The present invention relates to imaging terminals generally, and in particular to imaging terminals for dimensioning objects.
In the field of transportation and shipping of goods, it can be useful to perform spatial measurements with respect to packages or other objects, e.g., goods that are stacked on a pallet or in the interior of a truck or shipping container. Packages and other objects often include barcode symbols including one or more of one dimensional (1D) barcodes, stacked 1D barcodes, and two dimensional (2D) barcodes.
U.S. Pat. No. 7,726,575 issued to Wang et al. discloses an indicia reading terminal having spatial measurement functionality. The indicia reading terminal can execute a spatial measurement mode of operation in which the indicia reading terminal can determine a dimension of an article in a field of view of the indicia reading terminal and/or determine other spatial information. In determining a dimension of an article, the indicia reading terminal can utilize setup data determined in a setup mode of operation and/or data determined utilizing the setup data.
U.S. Patent Application Publication No. 2011/0279916 by Brown et al. discloses a shaped memory alloy (SMA) actuation apparatus comprises a camera lens element supported on a support structure by a plurality of flexures for focusing or zooming.
U.S. Pat. No. 7,307,653 issued to Dutta discloses a handheld device for stabilizing an image captured by an optical lens of a micro camera integral with the handheld device. Motion sensors sense motion of the device and are used to cause movement of the micro camera to substantially compensate for the sensed movement so as to maintain a steady, focused image to be displayed by a display on the handheld device or elsewhere, such as a remote display. The micro camera is moved by one or more motion actuators which move the camera in a horizontal plane substantially perpendicular to an axis of the lens of the camera and/or move the camera so as to pivot the lens axis. The actuator may include a piezo actuator, a MEMS actuator, a shaped memory alloy (SMA) which changes in length in response to an electrical bias, and other types of electromechanical actuators.
There is a need for further imaging terminals generally, and in particular to an imaging terminal for dimensioning objects.
In a first aspect, the present invention provides a terminal for measuring at least one dimension of an object. The terminal includes at least one imaging subsystem and an actuator. The at least one imaging subsystem includes an imaging optics assembly operable to focus an image onto an image sensor array. The imaging optics assembly has an optical axis. The actuator is operably connected to the at least one imaging subsystem for moving an angle of the optical axis relative to the terminal. The terminal is adapted to obtain first image data of the object and is operable to determine at least one of a height, a width, and a depth dimension of the object based on effecting the actuator to change the angle of the optical axis relative to the terminal to align the object in second image data with the object in the first image data, the second image data being different from the first image data.
In a second aspect, the present invention provides a method for measuring at least one dimension of an object. The method includes obtaining a first image data of the object, moving an optical axis of at least one imaging subsystem to align second image data of the object with the first image data, the second image data being different from the first image data, and determining at least one of a height, a width, and a depth dimension of the object based on moving the optical axis of the at least one imaging subsystem to align the image of the object in the second image data with the image of the object in the first image data.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, may best be understood by reference to the following detailed description of various embodiments and the accompanying drawings in which:
In one embodiment, a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as one or more camera modules and an actuator to adjust the pointing angle of the one or more camera modules to provide true stereo imaging. The terminal may be operable to attempt to determine at least one of a height, a width, and a depth based on effecting the adjustment of the pointing angle of the one or more camera modules.
For example, a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as camera modules and an actuator based on wires of nickel-titanium shape memory alloy (SMA) and an associated control and heating ASIC (application-specific integrated circuit) to adjust the pointing angle of the one or more camera modules to provide true stereo imaging. Using true stereo imaging, the distance to the package can be determined by measuring the amount of drive current or voltage drop across the SMA actuator. The terminal may be operable to attempt to determine at least one of a height, a width, a depth, based on the actuator effecting the adjustment of the pointing angle of the one or more camera modules, the measured distance, and the obtained image of the object.
With reference still to
Initially, at block 602 as shown in
With reference again to
For example, the terminal may include a suitable software program employing a subtraction routine to determine when the image of the object in the second image data is aligned with the object in the first image data. The closer the aligned images of the object are, the resulting subtraction of the two images such as subtracting the amplitude of the corresponding pixels of the imagers will become smaller as the images align and match. The entire images of the object may be compared, or a portion of the images of the object may be compared. Thus, the better the images of the object are aligned, the smaller the subtracted difference will be.
A shown in
With reference again to
For example, the relationship between an angle θ of the optical axis of the movable imaging subsystem relative to the terminal, a distance A from the fixed imaging subsystem to the object, and a distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
tan θ=A/C.
The relationship between angle θ of the optical axis of the movable imaging subsystem relative to the terminal, a distance B from the fixed imaging subsystem to the object, and distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
cos θ=C/B.
With reference to
where h is a dimension of the object (such as height) of the object on the image sensor array, f is focal length of the imaging optics lens, H is a dimension of the actual object (such as height), and D is distance from the object to the imaging optic lens.
With reference to measuring, for example a height dimension, knowing the vertical size of the imaging sensor (e.g., the height in millimeters or inches) and number of pixels vertically disposed along the imaging sensor, the height of the image of the object occupying a portion of the imaging sensor would be related to a ratio of the number of pixels forming the imaged object to the total pixels disposed vertically along the image sensor.
For example, a height of an observed image on the imaging senor may be determined as follows:
In one embodiment, an actual height measurement may be determined as follows:
For example, where an observed image of the object is 100 pixels high, and a distance D is 5 feet, the actual object height would be greater than when the observed image of the object is 100 pixels high, and a distance D is 2 feet. Other actual dimensions (e.g., width and depth) of the object may be similarly obtained.
From the present description, it will be appreciated that the terminal maybe setup using a suitable setup routine that is accessed by a user or by a manufacturer for coordinating the predetermined actual object to dimensioning at various distances, e.g., coordinate a voltage or current reading required to effect the actuator to align the object in the second image with the image of the object in the first image, to create a lookup table. Alternatively, suitable programming or algorithms employing, for example, the relationships described above, may be employed to determine actual dimensions based on the number of pixels observed on the imaging sensor. In addition, suitable edge detection or shape identifier algorithms or processing may be employed with analyzing standard objects, e.g., boxes, cylindrical tubes, triangular packages, etc., to determine and/or confirm determined dimensional measurements.
In this exemplary embodiment, an imaging subsystem 3900 may include a first fixed imaging subsystem 3210, and a second movable imaging subsystem 3220. In addition, terminal 1000 (
From the present description of the various imaging subsystems and actuators, it will be appreciated that the second aligned image be performed in an operable time after the first image so that the effect of the user holding and moving the terminal when obtaining the images or the object moving when obtaining the image does not result in errors in determining the one or more dimensions of the object. It is desirable minimize the time delay between the first image and the second aligned image. For example, it may be suitable that the images be obtained within about 0.5 second or less, or possibly within about ⅛ second or less, about 1/16 second or less, or about 1/32 second or less.
