1. Field of the Invention
The present invention relates to a terminal fitting included in a wire harness disposed in an automobile, and a method of manufacturing a wire with a terminal having the terminal fitting.
2. Description of the Related Art
Generally, a wire harness for transmitting electric power or a control signal is disposed between electronic devices. A wire harness includes one or more wires, a terminal fitting crimped to a terminal of each wire, and a connector storing the terminal fitting. This connector is fitted to a counterpart connector, whereby an electrical connection is established. A connector used for a wire harness of this type generally includes a tubular connector housing, herein a terminal fitting is stored in a terminal storage chamber (cavity) formed on the connector housing.
A terminal fitting is formed by, for example, bending a conductive plate, and includes a wire connection part connected to a wire, and an electric contact part connected to a terminal fitting in a counterpart connector. The wire connection part has a crimp part (barrel piece) crimped to a terminal of a wire with caulking, and a saw-like serration part is formed on an inner surface of the crimp part for holding a core of a wire to ensure electrical connection. There is also proposed a terminal structure in which a water stop member is provided on an inner surface of a crimp part of a wire connection part in order to close a gap with a wire to prevent water from entering a core and a serration part (see, for example, WO 2011/122622 A1).
As illustrated in
The barrel piece 104 of the crimp terminal 100 is also provided with a water stop member 107 formed continuously along edges of four sides on its inner surface, and a water stop member 108 formed along an edge of an opening on one outer surface. As illustrated in
However, in the conventional terminal fitting described in WO 2011/122622 A1, the barrel piece 104 is crushed with the coupling part 103 by caulking at the front part of the wire connection part 102, so that the core W1 of the wire W is surrounded by the barrel piece 104. Therefore, as the position of the tip end of the core W1 cannot be confirmed, positioning precision for the wire W in a crimping process is required. This might cause various troubles. For example, labor and time for the crimping process increases, causing deteriorated efficiency; a connection failure occurs between the core W1, that is shifted backward, and the serration part 105; or the caulking resistance increases due to the core W1 shifted forward.
The present invention is accomplished in view of the above circumstances, and aims to provide a terminal fitting and a method of manufacturing a wire with a terminal, which can enhance working efficiency in a crimping process as well as prevent failure in connection with a wire.
In order to solve the above-mentioned problems, a terminal fitting according to one aspect of the present invention includes an electric contact part connected to a counterpart terminal from front; and a wire connection part connected to a wire at a back of the electric contact part. Herein, the wire connection part includes a barrel piece which is caulked while covering a tip end of the wire, thereby being crimped to the wire; a serration part formed on an inner surface of the barrel piece and connected to a core of the wire; and a water stop part mounted on the inner surface of the barrel piece to close a gap with the wire. A positioning unit mounted anterior to the serration part to position a tip end of the core is mounted to at least one of the barrel piece and the water stop part.
Further, in the terminal fitting according to another aspect of the present invention, the positioning unit is formed such that a projecting piece projecting forward at a circumferential end of the barrel piece or the water stop part is deformed toward the core by caulking, or the positioning unit is formed such that a front end of the barrel piece is deformed toward the core by caulking.
In order to solve the above-mentioned problems, a manufacturing method according to still another aspect of the present invention for manufacturing a wire with a terminal is the manufacturing method for manufacturing the wire with the terminal by crimping the above-mentioned terminal fitting the wire. The method includes applying a liquid water stop material onto an inner surface of the barrel piece to form the water stop part, or attaching a sheet-type water stop material to the inner surface of the barrel piece to form the water stop part; and deforming the barrel piece into a cylinder by caulking to cover the tip end of the wire as well as to cause the water stop part to be in close contact with the wire.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
A wire with a terminal according to embodiments of the present invention will be described below with reference to
The terminal fitting 2 (2A, 2B, and 2C) is a female terminal fitting formed by a punching process and a bending process to a conductive plate. The terminal fitting 2 includes an electric contact part 3 in a rectangular cylindrical shape connected to a counterpart terminal (male terminal) from front (from left in
The electric contact part 3 is formed into a rectangular cylinder having an upper wall part 31, a pair of side walls 32, and a bottom wall 33, and is continuously formed with a bottom plate 51 and a pair of side plates 52 of the coupling part 5. A counterpart terminal is inserted into the electric contact part 3 of the terminal fitting 2 (2A, 2B, 2C), and an elastic piece 34 holding the counterpart terminal with an inner surface of the electric contact part 3 is formed in the electric contact part 3. The terminal fitting 2 (2A, 2B, 2C) holds the counterpart terminal between the inner surface of the electric contact part 3 and the elastic piece 34 as described above, whereby the terminal fitting 2 and the counterpart terminal are electrically and mechanically connected to each other. The electric contact part 3 of the terminal fitting 2 (2A, 2B, 2C) is provided with a stabilizer 35 projecting from one side (or two sides) of the side walls 32. The stabilizer 35 is inserted into a guide groove in a connector housing (not illustrated) to be guided, whereby the terminal fitting 2 can be inserted into the connector housing in a predetermined direction.
