The present disclosure relates to the field of communications technologies, and in particular, to a terminal device.
With the rapid development of communications technologies, multi-antenna communication has become the mainstream and future development trend of terminal devices, and millimeter-wave antenna arrays are gradually introduced to terminal devices during this process.
Some embodiments of the present disclosure provide a terminal device. The terminal device includes a metal frame. At least two slots are disposed on a side of the metal frame. At least two antenna feedpoints are disposed on an inner side wall of the metal frame, and different antenna feedpoints in the at least two antenna feedpoints are disposed on side edges of different slots.
A signal reflection wall is further disposed inside the terminal device. A gap exists between the signal reflection wall and the at least two slots, and the signal reflection wall is formed by a metal wall of a battery chamber of the terminal device, wherein the battery chamber is a structure accommodating a battery of the terminal device.
The metal frame and the signal reflection wall are both electrically connected to a ground plate of the terminal device.
In order to describe technical solutions in embodiments of the present disclosure more clearly, the accompanying drawings to be used in the description of embodiments of the present disclosure will be introduced briefly below. Obviously, the accompanying drawings in the following description are merely some embodiments of the present disclosure, and a person of ordinary skill in the art may also obtain other drawings according to those drawings.
Technical solutions in some embodiments of the present disclosure will be described clearly with reference to accompanying drawings in some embodiments of the present disclosure. Obviously, the described embodiments are merely some but not all the embodiments of the present disclosure. Other embodiments obtained on a basis of the embodiments of the present disclosure by a person of ordinary skill in the art shall be included in the protection scope of the present disclosure.
In the related art, a millimeter-wave antenna array is generally in a form of an independent antenna module, and thus an accommodating space needs to be provided for the independent antenna module in a terminal device, which may cause that the whole terminal device is large in volume and size, thereby resulting in a relatively low overall competitiveness of the terminal device. In addition, for the design of the current mainstream millimeter-wave antenna array, it is usually difficult to show better antenna performance under a design of metal appearance, that is, it is difficult to support the design of metal appearance, and thus the competitiveness of the terminal device is reduced.
Some embodiments of the present disclosure provide a terminal device. For ease of understanding, the terminal device will be described below with reference to
Referring to
In this embodiment, the metal frame 1 may be a frame with a head portion and a tail portion connected or unconnected, and the metal frame 1 may include a first side 11, a second side 12, a third side 13 and a fourth side 14. The at least two slots 15 may be disposed on one side of the metal frame 1. Alternatively, two opposite sides of the metal frame 1 may be both provided with at least two slots 15. The slots 15 may be filled with air or a non-conductive material, or the like.
In this embodiment, at least two antenna feedpoints 2 are disposed on the inner side wall of the metal frame 1, and different antenna feedpoints 2 in the at least two antenna feedpoints 2 are located on side edges of different slots 15, so that it may be ensured that there are at least two slots 15 on a side of the metal frame 1 and each of which has an antenna feedpoint 2, and thus the at least two slots 15 may form a millimeter-wave antenna array. The antenna feedpoints 2 of the millimeter-wave antenna array are located on side edges of the slots 15. For example, the antenna feedpoints 2 may be located on a side of centers of the slots 15, so that millimeter-wave signals may be led to the antenna feedpoints 2 of the millimeter-wave antenna array, and are radiated through the metal frame 1. Besides, the metal frame 1 can also receive millimeter-wave signals. Of course, it is optional that each slot 15 may be provided with an antenna feedpoint 2.
In this embodiment, due to the existence of the signal reflection wall 3, the performance of the antenna may be enhanced, and the gain of the antenna may be improved. There is a gap between the signal reflection wall 3 and the at least two slots 15, and the gap may be filled with air, or some non-conductive materials, or the like.
In this implementation, a side frame of the metal wall of the battery chamber in a length direction of the terminal device may be wider. The signal reflection wall 3 may be a reflection curved surface that is convex or concave, as shown in
In this embodiment, the battery chamber 5 may be disposed above the ground plate 4, and the metal wall of the battery chamber 5 serves as the signal reflection wall 3 of the antenna (e.g., the millimeter-wave antenna array). The ground plate 4 may be a circuit board, a metal housing or a screen, etc. The metal frame 1 and the signal reflection wall 3 are both electrically connected to the ground plate 4 of the terminal device, so that the metal frame 1 and the signal reflection wall 3 may be grounded.
