This application is a National Stage Application of PCT/EP2007/010931, filed 13 Dec. 2007, which claims benefit of Ser. No. 10 2007 002 769.0, filed 18 Jan. 2007 in Germany and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Such a terminal block of the generic type is known, for example, from DE 102 57 308 B3. The terminal block is in this case in the form of a plug-in connector for printed circuit boards, comprising a number of contact elements, the contact elements each having two connection sides, one connection side being in the form of an insulation displacement contact for connecting wires and the other connection side being in the form of a fork contact for making contact with connection pads on a printed circuit board, and a plastic housing, into which the insulation displacement contacts of the contact elements can be plugged, the insulation displacement contact and the fork contact being arranged such that they are turned towards one another, and at least one lower edge of the insulation displacement contact being supported on the plastic housing such that the contact elements are held in the plastic housing such that they cannot fall out when connection forces are occurring on the insulation displacement contacts. The insulation displacement contacts are in this case positioned between housing walls, the insulation displacement contacts being aligned at an angle of 45° with respect to the housing walls, the insulation displacement contacts in the row all being aligned parallel to one another.
The invention is based on the technical problem of providing a terminal block which is improved in terms of crosstalk.
In this regard, the terminal block comprises a housing and at least four insulation displacement contacts, the at least four insulation displacement contacts being arranged in a row, the housing being formed with housing walls between which the insulation displacement contacts are arranged, the insulation displacement contacts being aligned at an angle of 45° with respect to the housing walls, and in each case two insulation displacement contacts forming a contact pair, the insulation displacement contacts of one contact pair being aligned parallel to one another, whereas adjacent insulation displacement contacts of different contact pairs are arranged with respect to one another such that they are rotated through 90° about the longitudinal axis of the insulation displacement contacts. As a result, the capacitive coupling between contacts of adjacent contact pairs is reduced, which results in a reduction in the crosstalk. The two adjacent contacts clearly form a plate capacitor, the gap owing to the opposing angled position continually increasing in size, which reduces the capacitance. Note will be made here of the fact that the angle of 45° may fluctuate by ±5° owing to the tolerances of the housing.
In a preferred embodiment, the housing walls between insulation displacement contacts of one contact pair have a smaller width than the housing walls between insulation displacement contacts of different contact pairs. This also reduces the capacitive coupling.
In a further preferred embodiment, the terminal block comprises at least one further row of insulation displacement contacts, which is arranged parallel to the first row of insulation displacement contacts, opposite insulation displacement contacts of different rows being arranged with respect to one another such that they are rotated through 90° about the longitudinal axis of the insulation displacement contacts. This also reduces the crosstalk.
In a further preferred embodiment, the gap between the rows is larger than the largest gap between two adjacent insulation displacement contacts in a row. In this case, the gap is preferably selected such that the insulation displacement contacts can be connected using standard connection tools.
In a further preferred embodiment, the insulation displacement contacts are connected to a printed circuit board, further preferably the longitudinal axes of the insulation displacement contacts being aligned parallel to the surface of the printed circuit board.
In a further preferred embodiment, the insulation displacement contacts are connected to the printed circuit board via SMD-like contacts.
In a further preferred embodiment, at least one contact pair is crossed over prior to being connected to the printed circuit board.