With reference to
As shown in
In addition, the terminal may include a motion sensor 1300 (
The imaging optics assembly may employ a fixed focus imaging optics assembly. For example, the optics may be focused at a hyperfocal distance so that objects in the images from some near distance to infinity will be sharp. In the present invention, the imaging optics assembly may be focused at a distance of 15 inches or greater, in the range of 3 or 4 feet distance, or at other distances. Alternatively, the imaging optics assembly may comprise an autofocus lens. The present invention may include a suitable shape memory alloy actuator apparatus for controlling an imaging subassembly such as a microcamera disclosed in U.S. Pat. No. 7,974,025 by Topliss, the entire contents of which are incorporated herein by reference.
From the present description, it will be appreciated that the present invention may be operably employed to separately obtain images and dimensions of the various sides of an object, e.g., two or more of a front elevational view, a side elevational view, and a top view, may be separately obtained by a user, similar to measuring an object as one would with a ruler.
The present invention may include a suitable autofocusing microcamera such as a microcamera disclosed in U.S. Patent Application Publication No. 2011/0279916 by Brown et al., the entire contents of which are incorporated herein by reference.
In addition, it will be appreciated that the described imaging subsystems in the embodiments shown in
With reference to
A signal 7002 may be a trigger signal which can be made active by actuation of trigger 1220 (
A signal 7102 illustrates illumination subsystem 800 (
A signal 7202 is an exposure control signal illustrating active states defining exposure periods and inactive states intermediate the exposure periods for an image sensor of a terminal. For example, in an active state, an image sensor array of terminal 1000 (
A signal 7302 is a readout control signal illustrating the exposed pixels in the image sensor array being transferred to memory or secondary storage in the imager so that the imager may be operable to being ready for the next active portion of the exposure control signal. In the timing diagram of
With reference again to
In one example, image sensor integrated circuit 1040 can be provided e.g., by an MT9V022 (752×480 pixel array) or an MT9V023 (752×480 pixel array) image sensor integrated circuit available from Aptina Imaging (formerly Micron Technology, Inc.). In one example, image sensor array 1033 can be a hybrid monochrome and color image sensor array having a first subset of monochrome pixels without color filter elements and a second subset of color pixels having color sensitive filter elements. In one example, image sensor integrated circuit 1040 can incorporate a Bayer pattern filter, so that defined at the image sensor array 1033 are red pixels at red pixel positions, green pixels at green pixel positions, and blue pixels at blue pixel positions. Frames that are provided utilizing such an image sensor array incorporating a Bayer pattern can include red pixel values at red pixel positions, green pixel values at green pixel positions, and blue pixel values at blue pixel positions. In an embodiment incorporating a Bayer pattern image sensor array, processor 1060 prior to subjecting a frame to further processing can interpolate pixel values at frame pixel positions intermediate of green pixel positions utilizing green pixel values for development of a monochrome frame of image data. Alternatively, processor 1060 prior to subjecting a frame for further processing can interpolate pixel values intermediate of red pixel positions utilizing red pixel values for development of a monochrome frame of image data. Processor 1060 can alternatively, prior to subjecting a frame for further processing interpolate pixel values intermediate of blue pixel positions utilizing blue pixel values. An imaging subsystem of terminal 1000 can include image sensor 1032 and lens assembly 200 for focusing an image onto image sensor array 1033 of image sensor 1032.
In the course of operation of terminal 1000, image signals can be read out of image sensor 1032, converted, and stored into a system memory such as RAM 1080. Memory 1085 of terminal 1000 can include RAM 1080, a nonvolatile memory such as EPROM 1082 and a storage memory device 1084 such as may be provided by a flash memory or a hard drive memory. In one embodiment, terminal 1000 can include processor 1060 which can be adapted to read out image data stored in memory 1080 and subject such image data to various image processing algorithms. Terminal 1000 can include a direct memory access unit (DMA) 1070 for routing image information read out from image sensor 1032 that has been subject to conversion to RAM 1080. In another embodiment, terminal 1000 can employ a system bus providing for bus arbitration mechanism (e.g., a PCI bus) thus eliminating the need for a central DMA controller. A skilled artisan would appreciate that other embodiments of the system bus architecture and/or direct memory access components providing for efficient data transfer between the image sensor 1032 and RAM 1080 are within the scope and the spirit of the invention.
Reference still to
Terminal 1000 may include illumination subsystem 800 for illumination of target, and projection of an illumination pattern (not shown). Illumination subsystem 800 may emit light having a random polarization. The illumination pattern, in the embodiment shown can be projected to be proximate to but larger than an area defined by field of view 20 but can also be projected in an area smaller than an area defined by a field of view 20. Illumination subsystem 800 can include a light source bank 500, comprising one or more light sources. Light source assembly 800 may further include one or more light source banks, each comprising one or more light sources, for example. Such light sources can illustratively include light emitting diodes (LEDs), in an illustrative embodiment. LEDs with any of a wide variety of wavelengths and filters or combination of wavelengths or filters may be used in various embodiments. Other types of light sources may also be used in other embodiments. The light sources may illustratively be mounted to a printed circuit board. This may be the same printed circuit board on which an image sensor integrated circuit 1040 having an image sensor array 1033 may illustratively be mounted.
Terminal 1000 can also include an aiming subsystem 600 for projecting an aiming pattern (not shown). Aiming subsystem 600 which can comprise a light source bank can be coupled to aiming light source bank power input unit 1208 for providing electrical power to a light source bank of aiming subsystem 600. Power input unit 1208 can be coupled to system bus 1500 via interface 1108 for communication with processor 1060.
In one embodiment, illumination subsystem 800 may include, in addition to light source bank 500, an illumination lens assembly 300, as is shown in the embodiment of
In another aspect, terminal 1000 can include a power supply 1402 that supplies power to a power grid 1404 to which electrical components of terminal 1000 can be connected. Power supply 1402 can be coupled to various power sources, e.g., a battery 1406, a serial interface 1408 (e.g., USB, RS232), and/or AC/DC transformer 1410.
Further, regarding power input unit 1206, power input unit 1206 can include a charging capacitor that is continually charged by power supply 1402. Power input unit 1206 can be configured to output energy within a range of energization levels. An average energization level of illumination subsystem 800 during exposure periods with the first illumination and exposure control configuration active can be higher than an average energization level of illumination and exposure control configuration active.
Terminal 1000 can also include a number of peripheral devices including trigger 1220 which may be used to make active a trigger signal for activating frame readout and/or certain decoding processes. Terminal 1000 can be adapted so that activation of trigger 1220 activates a trigger signal and initiates a decode attempt. Specifically, terminal 1000 can be operative so that in response to activation of a trigger signal, a succession of frames can be captured by way of read out of image information from image sensor array 1033 (typically in the form of analog signals) and then storage of the image information after conversion into memory 1080 (which can buffer one or more of the succession of frames at a given time). Processor 1060 can be operative to subject one or more of the succession of frames to a decode attempt.
For attempting to decode a barcode symbol, e.g., a one dimensional barcode symbol, processor 1060 can process image data of a frame corresponding to a line of pixel positions (e.g., a row, a column, or a diagonal set of pixel positions) to determine a spatial pattern of dark and light cells and can convert each light and dark cell pattern determined into a character or character string via table lookup. Where a decodable indicia representation is a 2D barcode symbology, a decode attempt can comprise the steps of locating a finder pattern using a feature detection algorithm, locating matrix lines intersecting the finder pattern according to a predetermined relationship with the finder pattern, determining a pattern of dark and light cells along the matrix lines, and converting each light pattern into a character or character string via table lookup.
