This specification relates to a terminal fitting.
Japanese Utility Model Publication No. H05-53146 discloses a socket contact with a pin contact receiving portion in the form of a rectangular tube and a spring contact portion arranged inside the pin contact receiving portion. Two protection walls are provided on the front end of the pin contact receiving portion for protecting the resilient contact piece. The protection walls close an opening of the pin contact receiving portion but leave a clearance capable of receiving a pin contact. However, the protection walls may not protect the resilient contact piece sufficiently if the protection walls are deformed by an external force.
A terminal fitting disclosed by this specification is to be connected to a mating terminal fitting with a tab. The terminal fitting includes a rectangular tube composed of a bottom wall, two side walls rising from the bottom wall and a ceiling wall continuous from at least one of the side walls and facing the bottom wall. The rectangular tube has an opening on one end, and the tab is insertable into the opening. A resilient contact piece in the form of a leaf spring is arranged along the bottom wall inside the rectangular tube. Two protection walls extend from the side walls and close the opening while leaving a clearance for allowing the tab to enter between the ceiling wall and the protection walls. The protection walls have opposed facing edges. Each facing edge has a part extending at an angle to a line perpendicular to the bottom wall.
External matter that hits the rectangular tube from the bottom exerts an external force on the protection walls in a direction from the bottom wall toward the ceiling wall and in a direction to deform the protection walls from the bottom wall toward the ceiling wall. However, the facing edges of the protection walls are at an angle to the line perpendicular to the bottom wall. Thus, the facing edge of one protection wall interferes with the facing edge of the other protection wall. In this way, the resilient contact piece is protected reliably by suppressing deformation of the protection walls against the external force applied in the direction from the bottom wall toward the ceiling wall.
The facing edge may be inclined obliquely with respect to the line perpendicular to the bottom wall over an entire length. According to this configuration, the deformation of the protection walls can be suppressed by simple shapes and the complication of a manufacturing process can be avoided.
A part of the facing edge on the ceiling wall side and a remaining part on the bottom wall side may be inclined in opposite directions with respect to the line perpendicular to the bottom wall. According to this configuration, a chevron-shaped part of one protection wall is fit into a valley-shaped part of the other protection wall. Thus, deformation of the protection walls can be restricted reliably.
Accordingly, the terminal fitting disclosed in this specification reliably protects a resilient contact piece by suppressing deformation of protection walls.
A female terminal fitting in accordance with the invention is identified by the numeral 1 in
The body 10 includes a rectangular tube 11 configured to receive a tab T of the male terminal fitting inside. A resilient contact piece 21 is disposed inside the rectangular tube 11 and is configured to contact the tab T of the male terminal fitting. First and second protection walls 31A, 31B extend integrally from the rectangular tube 11 and are configured to protect the resilient contact piece 21.
As shown in
As shown in
As shown in
Most of the resilient contact piece 21 on a side near the base 21A is gently separated from the bottom wall 12 with distance from the base 21A, and a remaining part near the free end 21B extends parallel to the bottom wall 12 so that the resilient contact piece 21 has a chevron shape. A dome-shaped contact 21C is arranged on a top part of the chevron shape and bulges toward the ceiling wall 15 to contact the tab T.
As shown in
The auxiliary spring piece 22 is a leaf spring formed by cutting and bending a part of the bottom wall 12 inward and contacts the free end part 21B of the resilient contact piece 21 from outside. If the resilient contact piece 21 is deflected and deformed to approach the bottom wall, the auxiliary spring piece 22 is pressed by the resilient contact piece 21 and both are deflected and deformed. Thus, resilient restoration of the resilient contact piece 21 is assisted by a resilient restoring force of the auxiliary spring piece 22.
A part of the bottom wall 12 facing the contact 21C projects inward (toward the resilient contact piece 21), and this projecting part serves as the excessive deflection preventing portion 23. If the resilient contact piece 21 is going to be deflected excessively, the resilient contact piece 21 contacts the excessive deflection preventing portion 23, thereby preventing any further deflection thereof.
