This invention relates to terminal crimping machines, and more specifically, to motor controlled feeder devices for terminal crimping machines.
Current terminal crimping machines use a mechanical feeder device to feed strip-carried, tape carried, or end-to-end electrical connectors/terminals to crimp tooling of an applicator. Significant time and effort is required by machine operators to make adjustments to the feed stroke and/or position of the feeder device with respect to the crimp-tooling. These adjustments must be made when a different sized terminal is to be used. Additionally, these adjustments may be required during a crimping run.
In current feeder devices, the cam and linkage mechanisms are mechanically linked to the crimping process, thus the current connector/terminal feeder devices operate at a rate relative to the rate of the crimping process. Thus rapid feeding, and the tolerance and clearance stack up associated with multiple mechanical linkage components, causes variation in the terminal placement which in turn causes variation in the crimping process and crimp performance. Consequently, in order to prevent feed problems, the operator may slow the terminal feed speed which in turn slows the production rate.
In one aspect, a feeder device configured to be used with a termination machine having a termination tool is provided, wherein the device includes a frame configured to be located proximate to a termination zone of the termination tool and a feeder carriage slidable mounted to the frame. The feeder carriage is movable in a terminal feeding direction to an advanced position. An electric actuator is mounted to the frame and joined to the feeder carriage. The actuator drives the feeder carriage in the terminal feeding direction to the advanced position to locate a terminal at the termination zone.
Optionally, the feeder device may include a terminal feeding member engaging either a terminal or a carrier strip for a terminal A lead screw may be coupled to the actuator and threadably coupled to the feeder carriage such that, as the actuator rotates the lead screw, the feeder carriage moves linearly along the terminal feeding direction.
In another aspect, a termination machine is provided including a termination tool having termination tooling configured to terminate a terminal to a wire in a termination zone and a terminator actuator driving the termination tooling to and from the termination zone. The machine also includes a feeder device positioned adjacent to the termination tool, wherein the feeder device has a terminal feeding member configured to successively feed terminals to the crimping zone. An electric feeder actuator drives the terminal feeding member in a terminal feeding direction, wherein the terminals are fed to the termination zone as the terminal feeding member is moved in the terminal feeding direction.
In a further aspect, a termination system is provided including a termination tool having termination tooling configured to terminate a terminal to a wire in a termination zone, and a feeder device positioned proximate to the termination tool. The feeder device includes a frame, a feeder carriage slidable mounted to the frame, and an electric feeder actuator mounted to the frame and joined to the feeder carriage. The feeder motor drives the feeder carriage in a terminal feeding direction to an advanced position to locate a terminal at the termination zone.
Optionally, the feeder device may include a bracket to removably couple the feeder device to the termination tool. A control module may be provided for coordinating the operation of the termination actuator and the feeder actuator. Additionally, the feeder actuator may move the terminal feeding member along a controlled motion profile.
In yet another aspect, a termination machine is provided including a termination tool having termination tooling configured to terminate a terminal to a wire in a termination zone by driving the termination tooling to and from the termination zone. The termination tool is configured to receive terminals from a programmable feeder device having a feeder actuator driving a terminal feeding member in a terminal feeding direction, wherein the terminals are fed to the termination zone as the terminal feeding member is moved in the terminal feeding direction.
The applicator 102 is coupled to a frame 105 of the terminator 100. The applicator 102 may be removed and replaced with a different applicator, such as when the applicator 102 is worn or damaged or when an applicator having a different configuration is desired. The applicator 102 has a terminating zone or crimping zone 106 and includes crimp-tooling 108 for crimping electrical connectors or terminals 110 to an end of a wire 112 in the crimping zone 106. The feeder device 104 is positioned to feed terminals accurately to the applicator 102 and presents the terminals 110 to the crimping zone 106. Optionally, the feeder device 104 may be positioned adjacent to, or even coupled to, the applicator 102. Alternatively, the feeder device 104 may be positioned remote with respect to the applicator 102, but still delivers the terminals 110 to the crimping zone 106. The terminals 110 may be guided to the crimp zone 106 by a guide member (not shown) to ensure proper positioning of the terminals 110 within the crimping zone 106. The wires 112 are delivered to the crimping zone 106 by a wire feeder (not shown) or a bench machine (not shown) in a wire loading direction 114.
