The devices and methods described herein relate generally to termination of tethers that have been deployed to a target site in a body of a subject. More specifically, the devices and methods described herein relate to locking and/or cutting such tethers after they have been deployed to the target site.
Many different types of medical procedures involve the use of tethers. For example, tethers may be used to tighten or compress tissue (e.g., by bringing two pieces or sections of tissue together). The tissue may be, for example, soft tissue, such as muscle tissue or fat tissue. As an example, in some tissue tightening procedures, anchors coupled to a tether are embedded in tissue, and the tether is then pulled upon to provide a cinching effect that tightens or compresses the tissue via the anchors. Examples of devices and methods for such procedures applied to heart valve repair are described, for example, in U.S. Patent Application Publication Nos. US 2006/0122633 A1, US 2006/0190030 A1, and US 2008/0172035 A1, all of which are hereby incorporated by reference in their entirety.
Some methods of tissue tightening or compression include threading a tether through two pieces of tissue, applying tension to the tether, and tying off or knotting the tether to maintain the tension. Extra tether material may then be cut and removed. However, the manipulation required when knotting, tying, and/or cutting a tether can be difficult (e.g., because of restricted space). Moreover, certain methods may not adequately maintain tension in a tether. Additionally, some methods of knotting, tying, and/or cutting a tether may be unduly complicated and/or time-consuming.
Accordingly, it would be desirable to provide methods and devices for effectively locking and/or cutting a tether to help maintain tension in the tether. It would further be desirable for such methods and devices to be relatively easy and/or efficient to use.
Described here are devices and methods for locking and/or cutting tethers, such as tethers that have been used to tighten or compress tissue (e.g., by pulling two or more pieces or sections of the tissue together).
Certain variations of the devices described here comprise a locking member (e.g., a tubular member) configured to receive a plug within a lumen, and a plug rotatable within the lumen of the locking member to secure a portion of a tether within the lumen. The exterior surface of the plug may have at least one contour (e.g., a curvature) alignable with the interior surface of a wall portion of the locking member when the plug is at least partially disposed within the lumen of the locking member.
The wall portion of the locking member may comprise first and second apertures alignable for passage of a tether therethrough. The first and second apertures may be located such that a tether passing therethrough would not cross the center of the lumen of the locking member. The plug may be rotatable within the lumen of the locking member by tensioning a tether passing through the lumen of the locking member. The plug may be rotatable by at least about 1° (e.g., at least about 10°, at least about 20°, at least about 45°, at least about 90°, at least about 135°) and/or at most about 180° (e.g., at most about 135°, at most about 90°, at most about 45°, at most about 20°, at most about 10°) to secure a portion of a tether within the lumen of the locking member. The devices may further comprise a pullwire for rotating the plug within the lumen of the locking member. The plug may comprise at least one protrusion (e.g., in the form of at least one ridge) configured to engage a portion of a tether within the lumen of the locking member. In certain variations, the plug may comprise multiple protrusions. For example, the plug may comprise multiple protrusions that form a stepped configuration. In some variations, the plug may comprise a gear-shaped portion, such as a gear-shaped portion comprising a plurality of teeth, with each tooth being progressively longer than the previous tooth.
Certain variations of the methods described here may comprise tensioning a tether when at least a portion of the tether is disposed within the lumen of the locking member. Tensioning the tether may rotate the plug when the plug is at least partially disposed within the lumen of the locking member. In some variations, the methods may comprise rotating the plug when the tether passes through first and second apertures in the wall portion of the locking member. Rotating the plug may secure the portion of the tether between the exterior surface of the plug and the interior surface of the wall portion of the locking member. The methods may further comprise advancing the plug at least partially into the lumen of the locking member.
Some variations of the devices described here may comprise a locking member (e.g., a tubular member) configured to receive a plug and comprising a wall portion comprising first and second apertures and a lumen. The devices may further comprise a plug comprising a third aperture alignable with the first and second apertures for passage of a tether therethrough. The third aperture may be capable of being misaligned from at least one of the first and second apertures to secure a tether passing therethrough. The tether may be secured, for example, between the plug and the wall portion of the locking member. The plug may comprise at least two apertures.