In this embodiment, the performance of the millimeter-wave antenna array may be enhanced by directly using the metal wall of the battery chamber as the signal reflection wall 3. Referring to
In
In
In this way, in some embodiments of the present disclosure, at least two slots 15 are provided on a side of the metal frame of the terminal device, which is equivalent to forming a millimeter-wave antenna array, and which may save the space accommodating the millimeter-wave antenna array without occupying antenna space of other antennas, and may further reduce a volume of the terminal device, and thus overall competitiveness of the terminal device may be improved. In addition, taking advantage of the structure of the terminal device as the antenna improves the communication effect, and does not affect the metal texture of the terminal device. Moreover, using the metal wall of the battery chamber directly as the signal reflection wall 3 may enhance the performance of the millimeter-wave antenna array, improve the gain of the millimeter-wave antenna array, and optimize the radiation pattern of the antenna array. What is more, it is also unnecessary to add additional materials, which may save the cost of the terminal.
In addition, for the design of the current mainstream millimeter-wave antenna array, it is usually difficult to show better antenna performance under a design of metal appearance, that is, it is difficult to support the design of metal appearance, and thus the competitiveness of the terminal device is reduced. The design of the embodiment may better support the design of metal appearance, and may be compatible with a scheme that the appearance metal serves as other antennas, so as to improve the overall competitiveness of the product. The terminal device provided by some embodiments of the present disclosure not only solves a problem of the whole terminal device being large in volume and size, which is caused by that an accommodating space needs to be provided for a millimeter-wave antenna in the terminal device, but also solves a problem that it is difficult for the terminal device to support the design of metal appearance.
In some embodiments of the present disclosure, the terminal device may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile Internet device (MID), a wearable device, or the like.
Optionally, the signal reflection wall 3 is a concave reflection curved surface.
In this embodiment, a directivity of an antenna signal may be improved by reflecting the antenna signal through the reflection curved surface.
Optionally, the reflection curved surface is formed by a generatrix parallel to a length direction of the metal frame; or the reflection curved surface is formed by a generatrix parallel to a width direction of the metal frame.
In this implementation, the reflection curved surface is formed by the generatrix parallel to the length direction of the metal frame. For example, referring to
Optionally, the reflection curved surface is a paraboloid.
In order to better understand that the reflection curved surface is a paraboloid, reference can be made to
And the above arrangement can be understood in this way: digging the wider metal wall of the battery chamber along the Y-axis direction, such that the battery chamber forms an integrally concave reflection curved surface (which may be a paraboloid) that has opening portions facing a slot array formed by the plurality of slots 15. The integrally concave reflection curved surface is formed along the Y axis on the XZ plane, and the plurality of slots 15 are still on the fourth side 14 of the metal frame 1. That is, the slot array formed by the plurality of slots 15 is not at a same X position as the concave reflection curved surface.
Optionally, an upper edge of the signal reflection wall is not lower than upper edges of the slots, and a lower edge of the signal reflection wall is not higher than lower edges of the slots.
In this implementation, the upper edge of the signal reflection wall 3 is not lower than the upper edges of the slots 15, and the lower edge of the signal reflection wall 3 is not higher than the lower edges of the slots 15, so that the signal reflection wall 3 formed by the metal wall of the battery chamber may well cover the slots 15 to facilitate better reflection of signals.
In order to better understand the above arrangement, reference may be made to
Optionally, the signal reflection wall 3 includes at least two reflection curved surfaces that are in a one-to-one correspondence with arrangement positions of the slots.
In this implementation, one reflection curved surface may be provided for each slot 15 to facilitate better reflection of signals. In order to better understand the above arrangement, reference may also be made to
In order to make a reflection curved surface corresponding to each slot 15 better cover the slot 15, L2 may be set to be greater than or equal to L1. In addition, a convex portion of each reflection curved surface may point to a corresponding slot 15, and there is a certain distance between the convex portion and the slot 15.
Optionally, the reflection curved surface is a paraboloid, and a focus of the paraboloid coincides with a midpoint of a slot corresponding to an arrangement position of the paraboloid.
In this embodiment, by coinciding the focus of the paraboloid with the midpoint of the slot corresponding to the arrangement position of the paraboloid, antenna gain and beam directivity may be improved.
Optionally, the at least two slots 15 are arranged along a length direction of the metal frame 1, a length of each slot 15 is the same, and a distance between any two adjacent slots 15 is the same.
In this implementation, the at least two slots 15 are arranged along the length direction of the metal frame 1, the length of each slot 15 is the same, and the distance between any two adjacent slots 15 is the same, so that the at least two slots 15 can form a slot group to facilitate better radiation of millimeter-wave signals.
Optionally, the distance between two adjacent slots 15 is determined by the isolation between two adjacent antennas and the beam scanning coverage angle of the antenna array.
In this implementation, the distance between two adjacent slots 15 is determined by the isolation between two adjacent antennas and the beam scanning coverage angle of the antenna array, so that the millimeter-wave signals may be better matched for operation.
Optionally, the slot 15 includes a first sub-slot 151 and a second sub-slot 152 that are intersected with each other.