A part of the ceiling wall 15 facing the resilient contact piece 21 bulges in, as shown in
As shown in
As shown in
As shown in
Similarly, the second protection wall 31B includes a protection wall body 32B and a projection 34B continuous from the protection wall body 32B. The protection wall body 32B is a plate extending perpendicularly from the second side wall 13B toward the first side wall 13A and located between the slit S and the lower edge 14B. The projection 34B is a plate projecting from a bottom edge 33B (lower edge in
The protection walls 31A, 31B prevent the resilient contact piece 21 from being damaged by an external matter by interfering with the external matter trying to move toward the resilient contact piece 21 from the terminal insertion opening 17 of the rectangular tube 11 to restrict this movement.
Further, the projections 34A, 34B prevent the lower edges 14A, 14B of the side walls 13A, 13B from rubbing against an inner surface of a cavity to form streaky scratches by butting against the inner surface of the cavity when the terminal fitting 1 is inclined obliquely inside the cavity of a connector housing (not shown).
On the first protection wall 31A, a facing edge 35A facing the second protection wall 31B is inclined obliquely with respect to a line L perpendicular to the bottom wall 12 over the entire length, as shown in
As shown in
In connecting this terminal fitting 1 to the male terminal fitting, the tab T is inserted into the rectangular tube 11 through the clearance between the ceiling wall 15 and the protection walls 31A, 31B, as shown in
External matter may hit the one end part of the rectangular tube 11 from the side of the bottom wall 12 (from below in
If facing edges 102A, 102B of a pair of protection walls 101A, 101B extend perpendicular to the bottom wall 12 (vertical direction of
In contrast, in this embodiment, the facing edges 35A, 35B of the protection walls 31A, 31B are inclined obliquely with respect to the line L perpendicular to the bottom wall 12. In other words, since the facing edges 35A, 35B are oblique with respect to a direction in which an external force acts, i.e. in a direction in which the protection walls 31A, 31B are going to be deformed, the facing edge 35A of the one protection wall 31A interferes with the facing edge 35B of the other protection wall 31B to restrict any further deformation of the protection walls 31A, 31B.
As described above, the terminal fitting 1 includes the rectangular tube 11 composed of the bottom wall 12, the two side walls 13A, 13B rising from the bottom wall 12 and the ceiling wall 15 continuous from the side wall 13B and disposed to face the bottom wall 12. The rectangular tube 11 has the terminal insertion opening 17 on one end, and the tab T of the male terminal fitting is insertable into the terminal insertion opening 17. The resilient contact piece 21 in the form of a leaf spring is arranged along the bottom wall 12 inside the rectangular tube 11. The first and second protection walls 31A, 31B extend respectively from the first and second side walls 13A, 13B and are arranged to close the terminal insertion opening 17, while leaving the clearance for allowing the entrance of the tab T between the ceiling wall 15 and the protection walls 31A, 31B. The protection walls 31A, 31B include the facing edges 35A, 35B facing the mating protection walls 31B, 31A, and the facing edges 35A, 35B obliquely extend with respect to the line L perpendicular to the bottom wall 12.
External matter may hit the rectangular tube 11 from the side of the bottom wall 12, and an external force acts on the protection walls 31A, 31B in the direction from the bottom wall 12 toward the ceiling wall 15 and the protection walls 31A, 31B are going to be deformed in the direction from the bottom wall 12 toward the ceiling wall 15. However, the facing edges 35A, 35B of the protection walls 31A, 31B are at an angle to the line L perpendicular to the bottom wall 12, i.e. the direction in which the external force acts. Thus, the facing edge 35A of the first protection wall 31A interferes with the facing edge 35B of the second protection wall 31B. In this way, the deformation of the protection walls 31A, 31B can be suppressed against an external force applied in the direction from the bottom wall 12 toward the ceiling wall 15 and the resilient contact piece 21 can be protected reliably.
The facing edges 35A, 35B are oblique to the line L perpendicular to the bottom wall 12 over the entire lengths. Thus, deformation of protection walls can be suppressed by simple shapes and complication of a manufacturing process is avoided.