Certain variations of the methods described here may comprise adjusting the relative position of the locking member and the plug when the plug is at least partially disposed within the lumen of the locking member. This may secure a tether passing through the first and second apertures in the wall portion of the locking member and the third aperture in the plug. The methods may further comprise advancing the plug at least partially into the lumen of the locking member. In some variations, the methods may further comprise advancing the tether through the first aperture in the wall portion of the locking member, through the second aperture in the plug, and/or through the third aperture in the wall portion of the locking member. The tether may be secured between the plug and the locking member.
Some variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug comprising first and second apertures. The plug may be configured to at least partially fit within the lumen of the locking member, and the first and second apertures may be configured such that a tether routed therethrough will be secured between the plug and the locking member. In certain variations, the plug may be secured within the locking member prior to securing the tether.
Some variations of the methods described here may comprise advancing the plug at least partially into the lumen of the locking member when the tether has been routed through the first and second apertures to secure the tether between the plug and the locking member. The plug may be secured to the locking member prior to being used to secure a tether. The methods may further comprise advancing the tether through the first and/or second apertures (e.g., while the plug is at least partially disposed within the lumen of the locking member and/or while the plug is secured with the locking member).
Certain variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug comprising at least one protrusion configured to engage a groove or first aperture in the wall portion of the locking member when the plug is at least partially disposed within the lumen of the locking member, where the plug and the locking member are configured to secure a tether therebetween. The protrusion on the plug may be configured to form a snap-fit with the groove or first aperture in the wall portion of the locking member. At least a portion of the plug may be configured to be compressed to fit within the locking member, and then released to form a snap-fit with the locking member. The device may further comprise a pushing member configured to push the plug toward the locking member. In some variations, the plug may comprise a second aperture. The wall portion of the locking member may comprise a third aperture that is alignable with the second aperture of the plug for routing of a tether therethrough.
Some variations of the methods described here may comprise advancing the plug into the lumen of the locking member while a portion of a tether is disposed within the lumen of the locking member, until at least one protrusion on the plug engages the groove or first aperture in the wall portion of the locking member. Advancing the plug into the lumen of the locking member may secure the portion of the tether between the plug and the locking member. The protrusion on the plug may form a snap-fit with the groove or first aperture in the wall portion of the locking member. The methods may further comprise advancing the tether through a second aperture in the plug after the protrusion has engaged the groove or first aperture in the wall portion of the locking member. In certain variations, the methods may comprise advancing the plug into the lumen of the locking member until the plug is entirely disposed within the lumen of the locking member.
Some variations of the devices described here may comprise an elongated member and a tubular member coupled to a distal portion of the elongated member, the tubular member comprising a lumen. The tubular member may further comprise a wall portion comprising at least one non-circular aperture sized and shaped for passage of a tether therethrough, and/or at least one circular aperture sized and shaped for passage of a tether therethrough. The non-circular aperture may be horseshoe-shaped, for example.
Certain variations of the methods described here may comprise routing the tether through the non-circular aperture in the wall portion of the tubular member when the tubular member is coupled to a distal portion of an elongated member. Routing the tether through the non-circular aperture may compress the tether.
Some variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug configured to at least partially fit within the lumen of the locking member. The interior surface of the wall portion may comprise at least one protrusion configured to engage a groove or first aperture in the plug when the plug is at least partially disposed within the lumen of the locking member. Additionally, the plug and the locking member are configured to secure a tether therebetween. The protrusion on the interior surface of the wall portion of the locking member may be configured to form a snap-fit with the groove or first aperture in the plug. The devices may further comprise a pushing member configured to push the plug toward the locking member. In certain variations, the plug may further comprise a second aperture. The wall portion of the locking member may comprise a third aperture that is alignable with the second aperture of the plug for passage of a tether therethrough.