Terminal 1000 can include various interface circuits for coupling various peripheral devices to system address/data bus (system bus) 1500, for communication with processor 1060 also coupled to system bus 1500. Terminal 1000 can include an interface circuit 1028 for coupling image sensor timing and control circuit 1038 to system bus 1500, an interface circuit 1102 for coupling electrical power input unit 1202 to system bus 1500, an interface circuit 1106 for coupling illumination light source bank power input unit 1206 to system bus 1500, and an interface circuit 1120 for coupling trigger 1220 to system bus 1500. Terminal 1000 can also include display 1222 coupled to system bus 1500 and in communication with processor 1060, via an interface 1122, as well as pointer mechanism 1224 in communication with processor 1060 via an interface 1124 connected to system bus 1500. Terminal 1000 can also include keyboard 1226 coupled to systems bus 1500 and in communication with processor 1060 via an interface 1126. Terminal 1000 can also include range detector unit 1210 coupled to system bus 1500 via interface 1110. In one embodiment, range detector unit 1210 can be an acoustic range detector unit. Various interface circuits of terminal 1000 can share circuit components. For example, a common microcontroller can be established for providing control inputs to both image sensor timing and control circuit 1038 and to power input unit 1206. A common microcontroller providing control inputs to circuit 1038 and to power input unit 1206 can be provided to coordinate timing between image sensor array controls and illumination subsystem controls.
A succession of frames of image data that can be captured and subject to the described processing can be full frames (including pixel values corresponding to each pixel of image sensor array 1033 or a maximum number of pixels read out from image sensor array 1033 during operation of terminal 1000). A succession of frames of image data that can be captured and subject to the described processing can also be “windowed frames” comprising pixel values corresponding to less than a full frame of pixels of image sensor array 1033. A succession of frames of image data that can be captured and subject to the above described processing can also comprise a combination of full frames and windowed frames. A full frame can be read out for capture by selectively addressing pixels of image sensor 1032 having image sensor array 1033 corresponding to the full frame. A windowed frame can be read out for capture by selectively addressing pixels or ranges of pixels of image sensor 1032 having image sensor array 1033 corresponding to the windowed frame. In one embodiment, a number of pixels subject to addressing and read out determine a picture size of a frame. Accordingly, a full frame can be regarded as having a first relatively larger picture size and a windowed frame can be regarded as having a relatively smaller picture size relative to a picture size of a full frame. A picture size of a windowed frame can vary depending on the number of pixels subject to addressing and readout for capture of a windowed frame.
Terminal 1000 can capture frames of image data at a rate known as a frame rate. A typical frame rate is 60 frames per second (FPS) which translates to a frame time (frame period) of 16.6 ms. Another typical frame rate is 30 frames per second (FPS) which translates to a frame time (frame period) of 33.3 ms per frame. A frame rate of terminal 1000 can be increased (and frame time decreased) by decreasing of a frame picture size.
While the present invention has been described with reference to a number of specific embodiments, it will be understood that the true spirit and scope of the invention should be determined only with respect to claims that can be supported by the present specification. Further, while in numerous cases herein wherein systems and apparatuses and methods are described as having a certain number of elements it will be understood that such systems, apparatuses and methods can be practiced with fewer than the mentioned certain number of elements. Also, while a number of particular embodiments have been described, it will be understood that features and aspects that have been described with reference to each particular embodiment can be used with each remaining particularly described embodiment.
The present application claims the benefit of U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects filed May 15, 2012 (and published Nov. 21, 2013 as U.S. Patent Application Publication No. 2013/0307964), now U.S. Pat. No. 10,007,858. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3971065 | Bayer | Jul 1976 | A |
4026031 | Siddall et al. | May 1977 | A |
4279328 | Ahlbom | Jul 1981 | A |
4398811 | Nishioka et al. | Aug 1983 | A |
4495559 | Gelatt, Jr. | Jan 1985 | A |
4634278 | Ross et al. | Jan 1987 | A |
4730190 | Win et al. | Mar 1988 | A |
4803639 | Steele et al. | Feb 1989 | A |
4914460 | Caimi et al. | Apr 1990 | A |
4974919 | Muraki et al. | Dec 1990 | A |
5111325 | DeJager | May 1992 | A |
5175601 | Fitts | Dec 1992 | A |
5184733 | Amarson et al. | Feb 1993 | A |
5198648 | Hibbard | Mar 1993 | A |
5220536 | Stringer et al. | Jun 1993 | A |
5243619 | Albers et al. | Sep 1993 | A |
5331118 | Jensen | Jul 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5384901 | Glassner et al. | Jan 1995 | A |
5477622 | Skalnik | Dec 1995 | A |
5548707 | LoNegro et al. | Aug 1996 | A |
5555090 | Schmutz | Sep 1996 | A |
5561526 | Huber et al. | Oct 1996 | A |
5590060 | Granville et al. | Dec 1996 | A |
5592333 | Lewis | Jan 1997 | A |
5606534 | Stringer et al. | Feb 1997 | A |
5619245 | Kessler et al. | Apr 1997 | A |
5655095 | LoNegro et al. | Aug 1997 | A |
5661561 | Wurz et al. | Aug 1997 | A |
5699161 | Woodworth | Dec 1997 | A |
5729750 | Ishida | Mar 1998 | A |
5730252 | Herbinet | Mar 1998 | A |
5732147 | Tao | Mar 1998 | A |
5734476 | Dlugos | Mar 1998 | A |
5737074 | Haga et al. | Apr 1998 | A |
5748199 | Palm | May 1998 | A |
5767962 | Suzuki et al. | Jun 1998 | A |
5802092 | Endriz | Sep 1998 | A |
5808657 | Kurtz et al. | Sep 1998 | A |
5831737 | Stringer et al. | Nov 1998 | A |
5850370 | Stringer et al. | Dec 1998 | A |
5850490 | Johnson | Dec 1998 | A |
5869827 | Rando | Feb 1999 | A |
5870220 | Migdal et al. | Feb 1999 | A |
5900611 | Hecht | May 1999 | A |
5923428 | Woodworth | Jul 1999 | A |
5929856 | LoNegro et al. | Jul 1999 | A |
5938710 | Lanza et al. | Aug 1999 | A |
5959568 | Woolley | Sep 1999 | A |
5960098 | Tao | Sep 1999 | A |
5969823 | Wurz et al. | Oct 1999 | A |
5978512 | Kim et al. | Nov 1999 | A |
5979760 | Freyman et al. | Nov 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
5991041 | Woodworth | Nov 1999 | A |
6009189 | Schaack | Dec 1999 | A |
6025847 | Marks | Feb 2000 | A |
6035067 | Ponticos | Mar 2000 | A |
6049386 | Stringer et al. | Apr 2000 | A |
6053409 | Brobst et al. | Apr 2000 | A |
6064759 | Buckley et al. | May 2000 | A |
6067110 | Nonaka et al. | May 2000 | A |
6069696 | McQueen et al. | May 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6137577 | Woodworth | Oct 2000 | A |
6177999 | Wurz et al. | Jan 2001 | B1 |
6189223 | Haug | Feb 2001 | B1 |
6232597 | Kley | May 2001 | B1 |
6236403 | Chaki | May 2001 | B1 |
6246468 | Dimsdale | Jun 2001 | B1 |
6333749 | Reinhardt et al. | Dec 2001 | B1 |
6336587 | He et al. | Jan 2002 | B1 |
6369401 | Lee | Apr 2002 | B1 |
6373579 | Ober et al. | Apr 2002 | B1 |
6429803 | Kumar | Aug 2002 | B1 |
6457642 | Good et al. | Oct 2002 | B1 |
6507406 | Yagi et al. | Jan 2003 | B1 |
6517004 | Good et al. | Feb 2003 | B2 |
6519550 | D'Hooge et al. | Feb 2003 | B1 |
6535776 | Tobin et al. | Mar 2003 | B1 |
6661521 | Stern | Dec 2003 | B1 |
6674904 | McQueen | Jan 2004 | B1 |
