the terminal device 1 and the base station device 2-1 or base station device 2-2 according to the above-described embodiments may be partially realized by the computer. This configuration may be realized by recording a program for realizing such control functions on a computer-readable recording medium and causing a computer system to read the program recorded on the recording medium for execution.
Note that the “computer system” here is defined as a computer system built into the terminal device 1 or the base station device 2-1 or base station device 2-2, and the computer system includes an OS and hardware components such as a peripheral device. Furthermore, the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built into the computer system.
Moreover, the “computer-readable recording medium” may include a medium that dynamically retains the program for a short period of time, such as a communication line that is used to transmit the program over a network such as the Internet or over a communication line such as a telephone line, and a medium that retains, in that case, the program for a certain period of time, such as a volatile memory within the computer system which functions as a server or a client. Furthermore, the program may be configured to realize some of the functions described above, and additionally may be configured to be capable of realizing the functions described above in combination with a program already recorded in the computer system.
Furthermore, the base station device 2-1 or the base station device 2-2 according to the above-described embodiments can be realized as an aggregation (a device group) constituted of a plurality of devices. Devices constituting the device group may be each equipped with some or all portions of each function or each functional block of the base station device 2-1 or the base station device 2-2 according to the above-described embodiments. It is only required that the device group itself include general functions or general functional blocks of the base station device 2-1 or the base station device 2-2. Furthermore, the terminal device 1 according to the above-described embodiments can also communicate with the base station device as the aggregation.
Furthermore, the base station device 2-1 or the base station device 2-2 according to the above-described embodiments may be an evolved universal terrestrial radio access network (E-UTRAN). Furthermore, the base station device 2-1 or the base station device 2-2 according to the above-described embodiments may have some or all portions of a function of a higher node for an eNodeB.
Furthermore, some or all portions of each of the terminal device 1 and the base station device 2-1 or the base station device 2-2 according to the above-described embodiments may be typically realized as a large-scale integration (LSI) that is an integrated circuit or may be realized as a chip set. The functional blocks of each of the terminal device 1 and the base station device 2-1 or the base station device 2-2 may be individually realized as a chip, or some or all of the functional blocks may be integrated into a chip. Furthermore, a circuit integration technique is not limited to the LSI, and may be realized with a dedicated circuit or a general-purpose processor. Furthermore, if with advances in semiconductor technology, a circuit integration technology with which an LSI is replaced appears, it is also possible to use an integrated circuit based on the technology.
Furthermore, according to the above-described embodiments, the cellular mobile station device is described as one example of a terminal device or a communication device, but the present invention is not limited to this, and can be applied to a fixed-type electronic apparatus installed indoors or outdoors, or a stationary-type electronic apparatus, for example, a terminal device or a communication device, such as an audio-video (AV) apparatus, a kitchen apparatus, a cleaning or washing machine, an air-conditioning apparatus, office equipment, a vending machine, and other household apparatuses.
The embodiments of the present invention have been described in detail above referring to the drawings, but the specific configuration is not limited to the embodiments and includes, for example, a change to a design that falls within the scope that does not depart from the gist of the present invention. Furthermore, various modifications are possible within the scope of claims, and embodiments that are made by suitably combining technical means disclosed according to the different embodiments are also included in the technical scope of the present invention. Furthermore, a configuration in which a constituent element that achieves the same effect is substituted for the one that is described according to the embodiments is also included in the technical scope of the present invention.
Note that the present invention provides the following characteristics.
(1) A terminal device according to an aspect of the present invention is a terminal device configured to communicate with a base station device, and includes: a transmission unit that, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being ready to be transmitted in a subframe at least one before the subframe i1, transmits the first PRACH.
(2) A terminal device according to an aspect of the present invention is the above-described terminal device, in which the transmission unit adjusts, upon a plurality of timing advance groups (TAGs) being configured in the first CG and transmission of a PRACH in a secondary serving cell of the first CG overlapping transmission of a physical uplink shared channel (PUSCH) in a serving cell different from the secondary serving cell, transmit power of the PUSCH so as not to exceed a maximum transmit power of the terminal device.
(3) A terminal device according to an aspect of the present invention is the above-described terminal device, in which the transmission unit adjusts, upon a plurality of timing advance groups (TAGs) being configured in the first CG and transmission of a PRACH in a secondary serving cell of the first CG overlapping transmission of a physical uplink control channel (PUCCH) in a serving cell different from the secondary serving cell, transmit power of the PUCCH so as not to exceed a maximum transmit power of the terminal device.
(4) A method according to an aspect of the present invention is a method in a terminal device configured to communicate with a base station device, the method comprising the step of: upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being ready to be transmitted in a subframe at least one before the subframe i1, transmitting the first PRACH.