Some variations of the methods described here may comprise at least partially fitting the plug within the lumen of the locking member and engaging the groove or first aperture in the plug with the protrusion on the interior surface of the wall portion of the locking member while a portion of the tether is disposed within the lumen of the locking member. This may, for example, secure the tether between the plug and the locking member. The protrusion may form a snap-fit with the groove or first aperture in the plug. The protrusion may comprise a lip or rim on the interior surface of the locking member. The methods may further comprise advancing the plug into the lumen of the locking member until the plug is entirely disposed within the lumen of the locking member.
Certain variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug comprising a body portion and a head portion comprising a one-way feature. The one-way feature may allow translation of the head portion in a first direction once within the lumen of the locking member, but not in a second direction opposite the first direction. The plug and the locking member may be configured to secure a tether therebetween when the plug is at least partially disposed within the lumen of the locking member. The devices may further comprise a pushing member configured to push the plug in the first direction. The plug may comprise at least one aperture configured for passage of a tether therethrough.
Some variations of the methods described here may comprise advancing the plug into the lumen of the locking member until the plug is at least partially disposed within the lumen of the locking member, to secure the tether between the plug and the locking member.
Certain variations of the devices described here may comprise a locking member configured to receive a plug and comprising a wall portion and a lumen, and a plug comprising a body portion and an anchor portion extending from the body portion, where the plug and the locking member are configured to secure a tether therebetween. The devices may further comprise a pushing member configured to push the plug into the lumen of the locking member.
Certain variations of the methods described here may comprise advancing the plug into the lumen of the locking member until the plug is at least partially disposed within the lumen, to secure a tether between the plug and the locking member. The methods may further comprise advancing the anchor portion into tissue so that the anchor portion engages the tissue.
Some variations of the devices described here may comprise a locking member comprising a first portion having a first surface and a second portion having a second surface, the first and second portions coupled to each other by a hinge (e.g., a living hinge). The locking member may have an open configuration in which the first surface does not contact the second surface and a closed configuration in which the first surface contacts the second surface, and may be configured to secure a tether between the first and second surfaces in the closed configuration. The first and second surfaces may be configured to couple to each other upon contacting each other. For example, the first surface may comprise a groove or aperture and the second surface may comprise at least one protrusion configured to engage the groove or aperture when the first surface contacts the second surface. At least one of the first and second surfaces may be textured. The first and second surfaces may be mirror images of each other.
Certain variations of the methods described here may comprise positioning a tether on one or both of the first and second surfaces when the first surface is not in contact with the second surface, and contacting the first surface with the second surface to secure a portion of the tether between the first and second portions of the locking member. The methods may further comprise coupling the first surface to the second surface, and/or cutting the tether.
Some variations of the devices described here may comprise a plug, a locking member (e.g., a tubular member) comprising a lumen configured to receive a plug, and a coupling member extending between the plug and the locking member to couple the plug to the locking member. The coupling member may be integral with the locking member and/or the plug. The coupling member may comprise a tether. Some variations of the methods described here may comprise advancing the plug at least partially into the lumen of the locking member when a portion of a tether is disposed within the lumen of the locking member to secure the portion of the tether between the plug and the wall portion of the locking member. The tether may pass through at least one aperture in the wall portion of the locking member.
Some of the devices described here may comprise a locking member (e.g., a tubular member) comprising a lumen and a clamping member slidably disposed within the lumen of the locking member. The clamping member may be configured to be advanced from, and withdrawn into, the lumen of the locking member, and may also be configured to clamp a tether when withdrawn into the locking member. In some variations, the clamping member may comprise jaws. Certain variations of the methods described here may comprise clamping a tether with the clamping member, and withdrawing the clamping member into the lumen of the locking member.
Some variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a lumen, and a plug comprising at least two coupling portions configured to couple the plug to the locking member, and to advance the plug into the lumen of the locking member. Certain variations of the methods described here may comprise coupling the plug to the locking member and advancing the plug into the lumen of the locking member to thereby secure a tether between the plug and the wall portion of the locking member. The tether may pass through at least one aperture in the wall portion of the locking member. The methods may further comprise cutting the tether.
Some variations of the devices described here may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug configured to at least partially fit within the lumen of the locking member. The plug may comprise at least one hook configured to engage a groove or aperture in an exterior surface of the wall portion of the locking member. The plug may also be configured to secure a tether against the interior surface of the wall portion of the locking member when the plug is at least partially disposed within the lumen of the locking member.