6705526 | Zhu et al. | Mar 2004 | B1 |
6773142 | Rekow | Aug 2004 | B2 |
6781621 | Gobush et al. | Aug 2004 | B1 |
6804269 | Lizotte et al. | Oct 2004 | B2 |
6824058 | Patel et al. | Nov 2004 | B2 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
6858857 | Pease et al. | Feb 2005 | B2 |
6912293 | Korobkin | Jun 2005 | B1 |
6922632 | Foxlin | Jul 2005 | B2 |
6971580 | Zhu et al. | Dec 2005 | B2 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7057632 | Yamawaki et al. | Jun 2006 | B2 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7086162 | Tyroler | Aug 2006 | B2 |
7104453 | Zhu et al. | Sep 2006 | B1 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7137556 | Bonner et al. | Nov 2006 | B1 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7161688 | Bonner et al. | Jan 2007 | B1 |
7205529 | Andersen et al. | Apr 2007 | B2 |
7214954 | Schopp | May 2007 | B2 |
7233682 | Levine | Jun 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7307653 | Dutta | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7313264 | Crampton | Dec 2007 | B2 |
7353137 | Vock et al. | Apr 2008 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7509529 | Colucci et al. | Mar 2009 | B2 |
7527205 | Zhu | May 2009 | B2 |
7586049 | Wurz | Sep 2009 | B2 |
7602404 | Reinhardt et al. | Oct 2009 | B1 |
7614563 | Nunnink et al. | Nov 2009 | B1 |
7639722 | Paxton et al. | Dec 2009 | B1 |
7726206 | Terrafranca, Jr. et al. | Jun 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7780084 | Zhang et al. | Aug 2010 | B2 |
7788883 | Buckley et al. | Sep 2010 | B2 |
7912320 | Minor | Mar 2011 | B1 |
7974025 | Topliss | Jul 2011 | B2 |
8009358 | Zalevsky et al. | Aug 2011 | B2 |
8027096 | Feng et al. | Sep 2011 | B2 |
8028501 | Buckley et al. | Oct 2011 | B2 |
8050461 | Shpunt et al. | Nov 2011 | B2 |
8055061 | Katano | Nov 2011 | B2 |
8061610 | Nunnink | Nov 2011 | B2 |
8072581 | Breiholz | Dec 2011 | B1 |
8102395 | Kondo et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8149224 | Kuo et al. | Apr 2012 | B1 |
8194097 | Xiao et al. | Jun 2012 | B2 |
8201737 | Palacios Durazo et al. | Jun 2012 | B1 |
8212158 | Wiest | Jul 2012 | B2 |
8212889 | Chanas et al. | Jul 2012 | B2 |
8224133 | Popovich et al. | Jul 2012 | B2 |
8228510 | Pangrazio et al. | Jul 2012 | B2 |
8230367 | Bell et al. | Jul 2012 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
8305458 | Hara | Nov 2012 | B2 |
8310656 | Zalewski | Nov 2012 | B2 |
8313380 | Zalewski et al. | Nov 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8320621 | McEldowney | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8339462 | Stec et al. | Dec 2012 | B2 |
8350959 | Topliss et al. | Jan 2013 | B2 |
8351670 | Ijiri et al. | Jan 2013 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8368762 | Chen et al. | Feb 2013 | B1 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8374498 | Pastore | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381976 | Mohideen et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8437539 | Komatsu et al. | May 2013 | B2 |
8441749 | Brown et al. | May 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8570343 | Halstead | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8576390 | Nunnink | Nov 2013 | B1 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8594425 | Gurman et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8736909 | Sato et al. | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8810779 | Hilde | Aug 2014 | B1 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822806 | Cockerell et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8897596 | Passmore et al. | Nov 2014 | B1 |
8903172 | Smith | Dec 2014 | B2 |
8908277 | Pesach et al. | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8928896 | Kennington et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8993974 | Goodwin | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9014441 | Truyen et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9066087 | Shpunt | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9082195 | Holeva et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9135488 | Oberpriller et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9142035 | Rotman | Sep 2015 | B1 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171278 | Kong et al. | Oct 2015 | B1 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Wang | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9233470 | Bradski et al. | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9235899 | Kirmani et al. | Jan 2016 | B1 |
9239950 | Fletcher | Jan 2016 | B2 |
9245219 | Van et al. | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9443123 | Hejl | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9273846 | Rossi et al. | Mar 2016 | B1 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9292723 | Lu et al. | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9299013 | Curlander et al. | Mar 2016 | B1 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9305201 | Barten | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey | May 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9366861 | Johnson | Jun 2016 | B1 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9360304 | Chang et al. | Jul 2016 | B2 |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
9399557 | Mishra et al. | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein | Aug 2016 | B2 |
9412242 | Van Horn et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van Volkinburg et al. | Aug 2016 | B2 |
9423318 | Lui et al. | Aug 2016 | B2 |
9424749 | Reed et al. | Aug 2016 | B1 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9470511 | Maynard et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9486921 | Straszheim et al. | Nov 2016 | B1 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9595038 | Cavalcanti et al. | Mar 2017 | B1 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9709387 | Fujita et al. | Jul 2017 | B2 |
9736459 | Mor et al. | Aug 2017 | B2 |
9741136 | Holz | Aug 2017 | B2 |
9828223 | Svensson et al. | Nov 2017 | B2 |
9996720 | Wang et al. | Jun 2018 | B2 |
20010027995 | Patel et al. | Oct 2001 | A1 |
20010032879 | He et al. | Oct 2001 | A1 |
20020036765 | McCaffrey | Mar 2002 | A1 |
20020054289 | Thibault et al. | May 2002 | A1 |
20020067855 | Chiu et al. | Jun 2002 | A1 |
20020105639 | Roelke | Aug 2002 | A1 |
20020109835 | Goetz | Aug 2002 | A1 |
20020113946 | Kitaguchi et al. | Aug 2002 | A1 |
20020118874 | Chung et al. | Aug 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20020167677 | Okada et al. | Nov 2002 | A1 |
20020179708 | Zhu et al. | Dec 2002 | A1 |
20020186897 | Kim et al. | Dec 2002 | A1 |
20020196534 | Lizotte et al. | Dec 2002 | A1 |
20030038179 | Tsikos | Feb 2003 | A1 |
20030053513 | Vatan et al. | Mar 2003 | A1 |
20030063086 | Baumberg | Apr 2003 | A1 |
20030078755 | Leutz et al. | Apr 2003 | A1 |
20030091227 | Chang et al. | May 2003 | A1 |
20030156756 | Gokturk et al. | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030197138 | Pease et al. | Oct 2003 | A1 |
20030225712 | Cooper et al. | Dec 2003 | A1 |
20030235331 | Kawaike et al. | Dec 2003 | A1 |
20040008259 | Gokturk et al. | Jan 2004 | A1 |
20040019274 | Galloway et al. | Jan 2004 | A1 |
20040024754 | Mane et al. | Feb 2004 | A1 |
20040066329 | Zeitfuss et al. | Apr 2004 | A1 |
20040073359 | Ichijo et al. | Apr 2004 | A1 |
20040083025 | Yamanouchi et al. | Apr 2004 | A1 |
20040089482 | Ramsden et al. | May 2004 | A1 |
20040098146 | Katae et al. | May 2004 | A1 |
20040105580 | Hager et al. | Jun 2004 | A1 |
20040118928 | Patel et al. | Jun 2004 | A1 |
20040122779 | Stickler et al. | Jun 2004 | A1 |
20040132297 | Baba et al. | Jul 2004 | A1 |
20040155975 | Hart et al. | Aug 2004 | A1 |
20040165090 | Ming | Aug 2004 | A1 |
20040184041 | Schopp | Sep 2004 | A1 |