The feeder device 104 may be configured to deliver, and the applicator 102 may be configured to receive, multiple sized terminals for crimping. The feeder device 104 may be configured to deliver either side-feed terminals or end-feed terminals. Side-feed terminals are arranged side-by-side on a carrier strip and end-feed terminals are arranged successively, end-to-end. The terminator 100 is configured to receive applicators 102 for either type of terminal, namely the side-feed or the end-feed terminals. Thus a first type of applicator 102 may be configured to receive side-feed terminals and a second type of applicator 102 may be configured to receive end-feed terminals. The side-feed and end feed types of applicators 102 may be interchanged with the terminator 100. A side-feed type applicator 102 is illustrated in
During operation, the crimp-tooling 108 is driven through a crimp stroke by a driving mechanism 116 of the terminator 100 toward a stationary anvil 118. The crimp stroke has both a downward component and an upward component. The crimping of the terminal 110 to the wire 112 occurs during the downward component of the crimp stroke. The driving mechanism 116 is driven by a terminator actuator 120. Optionally, the terminator actuator 120 may be a motor having a drive shaft that moves driving mechanism 116. Alternatively, the terminator actuator 120 may be a linear actuator, a piezoelectric actuator, a pneumatic actuator, and the like. The operation of the terminator actuator 120 is controlled by a control module 122.
The applicator 102 includes a frame 130 having a base 132. The anvil 118 is coupled to the base 132. The frame 130 includes a front 134, a rear 136, a side 138, a side 140, and a central cavity 142. The feeder device 104 is positioned adjacent to the rear 136 and the terminals 110 are carried or advanced in a feed direction from the rear 136 toward the front 134, such as in the feed direction of arrow A. Optionally, the terminals 110 may be presented along the side 138. The sides 138 and 140 extend generally parallel to the feed direction of the terminals 110. A ram 144 is received within the central cavity 142 and is movable with respect to the frame 130. The crimp-tooling 108 is coupled to the ram 144 and is positioned adjacent to the side 138. The ram 144 is coupled to the driving mechanism 116 (shown in
Turning to
The feeder device 104 includes a feeder actuator 200 joined to a lead screw 202 and a feeder carriage 204 also coupled to the lead screw 202. Alternatively, the feeder device 104 may include a ball screw or another type of driving mechanism in place of the lead screw 202. In the illustrated embodiment, the feeder actuator 200 is a servo motor. Alternatively, the feeder actuator 200 may be a stepper motor, or another type of actuator such as, for example, a linear actuator, a pneumatic actuator, a piezoelectric actuator or motor, and the like. The feeder actuator 200 includes a controller 203 for controlling the operation of the feeder actuator 200. The controller 203 may communicate with the control module 122 (shown in
During operation, the feeder actuator 200 rotates the lead screw 202 about an axis of rotation 205, and the rotational motion of the lead screw 202 is transferred to linear motion of the feeder carriage 204. For example, the feeder carriage 204 is moveable linearly between an advanced position, wherein the feeder carriage 204 is moved to a preset position in the direction of arrow D, and a retracted position, wherein the feeder carriage 204 is moved to a preset position in the direction of arrow E. In the advanced position, the terminals 110 are positioned in the crimping zone 106. In the retracted position, the feeder device 104 engages a new terminal for advancement. The feeder actuator 200 rotates the lead screw 202 in both a forward driving direction and a rearward driving direction. Optionally, in the forward driving direction, the feeder actuator 200 rotates the lead screw 202 in a clockwise direction, and in the rearward driving direction the feeder actuator 200 rotates the lead screw 202 in a counter-clockwise direction. Alternatively, in the forward driving direction, the feeder actuator 200 rotates the lead screw 202 in a counter-clockwise direction, and in the rearward driving direction the feeder actuator 200 rotates the lead screw 202 in a clockwise direction. When the lead screw 202 is operated in the forward driving direction, the feeder carriage 204 is moved in the direction of the advanced position. When the lead screw 202 is operated in the rearward driving direction, the feeder carriage 204 is moved in the direction of the retracted position. The amount of rotation of the lead screw 202 is controlled and may be programmable based on the particular application for the terminator 100, such as, for example, the size of the terminals 110 (shown in
In an exemplary embodiment, the feeder device 104 includes a frame 206 having a front support plate 208 and a rear support plate 210. The front and rear support plates 208 and 210 are planar and extend parallel to one another. Each support plate 208 and 210 includes a front surface 212 and a rear surface 214. The rear support plate 210 supports the feeder actuator 200, and the feeder actuator 200 is positioned along a portion of the rear surface 214 of the rear support plate 210. The front support plate 208 supports a mounting bracket 216, and the mounting bracket 216 is positioned along the front surface 212 of the front support plate 208. The rear surface 214 of the front support plate 208 and the front surface of the rear support plate 210 face one another and are separated by a distance such that a gap 218 exists between the front and rear support plates 208 and 210. The lead screw 202 and the feeder carriage 204 are received in the gap 218. Optionally, the frame 206 includes a tube 220 extending between the front and rear support plates 208 and 210. The tube 220 may support the front and rear support plates 208 and 210 and maintain the spacing between the front and rear support plates 208 and 210. The tube 220 may also carry wires between the front and rear support plates 208 and 210, as will be described in more detail below.