The invention will be explained in more detail below with reference to a preferred exemplary embodiment. In the figures:
The terminal block 1 comprises a housing 2 having two rows 3, 4 of insulation displacement contacts K1-K8. In this case, the row 3 comprises the insulation displacement contacts K1, K2, K7 and K8, in each case the insulation displacement contacts K1, K2 and K7, K8 forming a contact pair. Correspondingly, the row 4 is formed by the insulation displacement contacts K3-K6, the insulation displacement contacts K3, K6 and K4, K5 forming a contact pair. The two rows 3, 4 are designed to be parallel to one another. Furthermore, the rows 3, 4 comprise different housing walls 5 between which the insulation displacement contacts K1-K8 are arranged, the insulation displacement contacts K1-K8 being set at an angle of 45° with respect to the housing walls 5. In this case, the insulation displacement contacts K1, K2 are aligned parallel to one another. The same applies for the insulation displacement contacts K7, K8; K3, K6 and K4, K5, which each form a contact pair. Adjacent insulation displacement contacts, which are arranged in a common row 3, 4 but belong to different contact pairs, i.e. the insulation displacement contacts K1, K8 in row 3 or the insulation displacement contacts K5, K6 in row 4, for example, are arranged with respect to one another such that they are rotated through 90° about the longitudinal axis of the insulation displacement contacts. In this case, the longitudinal axis is an axis which would pass through the plane of the paper at right angles. In this case, the gap b between the insulation displacement contacts of one contact pair is smaller than the gap c between adjacent insulation displacement contacts of different contact pairs, the width of the housing walls 5 being defined as the gap. The gap a between the rows 3 and 4 is in this case larger than the gap c.
It can further be seen that opposite insulation displacement contacts from different rows, for example the insulation displacement contacts K2 and K3, are likewise arranged with respect to one another such that they are rotated through 90° about the longitudinal axis of the insulation displacement contacts.
Furthermore, pimples 6 are arranged on the inner sides of the housing walls 5 and are used for firmly holding the wires which have been pressed into the insulation displacement contacts.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 002 769 | Jan 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/010931 | 12/13/2007 | WO | 00 | 7/13/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/086863 | 7/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5228872 | Liu | Jul 1993 | A |
5951330 | Reichard, Jr. et al. | Sep 1999 | A |
5975936 | Lin et al. | Nov 1999 | A |
5989071 | Larson et al. | Nov 1999 | A |
6010353 | Ensz et al. | Jan 2000 | A |
6050842 | Ferrill et al. | Apr 2000 | A |
6126476 | Viklund et al. | Oct 2000 | A |
6213809 | Viklund | Apr 2001 | B1 |
6238231 | Chapman et al. | May 2001 | B1 |
6305950 | Doorhy | Oct 2001 | B1 |
6358093 | Phommachanh et al. | Mar 2002 | B1 |
6371793 | Doorhy et al. | Apr 2002 | B1 |
6371794 | Bauer et al. | Apr 2002 | B1 |
6648670 | Chen | Nov 2003 | B1 |
6796847 | AbuGhazaleh et al. | Sep 2004 | B2 |
6953362 | Mossner et al. | Oct 2005 | B2 |
7591654 | Neumetzler | Sep 2009 | B2 |
7798866 | Hetzer et al. | Sep 2010 | B2 |
20050136747 | Caveney et al. | Jun 2005 | A1 |
20050202697 | Caveney et al. | Sep 2005 | A1 |
20070111555 | Neumetzler | May 2007 | A1 |
20090225979 | Pelletier et al. | Sep 2009 | A1 |
20100003847 | Hetzer et al. | Jan 2010 | A1 |
20100041250 | Hetzer et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
43 14 908 | Nov 1993 | DE |
102 57 308 | Jul 2004 | DE |
20 2005 001 178 | Jan 2005 | DE |
103 33 913 | Feb 2005 | DE |
0 899 823 | Mar 1999 | EP |
0 899 827 | Mar 1999 | EP |
0 899 828 | Mar 1999 | EP |
0 923 171 | Jun 1999 | EP |
0 969 569 | Jan 2000 | EP |
0 982 815 | Mar 2000 | EP |
1 312 137 | May 2005 | EP |
1 622 234 | Feb 2006 | EP |
M269631 | Jul 2005 | TW |
WO 0180376 | Oct 2001 | WO |
WO 0182418 | Nov 2001 | WO |
WO 0215340 | Feb 2002 | WO |
WO 2005064755 | Jul 2005 | WO |
WO 2005101579 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100075530 A1 | Mar 2010 | US |