20040211836 | Patel et al. | Oct 2004 | A1 |
20040214623 | Takahashi et al. | Oct 2004 | A1 |
20040233461 | Armstrong et al. | Nov 2004 | A1 |
20040258353 | Gluckstad et al. | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050117215 | Lange | Jun 2005 | A1 |
20050128193 | Popescu et al. | Jun 2005 | A1 |
20050128196 | Popescu et al. | Jun 2005 | A1 |
20050168488 | Montague | Aug 2005 | A1 |
20050187887 | Nicolas et al. | Aug 2005 | A1 |
20050211782 | Martin | Sep 2005 | A1 |
20050240317 | Kienzle-Lietl | Oct 2005 | A1 |
20050257748 | Kriesel et al. | Nov 2005 | A1 |
20050264867 | Cho et al. | Dec 2005 | A1 |
20060036556 | Knispel | Feb 2006 | A1 |
20060047704 | Gopalakrishnan | Mar 2006 | A1 |
20060078226 | Zhou | Apr 2006 | A1 |
20060108266 | Bowers et al. | May 2006 | A1 |
20060109105 | Varner et al. | May 2006 | A1 |
20060112023 | Horhann | May 2006 | A1 |
20060151604 | Zhu et al. | Jul 2006 | A1 |
20060159307 | Anderson et al. | Jul 2006 | A1 |
20060159344 | Shao et al. | Jul 2006 | A1 |
20060213999 | Wang et al. | Sep 2006 | A1 |
20060230640 | Chen | Oct 2006 | A1 |
20060232681 | Okada | Oct 2006 | A1 |
20060255150 | Longacre | Nov 2006 | A1 |
20060269165 | Viswanathan | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060291719 | Ikeda et al. | Dec 2006 | A1 |
20070003154 | Sun et al. | Jan 2007 | A1 |
20070025612 | Iwasaki et al. | Feb 2007 | A1 |
20070031064 | Zhao et al. | Feb 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070116357 | Dewaele | May 2007 | A1 |
20070127022 | Cohen et al. | Jun 2007 | A1 |
20070143082 | Degnan | Jun 2007 | A1 |
20070153293 | Gruhlke et al. | Jul 2007 | A1 |
20070165013 | Goulanian et al. | Jul 2007 | A1 |
20070171220 | Kriveshko | Jul 2007 | A1 |
20070177011 | Lewin et al. | Aug 2007 | A1 |
20070181685 | Zhu et al. | Aug 2007 | A1 |
20070237356 | Dwinell et al. | Oct 2007 | A1 |
20070291031 | Konev et al. | Dec 2007 | A1 |
20070299338 | Stevick et al. | Dec 2007 | A1 |
20080013793 | Hillis et al. | Jan 2008 | A1 |
20080035390 | Wurz | Feb 2008 | A1 |
20080047760 | Georgitsis | Feb 2008 | A1 |
20080050042 | Zhang et al. | Feb 2008 | A1 |
20080054062 | Gunning et al. | Mar 2008 | A1 |
20080056536 | Hildreth et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080065509 | Williams | Mar 2008 | A1 |
20080077265 | Boyden | Mar 2008 | A1 |
20080079955 | Storm | Apr 2008 | A1 |
20080164074 | Wurz | Jun 2008 | A1 |
20080156619 | Patel et al. | Jul 2008 | A1 |
20080204476 | Montague | Aug 2008 | A1 |
20080212168 | Olmstead et al. | Sep 2008 | A1 |
20080247635 | Davis et al. | Oct 2008 | A1 |
20080273191 | Kim et al. | Nov 2008 | A1 |
20080273210 | Hilde | Nov 2008 | A1 |
20080278790 | Boesser et al. | Nov 2008 | A1 |
20090038182 | Lans et al. | Feb 2009 | A1 |
20090046296 | Kilpartrick et al. | Feb 2009 | A1 |
20090059004 | Bochicchio | Mar 2009 | A1 |
20090081008 | Somin et al. | Mar 2009 | A1 |
20090095047 | Patel et al. | Apr 2009 | A1 |
20090114818 | Casares et al. | May 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090161090 | Campbell et al. | Jun 2009 | A1 |
20090189858 | Lev et al. | Jul 2009 | A1 |
20090195790 | Zhu et al. | Aug 2009 | A1 |
20090225333 | Bendall et al. | Sep 2009 | A1 |
20090237411 | Gossweiler et al. | Sep 2009 | A1 |
20090268023 | Hsieh | Oct 2009 | A1 |
20090272724 | Gubler | Nov 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090313948 | Buckley et al. | Dec 2009 | A1 |
20090318815 | Barnes et al. | Dec 2009 | A1 |
20090323084 | Dunn et al. | Dec 2009 | A1 |
20090323121 | Valkenburg | Dec 2009 | A1 |
20100035637 | Varanasi et al. | Feb 2010 | A1 |
20100060604 | Zwart et al. | Mar 2010 | A1 |
20100091104 | Sprigle | Apr 2010 | A1 |
20100113153 | Yen et al. | May 2010 | A1 |
20100118200 | Gelman et al. | May 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100161170 | Siris | Jun 2010 | A1 |
20100171740 | Andersen et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100194709 | Tamaki et al. | Aug 2010 | A1 |
20100202702 | Benos et al. | Aug 2010 | A1 |
20100208039 | Stettner | Aug 2010 | A1 |
20100211355 | Horst et al. | Aug 2010 | A1 |
20100217678 | Goncalves | Aug 2010 | A1 |
20100220849 | Colbert et al. | Sep 2010 | A1 |
20100220894 | Ackley et al. | Sep 2010 | A1 |
20100223276 | Al-Shameri et al. | Sep 2010 | A1 |
20100245850 | Lee et al. | Sep 2010 | A1 |
20100254611 | Arnz | Oct 2010 | A1 |
20100274728 | Kugelman | Oct 2010 | A1 |
20100303336 | Abraham | Dec 2010 | A1 |
20100315413 | Izadi et al. | Dec 2010 | A1 |
20100321482 | Cleveland | Dec 2010 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110040192 | Brenner et al. | Feb 2011 | A1 |
20110040407 | Lim | Feb 2011 | A1 |
20110043609 | Choi et al. | Feb 2011 | A1 |
20110075936 | Deaver | Mar 2011 | A1 |
20110081044 | Peeper | Apr 2011 | A1 |
20110099474 | Grossman et al. | Apr 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110180695 | Li et al. | Jul 2011 | A1 |
20110188054 | Petronius et al. | Aug 2011 | A1 |
20110188741 | Sones et al. | Aug 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110234389 | Mellin | Sep 2011 | A1 |
20110235854 | Berger et al. | Sep 2011 | A1 |
20110243432 | Hirsch et al. | Oct 2011 | A1 |
20110249864 | Venkatesan et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110260965 | Kim et al. | Oct 2011 | A1 |
20110279916 | Brown et al. | Nov 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110286628 | Goncalves et al. | Nov 2011 | A1 |
20110288818 | Thierman | Nov 2011 | A1 |
20110297590 | Ackley et al. | Dec 2011 | A1 |
20110301994 | Tieman | Dec 2011 | A1 |
20110303748 | Lemma et al. | Dec 2011 | A1 |
20110310227 | Konertz et al. | Dec 2011 | A1 |
20110310256 | Shishido | Dec 2011 | A1 |
20120014572 | Wong et al. | Jan 2012 | A1 |
20120024952 | Chen | Feb 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057345 | Kuchibhotla | Mar 2012 | A1 |
20120067955 | Rowe | Mar 2012 | A1 |
20120074227 | Ferren et al. | Mar 2012 | A1 |
20120081714 | Pangrazio et al. | Apr 2012 | A1 |
20120082383 | Kruglick | Apr 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120113223 | Hilliges et al. | May 2012 | A1 |
20120126000 | Kunzig et al. | May 2012 | A1 |
20120140300 | Freeman | Jun 2012 | A1 |
20120168509 | Nunnink et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120179665 | Baarman et al. | Jul 2012 | A1 |
20120185094 | Rosenstein et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120201288 | Kolze et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120218436 | Rodriguez et al. | Sep 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120224026 | Bayer et al. | Sep 2012 | A1 |
20120224060 | Gurevich et al. | Sep 2012 | A1 |
20120236126 | Tsuda et al. | Sep 2012 | A1 |
20120236212 | Itoh et al. | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120242852 | Hayward et al. | Sep 2012 | A1 |
20120113250 | Farlotti et al. | Oct 2012 | A1 |
20120256901 | Bendall | Oct 2012 | A1 |
20120261474 | Kawashime et al. | Oct 2012 | A1 |
20120262558 | Boger et al. | Oct 2012 | A1 |
20120280908 | Rhoads et al. | Nov 2012 | A1 |
20120282905 | Owen | Nov 2012 | A1 |
20120282911 | Davis et al. | Nov 2012 | A1 |
20120284012 | Rodriguez et al. | Nov 2012 | A1 |
20120284122 | Brandis | Nov 2012 | A1 |
20120284339 | Rodriguez | Nov 2012 | A1 |
20120284593 | Rodriguez | Nov 2012 | A1 |
20120293610 | Doepke et al. | Nov 2012 | A1 |
20120293625 | Schneider et al. | Nov 2012 | A1 |
20120294478 | Publicover et al. | Nov 2012 | A1 |
20120294549 | Doepke | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120300991 | Mikio | Nov 2012 | A1 |
20120313848 | Galor et al. | Dec 2012 | A1 |
20120314030 | Datta | Dec 2012 | A1 |
20120314058 | Bendall et al. | Dec 2012 | A1 |
20120314258 | Moriya | Dec 2012 | A1 |
20120316820 | Nakazato et al. | Dec 2012 | A1 |
20130019278 | Sun et al. | Jan 2013 | A1 |