The feeder carriage 204 includes a body 230 having a front end 232, a rear end 234, a top end 236, a bottom end 238, and sides 240 extending between each of the ends. Optionally, the feeder carriage 204 may be box-shaped. In an exemplary embodiment, the feeder carriage 204 includes a plurality of openings extending therethrough, such as an upper guide opening 242, a lower guide opening 244, a lead screw opening (not shown), and a sensor device opening 246. The openings extend generally between the front end 232 and the rear end 234 of the body 230. In one embodiment, the openings may be substantially aligned. In other embodiments, the openings may be off-set with respect to one another.
The upper guide opening 242 receives an upper bushing 248 and the lower guide opening receives a lower bushing 250. The upper bushing 248 receives an upper guide rail 252 and the lower bushing 250 receives a lower guide rail 254. The upper and lower guide rails 252 and 254 are received in the gap 218 and extend between the front and rear support plates 208 and 210. The upper and lower guide rails 252 and 254 support the feeder carriage 204 and define a path of travel for the feeder carriage 204. The upper and lower guide rails 252 and 254 support the front and rear support plates 208 and 210 and maintain the spacing between the front and rear support plates 208 and 210.
The feeder carriage 204 includes a lead screw nut 260 secured thereto. Optionally, the lead screw nut 260 may be integrally formed with the feeder carriage body 230. The lead screw nut 260 is aligned with the lead screw opening and threadably engages the lead screw 202. Rotational motion of the lead screw 202 is transferred to linear motion of the feeder carriage 204 by the threaded relationship between the lead screw 202 and the lead screw nut 260.
A feeding member assembly 270 is coupled to the feeder carriage 204 and carried by the feeder carriage 204 between the advanced position and the retracted position. The feeding member assembly 270 includes a mounting block 272 that is removably coupled to the side of the body 230 at the bottom end 238. Optionally, the mounting block 272 may be coupled directly to the bottom end 238 and may be substantially centered with respect to the sides 240 of the body 230. Alternatively, the mounting block 272 may be substantially centered with respect to the body 230. The feeding member assembly 270 also includes a terminal feeding member 274 removably coupled to the mounting block 272. The terminal feeding member 274 includes a tip 276 configured to engage the terminals 110 or the carrier strip for the terminals 110.
Optionally, the feeder device 104 may include a sensor device 280 for determining the linear position of the feeder carriage 204. The sensor device includes a sensor arm 282 extending within the gap 218 and positioned adjacent to the feeder carriage to determine the relative position of the feeder carriage 204 with respect to the feeder actuator 200. Optionally, the sensor arm 282 extends through the sensor device opening 246 of the body 230. The feeder carriage 204 is moveable along the sensor arm 282, and a signal representing the position of the feeder carriage 204 is transmitted to either the controller 203 for the feeder actuator 200 or to the control module 122 for the terminal crimping machine 100. The sensor device 280 thus provides feedback to the controller 203 for controlling the position of the feeder carriage 204. Alternatively, other types of sensor devices may be used to provide feedback to the controller 203 relating to the position of the feeder carriage 204, such as, for example, an optical sensing device, or other types of linear position sensors. As such, a closed loop feedback may be provided to the feeder device 104.
The cover 160 extends over the components of the feeder device 104 such as the feeder actuator 200 and the feeder carriage 204. Optionally, the cover 160 may be coupled to the front and rear support plates 208 and 210. The cover 160 includes a slot 284 in a bottom portion of the cover 160 to allow for linear movement of the feeder carriage 204. For example, the feeding member assembly 270 extends below the cover 160 and is accessible from outside of the cover 160. The feeding member assembly 270 moves along the slot 284 during operation of the feeder device 104. Optionally, other components of the feeder device 104 may be exposed outside the cover 160, such as the feeder actuator 200.
The sensor device 280 is also illustrated as being supported by each of the front and rear support plates 208 and 210. The sensor arm 282 extends through the sensor device opening 246 in the body 230 of the feeder carriage 204 and interacts with a sensor 316 also received within the sensor device opening 246.
The upper and lower guide rails 252 and 254 are supported by each of the front and rear support plates 208 and 210. Each guide rail 252 and 254 extends between a forward end 320 engaging the front support plate 208 and a rearward end 322 engaging the rear support plate 210. Optionally, the upper and lower guide rails 252 and 254 may be secured to the front and rear support plates 208 and 210 by fasteners such as screws. The upper and lower guide rails 252 and 254 also extend through the upper and lower bushings 248 and 250, respectively. The upper and lower bushings 248 and 250 slide along the upper and lower guide rails 252 and 254 during movement of the feeder carriage 104.