The wire connection part 4 has a barrel piece 41 continuous with the bottom plate 51 and the pair of side plates 52 of the coupling part 5. The barrel piece 41 has a cross-section of an almost U shape open to one side (open upward in the figure) before it is caulked (before it is crimped as illustrated in
A water stop part 44 for closing a gap with the wire W is formed on the inner surface of the barrel piece 41 of the terminal fitting 2 (2A, 2B, 2C) except for the serration part 42. The terminal fitting 2 (2A, 2B, 2C) is also provided with a front water stop part 45 for closing the inside of the barrel piece 41 that is deformed into a cylinder, the front water stop part 45 being mounted anterior to the core W1 of the wire W in the state in which the barrel piece 41 is caulked. The front water stop part 45 may be formed such that the water stop part 44 projects forward by the caulking of the barrel piece 41, or may be formed by filling a water stop material after the caulking of the barrel piece 41.
Next, the terminal fitting 2A according to a first embodiment will be described in detail with reference to
A manufacturing procedure of the wire with a terminal 1 as described above will now be described. As illustrated in
After the water stop part 44 is formed on the inner surface of the barrel piece 41 as described above, a wire supply device (not illustrated) sets the tip end of the wire W in the barrel piece 41. Subsequently, a crimp device (not illustrated) caulks the barrel piece 41 to crimp the terminal fitting 2A and the wire W. In other words, the barrel piece 41 is caulked to be deformed into a cylinder to cover the tip end of the wire W to cause the water stop part 44 to be in close contact with the wire W. Thereafter, the terminal fittings 2A in a chain are separated, whereby the wire with a terminal 1 in which the terminal fitting 2A is crimped to the terminal of the wire W is manufactured.
Next, a terminal fitting 2B according to a second embodiment will be described in detail with reference to
A manufacturing procedure of the wire with a terminal 1 as described above will now be described. As illustrated in
An appropriate material formed into a sheet, such as butyl rubber, silicon rubber, epoxy resin, or urethane resin, can be used as the water stop sheet 44A to be attached. It is preferable that an adhesive agent is applied onto the back surface of the water stop sheet 44A facing the inner surface of the barrel piece 41. An adhesive agent may be applied on the front surface of the water stop sheet 44A facing the wire W. As illustrated in
After the water stop part 44 is formed on the inner surface of the barrel piece 41 as described above, a wire supply device (not illustrated) sets the tip end of the wire W in the barrel piece 41. Then, a crimp device (not illustrated) caulks the barrel piece 41 to crimp the terminal fitting 2B and the wire W. In other words, the barrel piece 41 is caulked to be deformed into a cylinder to cover the tip end of the wire W to cause the water stop part 44 to be in close contact with the wire W. Thereafter, the terminal fittings 2B in a chain are separated, whereby the wire with a terminal 1 in which the terminal fitting 2B is crimped to the terminal of the wire W is manufactured.
Next, a terminal fitting 2C according to a third embodiment will be described in detail with reference to
In the manufacturing procedure of the wire with a terminal 1 described above, the water stop material applying process or the water stop material attaching process, the wire set process, and the barrel piece caulking process are sequentially performed in this order as in the first embodiment and the second embodiment. When a crimp device (not illustrated) caulks the barrel piece 41 to crimp a terminal fitting 2A and the wire W in the barrel piece caulking process, the crimp device more strongly caulks the front end of the barrel piece 41 to form the small-diameter part 48. Thereafter, the terminal fittings 2C in a chain are separated, whereby the wire with a terminal 1 in which the terminal fitting 2C is crimped to the terminal of the wire W is manufactured.