(5) A method according to an aspect of the present invention is the above-described method. The method comprises the step of: upon a plurality of timing advance groups (TAGs) being configured in the first CG and transmission of a PRACH in a secondary serving cell of the first CG overlapping transmission of a physical uplink shared channel (PUSCH) in a serving cell different from the secondary serving cell, adjusting transmit power of the PUSCH so as not to exceed a maximum transmit power of the terminal device.
(6) A method according to an aspect of the present invention is the above-described method. The method comprises the step of: upon a plurality of timing advance groups (TAGs) being configured in the first CG and transmission of a PRACH in a secondary serving cell of the first CG overlapping transmission of a physical uplink control channel (PUCCH) in a serving cell different from the secondary serving cell, adjusting transmit power of the PUCCH so as not to exceed a maximum transmit power of the terminal device.
(7) A base station device according to an aspect of the present invention is a base station device configured to communicate with a terminal device. The base station device includes: a reception unit that, upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being configured by using a signal of a higher layer so as to be ready to be transmitted in a subframe at least one before the subframe i1, receives the first PRACH in a subframe i1.
(8) A method according to an aspect of the present invention is a method in a base station device configured to communicate with a terminal device. The method comprises the step of: upon transmission of a physical random access channel (PRACH) in a primary cell in a subframe i1 of a first cell group (CG) (transmission of a first PRACH) overlapping transmission of a PRACH in a subframe i2 of a second CG (transmission of a second PRACH) and the first PRACH being configured by using a signal of a higher layer so as to be ready to be transmitted in a subframe at least one before the subframe i1, receiving the first PRACH in the subframe ij.
(9) A terminal device according to an aspect of the present invention is a terminal device configured to communicate with a base station device. The terminal device includes a generation unit configured to generate, unless receiving a random access response in a subframe n upon a plurality of cell groups being configured, a new preamble sequence in order to make a transmission in time for a subframe n+k (k≧5) and to generate, unless receiving the random access response in the subframe n upon the plurality of cell groups not being configured, a new preamble sequence in order to make a transmission in time for a subframe n+4.
(10) A terminal device according to an aspect of the present invention is the above-described terminal device. Upon a plurality of cell groups being configured, the generation unit generates a new preamble sequence in order to make a transmission in time for a subframe n+j (j≧6) unless a response to the preamble sequence transmitted by the terminal device is included in a DL-SCH transport block corresponding to a random access response received in a subframe n. Upon the plurality of cell groups not being configured, the generation unit generates a new preamble sequence in order to make a transmission in time for a subframe n+5 unless a response to the preamble sequence transmitted by the terminal device is included in the DL-SCH transport block corresponding the random access response received in the subframe n.
(11) A method according to an aspect of the present invention is a method in a terminal device configured to communicate with a base station device. The method comprises: generating, unless receiving a random access response in a subframe n upon a plurality of cell groups being configured, a new preamble sequence in order to make a transmission in time for a subframe n+k (k≧5) and generating, unless receiving the random access response in the subframe n upon the plurality of cell groups not being configured, a new preamble sequence in order to make a transmission in time for a subframe n+4.
(12) A method according to an aspect of the present invention is the above-described method. The method comprises: generating, upon a plurality of cell groups being configured, a new preamble sequence in order to make a transmission in time for a subframe n+j (j≧6) unless a response to the preamble sequence transmitted by the terminal device is included in a DL-SCH transport block corresponding to a random access response received in a subframe n, and generating, upon the plurality of cell groups not being configured, a new preamble sequence in order to make a transmission in time for a subframe n+5 unless a response to the preamble sequence transmitted by the terminal device is included in the DL-SCH transport block corresponding the random access response received in the subframe n.
(13) A base station device according to an aspect of the present invention is a base station device configured to communicate with a terminal device. The base station device includes a reception unit configured to perform, upon configuring a plurality of cell groups to the terminal device, a reception process for a new preamble sequence in a subframe n+k (k≧5) provided that a random access response is transmitted in a subframe n. The reception unit performs, upon not configuring a plurality of cell groups to the terminal device, a reception process for a new preamble sequence in a subframe n+4 provided that the random access response is transmitted in the subframe n.
(14) A method according to an aspect of the present invention is a method for a base station device configured to communicate with a terminal device. The method comprises: performing, upon configuring a plurality of cell groups to the terminal device, a reception process for a new preamble sequence in a subframe n+k (k≧5) provided that a random access response is transmitted in a subframe n, and performing, upon absence of configuration of a plurality of cell groups to the terminal device, a reception process for a new preamble sequence in a subframe n+4 provided that the random access response is transmitted in the subframe n.
Thus, the terminal device, the base station device, and the method according to the present invention are useful in a radio communication system in order to improve transmission efficiency.
Number | Date | Country | Kind |
---|---|---|---|
2014-160982 | Aug 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/072095 | 8/4/2015 | WO | 00 |