In order to better understand the above arrangement, reference may be made to
Optionally, the signal reflection wall includes a first reflection curved surface 31 that is concave and corresponding to the first sub-slot 151, and a second reflection curved surface 32 that is concave and corresponding to the second sub-slot 152. A generatrix forming the first reflection curved surface 31 is intersected with a generatrix forming the second reflection curved surface 32.
In this implementation, in order to better understand the above arrangement, reference can be made to
Or the above arrangement may be understood in this way: as shown in
In this implementation, the millimeter-wave antenna array formed by the slot group has both horizontal polarization performance and vertical polarization performance, which improves wireless connection capability. Moreover, a parabolic design may further improve coverage of a scanning angle of the main lobe.
Optionally, a long side of the first sub-slot 151 is orthogonal to a long side of the second sub-slot 152, and/or the generatrix forming the first reflection curved surface 31 is orthogonal to the generatrix forming the second reflection curved surface 32.
In this implementation, the long side of the first sub-slot 151 is orthogonal to the long side of the second sub-slot 152, which may be understood as that the first sub-slot 151 is perpendicular to the second sub-slot 152. The generatrix forming the first reflection curved surface 31 is orthogonal to the generatrix forming the second reflection curved surface 32, which may be understood as that the generatrix forming the first reflection curved surface 31 is perpendicular to the generatrix forming the second reflection curved surface 32. Therefore, the horizontal polarization performance and the vertical polarization performance of the slot 15 may be further improved.
Optionally, two opposite sides of the metal frame 1 are both provided with at least two slots 15.
Two opposite sides of the metal frame 1 are both provided with at least two slots 15, and the at least two slots 15 on a same side can form a slot group, so that there is a slot group on both the two opposite sides of the metal frame 1, which may further improve a beam coverage of the millimeter-wave antenna array. In order to better understand the above arrangement, the following description will be made with reference to
As shown in
Optionally, a length of the slot is determined according to a half wavelength corresponding to a center frequency of an antenna operating frequency band.
In this implementation, the length of the slot 15 may be determined based on a half wavelength corresponding to a center frequency of an antenna operating frequency band. For example, the length of the slot 15 may be approximately the half wavelength corresponding to the center frequency of the antenna operating frequency band, so that signals may be better transmitted and received.
Optionally, the antenna feedpoint is disposed at a non-central position of an inner side edge of the slot.
In this implementation, the antenna feedpoint 2 is located at a non-central position of an edge of the slot 15, which may make the millimeter-wave antenna array have better performance. In order to better understand the above arrangement, the following description will be made with reference to
Optionally, the signal reflection wall 3 may be a reflection plane.
For example, as shown in
The terminal device provided by some embodiments of the present disclosure includes a metal frame provided with at least two slots on a side. At least two antenna feedpoints are provided on an inner side wall of the metal frame, and different antenna feedpoints in the at least two antenna feedpoints are disposed on side edges of different slots. A signal reflection wall is further disposed inside the terminal device, and there is a gap between the signal reflection wall and the at least two slots. The signal reflection wall is formed by a metal wall of a battery chamber of the terminal device, wherein the battery chamber is a structure that accommodates a battery of the terminal device. The metal frame and the signal reflection wall are both electrically connected to a ground plate of the terminal device. In this way, the metal frame provided with the slots is equivalent to the millimeter-wave antenna array of the terminal device, and the metal frame is also a radiating body of a communication antenna, and thus the space accommodating the millimeter-wave antenna is saved, which may reduce the volume of the terminal device and support the design of metal appearance better. Furthermore, the metal frame may be designed to be compatible with a scheme that the appearance metal serves as other antennas, so as to improve the overall competitiveness of the terminal device.
It will be noted that, the terms such as “include” and “comprise” or any other variation thereof herein are intended to cover non-exclusive inclusion, so that a process, a method, an article or an apparatus that includes a series of elements that not only includes those elements, but also includes other elements not explicitly listed or elements inherent to the process, the method, the article or the apparatus. In a case where there is no more limitation, an element defined by the phrase “including a . . . ” does not exclude existence of other identical elements in a process, a method, an article or an apparatus that includes the element.
The embodiments of the present disclosure are described above with reference to the accompanying drawings. However, the present disclosure is not limited to the above specific embodiments. The above specific embodiments are merely examples and are not restrictive. Under enlightenment of the present disclosure, a person of ordinary skill in the art may make a plurality of forms without departing from spirit of the present disclosure and the protection scope of the claims, all of which shall be included in the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201810820138.4 | Jul 2018 | CN | national |
This application is a Bypass Continuation Application of PCT/CN2019/096685 filed on Jul. 19, 2019, which claims priority to Chinese Patent Application No. 201810820138.4 filed on Jul. 24, 2018, which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/096685 | Jul 2019 | US |
Child | 17156143 | US |