According to the above present embodiments, the tip end of the core W1 of the wire W is positioned by the projecting piece 46 or 47 or the small-diameter part 48 formed anterior to the serration part 42. This configuration can prevent the positional deviation of the wire W. Accordingly, the core W1 and the serration part 42 can surely be connected without enhancing the positioning precision of the wire W more than necessary in the crimping operation. Further, the gap between the barrel piece 41 and the wire W is closed by the water stop part 44. The closed gap can prevent water or the like from entering the connection part between the core W1 and the serration part 42, whereby corrosion of the terminal fitting 2 and the core W1 can be prevented. In addition, the projecting piece 46 or 47 or the small-diameter part 48 is deformed by caulking. Accordingly, deformation of the coupling part 5 is not required, whereby the strength of the terminal fitting 2 can be ensured.
As described above, the terminal fitting includes the positioning unit mounted anterior to the serration part for positioning the tip end of the core of the wire. According to the above configuration, the positional deviation of the wire can be prevented. Therefore, the core and the serration part can surely be connected without enhancing the positioning precision of the wire more than necessary in the crimping operation. The gap between the barrel piece and the wire is closed by the water stop part in the terminal fitting. The closed gap can prevent water or the like from entering the connection part between the core and the serration part, whereby corrosion of the terminal fitting and the core can be prevented.
In the terminal fitting, the positioning unit is formed by deforming a projecting piece which projects forward at a circumferential end of the barrel piece or the water stop part, or by deforming a front end of the barrel piece. With this configuration, an operator can caulk the barrel piece while confirming the tip end of the core during the crimping operation, whereby the positional deviation of the wire can more surely be prevented. In addition, the strength of the terminal fitting can be ensured without entailing deterioration in strength of the coupling part, by deforming the front end of the projecting piece or the barrel piece by caulking, not by deforming the coupling part together with the barrel piece as in the conventional terminal fitting.
In the present invention, the position of the tip end of the core is positioned by the positioning unit. Accordingly, the present invention can prevent the positional deviation of the wire, can enhance working efficiency for the crimping operation, and can prevent connection failure between the core and the serration part. According to the present invention, the connection part between the core and the serration part is waterproofed by the water stop part, whereby corrosion of the terminal fitting and the core can be prevented.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
In the above embodiments, a female terminal is illustrated as an example of the terminal fitting 2. However, the terminal fitting according to the present invention is not limited to a female terminal, but may be a male terminal.
The above embodiments describe the method of applying a water stop material by using the water stop material applying device M1, and the method of attaching the water stop sheet 44A by using the water stop material attaching device M2, as the method of forming the water stop part 44. However, it is not limited thereto. For example, a liquid water stop material may be ejected from an ink jet head and applied onto an inner surface of the barrel piece 41, a water stop material may be applied by using a pen-type application tool impregnated with the water stop material on its tip end, or the barrel piece 41 in which the serration part 42 is masked is dipped into a liquid water stop material to apply the water stop material.
The range where the water stop part 44 is formed on the inner surface of the barrel piece 41 may be the entire inner surface of the barrel piece 41 except for the serration part 42, or may be only one of a front side and a back side of the barrel piece 41. The range can appropriately be set.
Number | Date | Country | Kind |
---|---|---|---|
2013-057230 | Mar 2013 | JP | national |
This application is a continuation application of International Application PCT/JP2014/056880, filed on Mar. 14, 2014, and designating the U.S., the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7828611 | Nakamura | Nov 2010 | B2 |
8974258 | Mitose | Mar 2015 | B2 |
20100035482 | Nakamura et al. | Feb 2010 | A1 |
20100035486 | Tabata et al. | Feb 2010 | A1 |
20130095708 | Mitose et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
101645543 | Feb 2010 | CN |
102859795 | Jan 2013 | CN |
2555328 | Feb 2013 | EP |
55-007234 | Jan 1980 | JP |
59-10696 | Apr 1984 | JP |
2007-12341 | Jan 2007 | JP |
2009-176537 | Aug 2009 | JP |
2011103220 | May 2011 | JP |
2012069449 | Apr 2012 | JP |
2011122622 | Oct 2011 | WO |
Entry |
---|
International Search Report for PCT/JP2014/056880 dated Jun. 10, 2014. |
Communication dated Aug. 16, 2016, from the State Intellectual Property Office of the P.R.C., in counterpart Chinese application No. 201480016534.1. |
German Office Action; Application No. 112014001526.1; dated Nov. 11, 2016. |
Japanese Office Action; Application No. 2013-057230; dated Jul. 14, 2016. |
Communication dated Feb. 23, 2017 issued by the State Intellectual Property Office of the People's Republic of China in counterpart Chinese application No. 201480016534.1. |
Number | Date | Country | |
---|---|---|---|
20160006164 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2014/056880 | Mar 2014 | US |
Child | 14857318 | US |