20130027521 | DeLuca | Jan 2013 | A1 |
20130038881 | Pesach et al. | Feb 2013 | A1 |
20130038941 | Pesach et al. | Feb 2013 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130050426 | Sarmast et al. | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130076857 | Kurashige et al. | Mar 2013 | A1 |
20130093895 | Palmer et al. | Apr 2013 | A1 |
20130094069 | Lee et al. | Apr 2013 | A1 |
20130101158 | Lloyd et al. | Apr 2013 | A1 |
20130128002 | Muramatsu | May 2013 | A1 |
20130156267 | Muraoka et al. | Jun 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200150 | Reynolds et al. | Aug 2013 | A1 |
20130201288 | Billerbaeck et al. | Aug 2013 | A1 |
20130208164 | Cazier et al. | Aug 2013 | A1 |
20130211790 | Loveland et al. | Aug 2013 | A1 |
20130222592 | Gieseke | Aug 2013 | A1 |
20130223673 | Davis et al. | Aug 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130291998 | Konnerth | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308013 | Li et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130317642 | Asaria | Nov 2013 | A1 |
20130326425 | Forstall et al. | Dec 2013 | A1 |
20130329012 | Bartos | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130342343 | Harring et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001258 | Chan et al. | Jan 2014 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140019005 | Lee et al. | Jan 2014 | A1 |
20140021259 | Moed et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140031665 | Pinto et al. | Jan 2014 | A1 |
20140100813 | Showering | Jan 2014 | A1 |
20140034731 | Gao et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039674 | Motoyama et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140058612 | Wong et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140062709 | Hyer et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140064624 | Kim et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067104 | Osterhout | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071430 | Hansen et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140079297 | Tadayon et al. | Mar 2014 | A1 |
20140091147 | Evans et al. | Apr 2014 | A1 |
20140097238 | Ghazizadeh | Apr 2014 | A1 |
20140097252 | He et al. | Apr 2014 | A1 |
20140098091 | Hori | Apr 2014 | A1 |
20140098243 | Ghazizadeh | Apr 2014 | A1 |
20140098244 | Ghazizadeh | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104664 | Lee | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140121438 | Long et al. | May 2014 | A1 |
20140121445 | Fontenot et al. | May 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125577 | Hoang et al. | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140135984 | Hirata | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140139654 | Taskahashi | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140142398 | Patil et al. | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140157861 | Jonas et al. | Jun 2014 | A1 |
20140158468 | Adami | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168380 | Heidemann et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140177931 | Kocherscheidt et al. | Jun 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140192551 | Masaki | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140201126 | Zadeh et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140205150 | Ogawa | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140225985 | Klusza et al. | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140240454 | Lee | Aug 2014 | A1 |
20140247279 | Nicholas et al. | Sep 2014 | A1 |
20140247280 | Nicholas et al. | Sep 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140268093 | Tohme et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140270361 | Amma et al. | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140307855 | Withagen et al. | Oct 2014 | A1 |
20140313527 | Askan | Oct 2014 | A1 |
20140319219 | Liu et al. | Oct 2014 | A1 |
20140320408 | Zagorsek et al. | Oct 2014 | A1 |
20140320605 | Johnson | Oct 2014 | A1 |
20140333775 | Naikal et al. | Nov 2014 | A1 |
20140347533 | Ovsiannikov et al. | Nov 2014 | A1 |
20140350710 | Gopalkrishnan et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20140379613 | Nishitani et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009100 | Haneda et al. | Jan 2015 | A1 |
20150009301 | Ribnick et al. | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150016712 | Rhoads et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150036876 | Marrion et al. | Feb 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150042791 | Metois et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062160 | Sakamoto et al. | Mar 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150062369 | Gehring et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150070158 | Hayasaka | Mar 2015 | A1 |
20150070489 | Hudman et al. | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150116498 | Vartiainen et al. | Apr 2015 | A1 |
20150117749 | Chen et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150130928 | Maynard et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150163474 | You | Jun 2015 | A1 |
20150178900 | Kim et al. | Jun 2015 | A1 |
20150182844 | Jang | Jul 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204662 | Kobayashi et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150213590 | Brown et al. | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150219748 | Hyatt | Aug 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150229838 | Hakim et al. | Aug 2015 | A1 |
20150243030 | Pfeiffer | Aug 2015 | A1 |
20150248578 | Utsumi | Sep 2015 | A1 |
20150253469 | Le Gros et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150260830 | Ghosh et al. | Sep 2015 | A1 |
20150269403 | Lei et al. | Sep 2015 | A1 |
20150201181 | Herschbach | Oct 2015 | A1 |
20150276379 | Ni et al. | Oct 2015 | A1 |
20150308816 | Laffargue et al. | Oct 2015 | A1 |
20150310243 | Ackley | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150325036 | Lee | Nov 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150332463 | Galera et al. | Nov 2015 | A1 |
20150355470 | Herschbach | Dec 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160048725 | Holz et al. | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160070982 | Li et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160063429 | Varley et al. | Mar 2016 | A1 |
20160065912 | Peterson | Mar 2016 | A1 |
20160088287 | Sadi et al. | Mar 2016 | A1 |
20160090283 | Svensson et al. | Mar 2016 | A1 |
20160090284 | Svensson et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160094016 | Beach et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160117631 | McCloskey et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160138247 | Conway et al. | May 2016 | A1 |
20160138248 | Conway et al. | May 2016 | A1 |
20160138249 | Svensson et al. | May 2016 | A1 |
20160147408 | Bevis et al. | May 2016 | A1 |
20160164261 | Warren | Jun 2016 | A1 |
20160169665 | Deschenes et al. | Jun 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160178915 | Mor et al. | Jun 2016 | A1 |
20160179132 | Harr et al. | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160187186 | Coleman et al. | Jun 2016 | A1 |
20160187187 | Coleman et al. | Jun 2016 | A1 |
20160187210 | Coleman et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Linwood | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | DiPiazza et al. | Jun 2016 | A1 |
20160191801 | Sivan | Jun 2016 | A1 |
20160192051 | DiPiazza et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160202478 | Masson et al. | Jul 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203641 | Bostick et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggert et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160210780 | Paulovich et al. | Jul 2016 | A1 |