A terminal fitting 50 of a modification is different from the embodiment in the shapes of the first and second protection walls 51A, 51B as shown in
As in the embodiment, the first protection wall 51A is a plate extending perpendicularly from the first side wall 13A, and the second protection wall 51B is a plate extending perpendicularly from second side wall 13B. The protection walls 51A, 51B are arranged to close a substantially half of a terminal insertion opening 17 on the side of a bottom wall 12, leaving a clearance for entrance of a tab (T) between a ceiling wall 15 and the protection walls 51A, 51B.
The first protection wall 51A has a facing edge 52A facing the second protection wall 51B and has a half on the side of the ceiling wall 15 (upper part 52A1) and a half on the side of the bottom wall 12 (lower part 52A2). The upper part 52A1 and the lower part 52A2 are inclined in directions opposite to each other with respect to a line L perpendicular to the bottom wall portion 12. More specifically, the upper part 52A1 of the facing edge 52A is inclined to approach from the first side wall 13A toward the second side wall 13B as coming closer to the bottom wall portion 12, and the lower part 52A2 thereof is inclined to approach from the second side wall 13B toward the first side wall 13A while coming closer to the bottom wall 12. The facing edge 52A has a chevron shape convex toward the mating protection wall 51B as a whole.
On the second protection wall 51B, a facing edge 52B facing the first protection wall 51A extends at a short distance from and is parallel to the facing edge 52A of the one protection wall 51A while being inclined in conformity with the facing edge 52A. More specifically, a half of the facing edge 52B on the side of the ceiling wall 15 (upper part 52B1) is inclined to approach from the first side wall 13A toward the side wall 13A while approaching the bottom wall 12, and a half of the facing edge 52B on the side of the bottom wall 12 (lower part 52B2) is inclined to approach from the side wall 13B toward the first side wall 13A while approaching the bottom wall 12. The facing edge 52B has a valley shape concave toward the mating protection wall 51B.
Since other components are similar to those of the first embodiment, the components similar to those of the first embodiment are denoted by the same reference signs and not described.
Even in such a configuration, if an external force acts on the protection walls 51A, 51B in a direction from the bottom wall 12 toward the ceiling wall 15 (direction of a thick arrow of
The invention is not limited to the above described and illustrated embodiment. For example, the following modes are also included.
Although the entire facing edges 35A, 35B are oblique to the line L perpendicular to the bottom wall 12 in the above embodiment, only parts of facing edges may be, for example, oblique to a line perpendicular to a bottom wall.
The facing edges 35A, 35B are oblique to the line L perpendicular to the bottom wall 12 in the above embodiment. However, facing edges may be stepped and have parts extending perpendicular to a line perpendicular to a bottom wall.
The entire facing edge 52A of the first protection wall 51A constitutes one chevron shape and the entire facing edge 52B of the other protection wall 51B constitutes one valley shape in the modification. However, a facing edge of one protection wall may have plural chevron-shapes and a facing edge of the other protection wall may have a plurality of valley-shaped parts in conformity with the chevron-shaped parts of the facing edge of the one protection wall.
Number | Date | Country | Kind |
---|---|---|---|
2017-131904 | Jul 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5788542 | Miwa | Aug 1998 | A |
6152788 | Hata | Nov 2000 | A |
6227915 | Sakatani | May 2001 | B1 |
6290554 | Makita | Sep 2001 | B1 |
7004797 | Harada | Feb 2006 | B2 |
8523619 | Itou | Sep 2013 | B2 |
8821197 | Muro | Sep 2014 | B2 |
8858274 | Jakoplic | Oct 2014 | B2 |
9039447 | Aoki | May 2015 | B2 |
9716331 | Sasaki | Jul 2017 | B2 |
9787005 | Bluemmel | Oct 2017 | B2 |
20040157503 | Fujii | Aug 2004 | A1 |
20050227551 | Tabata | Oct 2005 | A1 |
20050250356 | Matsumura | Nov 2005 | A1 |
20140004756 | Sakamoto | Jan 2014 | A1 |
20140349521 | Sakamoto | Nov 2014 | A1 |
20160056575 | Morello | Feb 2016 | A1 |
20180226737 | Kitamura | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
5-53146 | Jul 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20190013594 A1 | Jan 2019 | US |