Certain method variations may comprise advancing the plug at least partially into the lumen of the locking member to secure a tether between the plug and the wall portion of the locking member, and engaging the hook of the plug with the groove or aperture in the exterior surface of the wall portion of the locking member to secure the plug to the locking member. The tether may pass through at least one aperture in the wall portion of the locking member.
Some device variations may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug configured to at least partially fit within the lumen of the locking member to secure a tether between the plug and the wall portion of the locking member. The plug may comprise a first ring portion configured for passage of a tether therethrough, and at least a portion of the first ring portion may be external to the lumen of the locking member when the plug is at least partially disposed within the lumen of the locking member. The locking member may further comprise a second ring portion configured for passage of a tether therethrough.
Some of the method variations may comprise advancing the plug at least partially into the lumen of the locking member to secure a first tether between the plug and the wall portion of the locking member, passing a second tether through the first ring portion, and securing the second tether to tissue of a subject. The locking member may further comprise a second ring portion, and the method may further comprise passing the second tether through the second ring portion. The plug may further comprise a second ring portion, and the method may further comprise passing the second tether through the second ring portion. The method may also comprise securing the second tether to tissue of the subject. The first and second tethers may be the same tether. The first tether may pass through at least one aperture in the wall portion of the locking member.
Some variations of the devices may comprise a locking member (e.g., a tubular member) comprising a wall portion and a lumen, and a plug configured to at least partially fit within the lumen of the locking member to secure a tether between the plug and the wall portion of the locking member. The locking member may further comprise a first ring portion configured for passage of a tether therethrough. The first ring portion may extend from the wall portion of the locking member. The locking member may further comprise a second ring portion configured for passage of a tether therethrough.
Some variations of the methods described here may comprise advancing the plug at least partially into the lumen of the locking member to secure a first tether between the plug and the wall portion of the locking member, passing a second tether through the first ring portion, and securing the second tether to tissue of a subject. The locking member may further comprise a second ring portion, and the method may further comprise passing the second tether through the second ring portion. The method may also comprise securing the second tether to tissue of the subject. The first and second tethers may be the same tether. The first tether may pass through at least one aperture in the wall portion of the locking member.
Some variations of the devices may comprise a tubular member and a locking member comprising a first clamping portion, a second clamping portion, and a hollow region therebetween. The hollow region may be configured to receive at least a portion of the tubular member when the locking member is in an open configuration. The locking member may also have a closed configuration in which the hollow region is not configured to receive any portion of the tubular member and in which the first clamping portion clamps against the second clamping portion. The first clamping portion may comprise a first plurality of teeth and the second clamping portion may comprise a second plurality of teeth that contact the first plurality of teeth when the locking member is in the closed configuration.
Some method variations may comprise advancing a tether through the tubular member while the tubular member is at least partially disposed within the hollow region of the locking member in an open configuration, and withdrawing the tubular member from the hollow region without also withdrawing the tether from the hollow region. The locking member may assume a closed configuration when the tubular member has been withdrawn from the hollow region, such that the locking member clamps down on the tether and thereby secures the tether.
Certain device variations may comprise a tubular member comprising a lumen, and a coil having a primary configuration when at least partially disposed within the lumen of the tubular member. The coil may be configured to assume a secondary configuration when not disposed within the lumen of the tubular member. Additionally, the coil may be configured for advancement of a tether therethrough when the coil is in its primary configuration, and may be configured to secure the tether when the coil assumes its secondary configuration. Some method variations may comprise advancing a tether through the coil while the coil is in a primary configuration and at least partially disposed within the lumen of the tubular member, and translating the coil relative to the tubular member so that the coil exits the lumen of the tubular member and assumes a secondary configuration in which the coil secures the tether.
Certain variations of the devices described herein may comprise an elongated member (e.g., a catheter). Moreover, in some variations of devices comprising a locking member, the locking member may be releasably coupled to a distal portion of the elongated member. Certain method variations may comprise decoupling the locking member from the distal portion of the elongated member (e.g., by applying force to the locking member with a pushing member). Some variations of the devices described herein may comprise a cutting member configured to cut a tether. Methods may comprise cutting one or more tethers.