20160316190 | McCloskey et al. | Jul 2016 | A1 |
20160223474 | Tang et al. | Aug 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160328854 | Kimura | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron, Jr. et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Geramine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van Horn et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170103545 | Holz | Apr 2017 | A1 |
20170108838 | Todeschinie et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170115490 | Hsieh et al. | Apr 2017 | A1 |
20170115497 | Chen et al. | Apr 2017 | A1 |
20170116462 | Ogasawara | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170121158 | Wong | May 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | d'Armancourt et al. | May 2017 | A1 |
20170132806 | Balachandreswaran | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170139213 | Schmidtlin | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170148250 | Angermayer | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170018294 | Hardy et al. | Jun 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170182942 | Hardy et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Jonas et al. | Jul 2017 | A1 |
20170193727 | Van Horn et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
20170200296 | Jones et al. | Jul 2017 | A1 |
20170309108 | Sadovsky et al. | Oct 2017 | A1 |
20170336870 | Everett et al. | Nov 2017 | A1 |
20180018627 | Ross | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2004212587 | Apr 2005 | AU |
201139117 | Oct 2008 | CN |
3335760 | Apr 1985 | DE |
10210813 | Oct 2003 | DE |
102007037282 | Mar 2008 | DE |
1111435 | Jun 2001 | EP |
1443312 | Aug 2004 | EP |
1112483 | May 2006 | EP |
1232480 | May 2006 | EP |
2013117 | Jan 2009 | EP |
2216634 | Aug 2010 | EP |
2286932 | Feb 2011 | EP |
2372648 | Oct 2011 | EP |
2381421 | Oct 2011 | EP |
2533009 | Dec 2012 | EP |
2562715 | Feb 2013 | EP |
2722656 | Apr 2014 | EP |
2779027 | Sep 2014 | EP |
2833323 | Feb 2015 | EP |
2843590 | Mar 2015 | EP |
2845170 | Mar 2015 | EP |
2966595 | Jan 2016 | EP |
3006893 | Mar 2016 | EP |
3012601 | Mar 2016 | EP |
3007096 | Apr 2016 | EP |
3270342 | Jan 2018 | EP |
2503978 | Jan 2014 | GB |
2525053 | Oct 2015 | GB |
2531928 | May 2016 | GB |
H04129902 | Apr 1992 | JP |
200696457 | Apr 2006 | JP |
2007084162 | Apr 2007 | JP |
2008210276 | Sep 2008 | JP |
2014210646 | Nov 2014 | JP |
2015174705 | Oct 2015 | JP |
20100020115 | Feb 2010 | KR |
20110013200 | Feb 2011 | KR |
20110117020 | Oct 2011 | KR |
20120028109 | Mar 2012 | KR |
9640452 | Dec 1996 | WO |
0077726 | Dec 2000 | WO |
0114836 | Mar 2001 | WO |
2006095110 | Sep 2006 | WO |
2007015059 | Feb 2007 | WO |
2007125554 | Nov 2007 | WO |
200712554 | Nov 2007 | WO |
2011017241 | Feb 2011 | WO |
2012175731 | Dec 2012 | WO |
2013021157 | Feb 2013 | WO |
2013033442 | Mar 2013 | WO |
2013173985 | Nov 2013 | WO |
2013163789 | Nov 2013 | WO |
2013166368 | Nov 2013 | WO |
20130184340 | Dec 2013 | WO |
2014019130 | Feb 2014 | WO |
2014023697 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
2014102341 | Jul 2014 | WO |
2014149702 | Sep 2014 | WO |
2014151746 | Sep 2014 | WO |
2015006865 | Jan 2015 | WO |
2016020038 | Feb 2016 | WO |
2016061699 | Apr 2016 | WO |
2016061699 | Apr 2016 | WO |
2016085682 | Jun 2016 | WO |
Entry |
---|
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages. |
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [US 2013/0038881 cited on separate IDS filed concurrently herewith]. |
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages. |
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [US Publication 2014/0034731 cited on separate IDS filed concurrently herewith]. |
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References cited on separate IDS filed concurrently herewith; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978]. |
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [cited on separate IDS filed concurrently herewith; WO2011/017241 and US 2014/0104413]. |
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein; some art cited on separate IDS filed concurrently herewith). |
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages [Art cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages [Art has been cited on separate IDS filed concurrently herewith.]. |
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References cited on separate IDS filed concurrently herewith]. |
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [References cited on separate IDS filed concurrently herewith]. |
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages. |
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017; NPL 14]. |
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages [References cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages [References cited on separate IDS filed concurrently herewith]. |
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages. |
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7 [References cited on separate IDS filed concurrently herewith]. |
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages. |
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein]. |
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages. |
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited herein). |
United Kingdom Combined Search and Examination Report GB Patent Application No. 1802036.2 dated Mar. 21, 2018, 5 pages. |
United Kingdom Further Examination Report in related GB Patent Application No. 1517842.9 dated Jul. 26, 2018; 5 pages. |
United Kingdom Further Examination Report in related GB Patent Application No. 1517112.7 dated Jul. 17, 2018; 4 pages. |
United Kingdom Further Examination Report in related GB Patent Application No. 1620676.5 dated Jul. 17, 2018; 4 pages. |
European Exam Report in related EP Application 15190315.0, dated Jan. 26, 2018, 6 pages. |
United Kingdom Search Report in related Application No. GB1802036.2, dated Mar. 21, 2018, 5 pages. |
United Kingdom Further Examination Report in related GB Patent Application No. 1517843.7 dated Jan. 19, 2018; 4 pages. |
European Extended Search Report in related EP Application 17190323.0, dated Jan. 19, 2018, 6 pages. |
European Extended Search Report in related EP Application 17189496.7, dated Dec. 5, 2017, 9 pages. |
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4. |
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7. |
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Office Action dated Jan. 20, 2017 in related Application.]. |
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages, [Office Action dated Jan. 20, 2017 in related Application.]. |
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages, [Office Action dated Jan. 20, 2017 in related Application.]. |
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey Dec./Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}. |
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, related matter Non Final Office Action dated May 19, 2017; 6 pages. |
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {Feb. 9, 2017 Final Office Action in related matter}. |
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n. 6. (1975) {Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}. |
Thorlabs, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages. |
EKSMA Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages. |
Sill Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages. |
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages {Only new art cited here in]. |
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages. |
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7. |
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published. |
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/928,032, filed Oct. 30, 2015, 48 pages, not yet published. |