Optionally, the applicator 102 may include a memory device 334 coupled to the mounting bracket 330. The memory device 334 may include information, such as feeding parameters based on the type of applicator 102, relating to a feed stroke for the feeder device 104. The feeder device 104 may be configured to read the information from the memory device 334, or the information may be otherwise transmitted or transferred to the feeder device 104 to control the feed stroke and properly position the terminals 110 within the crimping zone 106. In one embodiment, the feeder device 104 includes a reader/writer device 336 (shown in
The terminal feeding member 274 illustrated in
The operation of the terminator 100 will be discussed with reference to
In operation, the terminals 110 are supplied to a base 360 from a reel (not shown). The base 360 is positioned adjacent to the applicator 102 and generally below the feeder device 104. Optionally, a drag bar (not shown) may be used to securely position the terminals 110 with respect to the base 360 and to hold the terminals in tension to resist forward motion of the terminals toward the crimping zone 106. The terminals 110 may be side-feed terminals or end-feed terminals depending on the particular application.
As illustrated in
In operation, the feeder device 104 transfers the terminals 110 to the advanced position, shown in
In an exemplary embodiment, a feed stroke of the feeder device 104 is accomplished independently of a crimping stroke of the applicator 102. A feed stroke is defined as the transfer of the feeder carriage 204 from the retracted position, to the advanced position, and back to the retracted position. A crimping stroke is defined as the transfer of the crimp tooling 108 from a retracted position, to a crimp position, and back to the retracted position. In one embodiment, the feeder device 204 may advance multiple terminals to the crimping zone 106 during a single feed stroke, wherein one terminal is presented to the crimp zone 106 during each crimp stroke. The applicator 102 thus may have multiple crimp strokes for each feed stroke.
Optionally, the feeder actuator 200 may control the position of the feeder carriage 204 at any given time. The position of the feeder carriage 204 over time defines a motion profile of the feeder carriage 204, and the feeder actuator 200 controls the motion profile. The motion profile may be controlled by defining a starting position of the feeder carriage 204, controlling a stopping position of the feeder carriage 204, controlling a speed of the feeder carriage 204, controlling an acceleration or deceleration of the feeder carriage 204, and the like. These variables may be adjusted or altered during the feed stroke to provide a controlled motion profile and a more consistent feed position. For example, the speed of the feeder carriage 204 may be slowed near the limits of the range of motion of the feeder carriage 204. The feeder carriage 204 may thus have controlled acceleration from, and controlled deceleration toward, the retracted position and/or the advanced position. The feeder carriage 204 may have a different speed during the advancing portion of the feed stroke than the retracting portion of the feed stroke. The speed may be varied by varying the speed of the feeder actuator 200 and the speed of rotation of the lead screw 202. Additionally, the speed of the feeder carriage 204 may be varied independently of a crimping stroke of the applicator. For example, the crimp stroke of the applicator 102 may have a constant speed, but the speed of the feed stroke of the feeder carriage 204 may be varied. As such, the feed stroke is operated independently of the crimp stroke. Additionally, as indicated above, the motion profile may include multiple stopping positions along the feed stroke such that multiple terminals 110 may be feed to the termination zone 106 during a single feed stroke. The acceleration from and deceleration to each stopping position may be controlled.
In an exemplary embodiment, the feed stroke is programmable and controlled by controller 203. For example, the retracted position and the advanced position may be determined and/or adjusted based on inputs to the controller 203, such as by pushing advance or retract buttons on a computer or dials on the feeder device 104 or terminator 100. Manual or mechanical adjustments by a user to linkages between the applicator 102 and feeder device 104 are not required. Set up time and down time are thus reduced. Additionally, the retracted position and the advanced position may be determined based on the type of applicator 102 used. For example, the memory device 334 (shown in
Optionally, a monitoring system (not shown) may be provided to provide feedback to the controller relating to the position of the terminals with respect to the crimping zone to automatically adjust the feed stroke. For example, a camera (not shown) or optical sensing device may be provided to determine the advanced and/or retracted positions. Adjustments to the advanced or retracted positions may be made based on inputs from the camera. As such, a closed loop feedback may be provided to the feeder device 104.
A terminator 100 is thus provided having a feeder actuator 200 controlled feeder device 104 that reduces setup time since the feed stroke and the terminal position may be programmable. Thus, unlike current systems that require the operator to use tools and adjusting linkage, the operator simply pushes advance or retract buttons on the feed device to change the stroke or position. Secondly, the cost of the overall crimping system may be reduced because each terminator 100 will require only one feeder device 104 since the feeder device 104 is removable from the applicator 102. Additionally, since no linkage mechanism is required on the applicator 102, the cost of an applicator is reduced. Finally, the feeder device provides flexibility in the rate and final position of terminal feeding to improve crimp quality. The feeder actuator 200 is programmed to provide a slow and controlled acceleration and deceleration profile thereby providing more consistent feed position.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application claims priority to U.S. Provisional Application Ser. No. 60/695,476, filed Jun. 30, 2005, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60695476 | Jun 2005 | US |