Certain device variations may comprise a plug comprising a body with a proximal portion and a distal portion, a locking member comprising a proximal portion and a distal portion, and a cutting member that is coupled to or integral with the plug body. The locking member may further comprise a lumen extending at least partially therethrough, where the lumen is sized and shaped to receive the plug. In some variations, the plug may form a friction fit with the lumen of the locking member. The locking member may also comprise a wall portion with at least one aperture that is sized and shaped for passage of a tether therethrough. In some cases, the locking member may alternatively or additionally comprise a stop shoulder in the distal portion of the lumen. The cutting member may be located in the proximal or distal portion of the plug, and/or may surround at least a portion of the external surface of the plug body. In certain variations, the plug may comprise a collet comprising a cutting member. Some variations of devices may further comprise a pushing member that may be configured to push the plug into the lumen of the locking member. In certain variations, the pushing member may comprise a cutting member. In some such variations, the pushing member may be used both to push a plug and to cut a tether.
Certain device variations may comprise a plug comprising a body with a proximal portion and a distal portion, and a locking member comprising a proximal portion, a distal portion, and a lumen extending at least partially therethrough, where the locking member may be configured to receive the plug and form a friction-fit with the plug within the lumen. In some variations, the locking member may comprise a first cutting member. The locking member may further comprise a wall portion comprising at least one aperture sized and shaped for passage of a tether therethrough. In some variations, the first cutting member may be located in the distal portion of the locking member, and may have an aperture sized and shaped for passage of a tether therethrough. In certain variations, the first cutting member may surround at least a portion of an internal surface of the lumen of the locking member.
In certain device variations, the plug may further comprise a second cutting member that may be coupled to or integral with the plug body. The second cutting member may substantially contact the first cutting member when the plug is received within the lumen of the locking member. The device may also include a tether guide that may be configured to draw a tether passing through the lumen of the locking member transversely with respect to a longitudinal axis of the lumen.
Some variations of devices may comprise a plug comprising a body having proximal and distal portions, a locking member comprising proximal and distal portions and a lumen extending at least partially therethrough, and a pushing member comprising a plug-contacting portion and a cutting member. The locking member lumen may be configured to receive and form a friction-fit with the plug, and the pushing member may be configured to push the plug into the lumen of the locking member. The locking member may further comprise a wall portion comprising at least one aperture sized and shaped for passage of a tether therethrough. In some variations, the cutting member may be in the form of at least one shear edge on the body of the pushing member, and/or may be arranged symmetrically with respect to the plug-contacting portion of the pushing member. The shear edge or edges may also surround at least a portion of the external perimeter of the pushing member. The pushing member may have a first configuration in which the cutting member is covered and a second configuration in which the cutting member is uncovered or exposed.
Some variations of methods described here may comprise advancing a plug comprising a cutting member partially into a lumen of a locking member to secure a tether passing through the lumen, and advancing the plug further into the lumen to cut the tether. The tether may be secured between a wall of the plug and a wall of the lumen.
Certain variations of the methods described here may comprise advancing a plug partially into a lumen of a locking member to secure a tether passing through the lumen, and advancing the plug further into the lumen of the locking member to cut the tether. The tether may be cut, for example, by coming into contact with a cutting member disposed in the lumen of the locking member.
Some method variations may comprise advancing a plug comprising a first cutting member partially into a lumen of a locking member to secure a tether between a wall of the plug and a wall of the lumen, and advancing the plug further into the lumen of the locking member, such that the first cutting member contacts a second cutting member disposed within the lumen of the locking member, and thereby cuts the tether.
Some method variations may comprise using a pushing member to advance a plug partially into a lumen of a locking member to secure a tether passing through the lumen, where the pushing member comprises a cutting member. The tether may be secured, for example, between a wall of the plug and a wall of the lumen. The methods may also comprise advancing the pushing member until the cutting member contacts a portion of the locking member (e.g., the distal or proximal portion) and cuts the tether. In certain variations, the cutting member may contact and cut the tether as it exits at a shoulder of the proximal portion of the locking member.