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages. |
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages. |
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages. |
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134. |
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages. |
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages. |
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119. |
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages. |
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages. |
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1 -Hakim/publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages. |
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. No. 15/182,636, filed Jun. 15, 2016, 53 pages, Not yet published. |
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, Dated Feb. 2, 2009, 36 pages. |
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages. |
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016]. |
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. No. 15/007,522 [not yet published], filed Jan. 27, 2016, 59 pages. |
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages. |
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages. |
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011. [Previously cited in parent application]. |
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages [Previously cited in parent application]. |
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages. [Previously cited in parent application]. |
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Mar. 23, 2014)): Total pp. 7 [Previously cited in parent application]. |
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 1, 2013, 7 pages [Previously cited in parent application]. |
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant [Previously cited in parent application]. |
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages [Previously cited in parent application]. |
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages. [Previously cited in parent application]. |
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages [Previously cited in parent application]. |
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages [Previously cited in parent application]. |
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages. [Previously cited in parent application]. |
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages [Previously cited in parent application]. |
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages. [Previously cited in parent application]. |
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages. [Previously cited in parent application]. |
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page [Previously cited in parent application]. |
European Patent Office Action for Application No. 14157971.4-1906, dated Jul. 16, 2014, 5 pages. [Previously cited in parent application]. |
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages. [Previously cited in parent application]. |
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages [Previously cited in parent application]. |
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages [Previously cited in parent application]. |
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages [Previously cited in parent application]. |
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages [Previously cited in parent application]. |
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society; Accepted Oct. 2, 2003; 23 pages [Previously cited in parent application]. |
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages. [Previously cited in parent application]. |
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3. [Previously cited in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references. [Previously cited in parent application]. |
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages [Previously cited in parent application]. |
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references] [Previously cited in parent application]. |
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages. [Previously cited in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references]. |
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages [Previously cited in parent application]. |
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages [Previously cited in parent application]. |
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited in parent application]. |
Search Report and Opinion in related GB Application No. 1517112.7, dated Feb. 19, 2016, 6 Pages [Previously cited in parent application]. |
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages [Previously cited in parent application]. |
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages [Previously cited in parent application]. |
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8 [Previously cited in parent application]. |
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2 [Previously cited in parent application]. |
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages [Previously cited in parent application]. |
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages [Previously cited in parent application]. |
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages [Previously cited in parent application]. |
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages [Previously cited in parent application]. |
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ″10, 8 pages [Previously cited in parent application]. |
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages. [Previously cited in parent application]. |
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages [Previously cited in parent application]. |
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages [Previously cited in parent application]. |
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages [Previously cited in parent application]. |
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages. [Previously cited in parent application]. |
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages [Previously cited in parent application]. |
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages [Previously cited in parent application]. |
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5. |
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4. |
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4. |
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14. |
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5. |
Lowe David G., “Filling Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450. |
Examination Report in European Application No. 16152477.2 dated Jun. 18, 2019, pp. 1-6. |
Examination Report in European Application No. 17175357.7 dated Jun. 26, 2019, pp. 1-5. |
Examination Report in European Application No. 19171976.4 dated Jun. 19, 2019, pp. 1-8. |
Examination Report in GB Application No. 1607394.2 dated Jul. 5, 2019, pp. 1-4. |
Notice of Allowance for U.S. Appl. No. 13/471,983, dated Dec. 22, 2017, 7 pages. |
Office Action for U.S. Appl. No. 13/471,983, dated Aug. 25, 2016, 19 pages. |
Office Action for U.S. Appl. No. 13/471,983, dated Jun. 28, 2017, 21 pages. |
Office Action for U.S. Appl. No. 13/471,983, dated Sep. 2, 2015, 17 pages. |
Office Action for U.S. Appl. No. 13/471,983, dated Sep. 23, 2014, 12 pages. |
Office Action for U.S. Appl. No. 13/471,983, dated Feb. 24, 2015, 14 pages. |
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages. |
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages. |
Number | Date | Country | |
---|---|---|---|
20180293451 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13471973 | May 2012 | US |
Child | 16008615 | US |