Some method variations may comprise using a pushing member coupled to a plug to advance the plug partially into a lumen of a locking member to thereby secure a tether passing through the lumen. The tether may be secured, for example, between a wall of the plug and a wall of the lumen. In certain variations, the pushing member may comprise a cutting member. In such variations, the methods may, for example, further comprise advancing the pushing member until the cutting member contacts a portion of the locking member and cuts it. In some variations, the cutting member may cut the tether at a side aperture of the lumen of the locking member where the tether exits. In certain variations, the cutting member may contact and cut the tether as it exits at a shoulder in the lumen of the locking member.
Certain method variations described here may comprise using a pushing member to advance a plug partially into a lumen of a locking member and to thereby secure a tether passing through the lumen of the locking member. The tether may be secured, for example, between a wall of the plug and a wall of the lumen. In some variations, the locking member may comprise at least two apertures sized and shaped for passage of a tether therethrough. In certain variations, a cutting member may be coupled to the plug, and the methods may further comprise pushing the plug to advance the cutting member to contact a shoulder of the locking member and cut the tether.
Some method variations may comprise using a first pushing member to advance a plug partially into a lumen of a locking member to secure a tether passing through the lumen, where a proximal portion of the plug is coupled to an extendable cutting member. In some such variations, a second pushing member may be used to advance the extendable cutting member and thereby cut the tether.
Described here are methods and devices for locking and/or cutting a tether (e.g., after the tether has been tensioned to tighten or compress tissue). The devices and methods described here may be used in any appropriate procedure and location for which such tether locking and/or cutting is desired. While not so limited, the devices and methods described here may be used, for example, in Natural Orifice Transluminal Endoscopic Surgery (“NOTES”) procedures, heart valve repair procedures (e.g., mitral valve annulus repair procedures), and/or endoscopic procedures (e.g., laparoscopy and/or arthroscopy). The devices and methods described here may be used in non-invasive or minimally invasive procedures (e.g., minimally invasive percutaneous procedures), or in invasive procedures, such as invasive surgeries (e.g., open-heart surgeries), as appropriate. Some of the devices described here may be used to lock or cut a tether, while other devices described here may be used to both lock and cut a tether. Specific examples of methods and devices will now be described in further detail below.
Turning now to the figures,
The above-described process may be used in a wide variety of tissues. For example, in some variations, anchors that are connected to each other by a tether may be deployed into tissue in the region of a mitral valve annulus. The tether may then be pulled upon to provide a cinching effect, which restructures the mitral valve annulus (e.g., to reduce mitral valve regurgitation). Thereafter, a locking device may be used to lock the tether in place, thereby maintaining the cinching effect. Finally, a cutting device may be used to remove excess portions of the tether. Mitral valve repair is described, for example, in U.S. Patent Application Publication Nos. US 2006/0122633 A1, US 2006/0190030 A1, US 2008/0172035 A1, and US 2008/0177380 A1, all of which are hereby incorporated by reference in their entirety.
In certain variations, the above-described process may be used in a heart reshaping procedure, such as a ventricular remodeling procedure that is used to repair a heart experiencing valve dysfunction. Heart repair procedures, including heart reshaping procedures, are described, for example, in U.S. patent application Ser. No. 12/253,792, filed on Oct. 17, 2008, which is hereby incorporated by reference in its entirety.
As discussed above, the devices and methods described herein may be used, as appropriate, in any of a number of different sites within the body and/or to assist with any of a number of different types of procedures. As an example, the devices and methods described herein may be used in NOTES procedures. As another example, the devices and methods described herein may be used in heart procedures other than those involving mitral valve repair. For example, they may be used to repair an aortic valve or a tricuspid valve, or to secure a prosthetic heart valve, or they may be used in heart ports. As another example, the devices and methods may be employed in a procedure in which one or more tethers are used to reinforce an annuloplasty ring. Additionally, the devices and methods described herein may be used, for example, in a variety of open surgical procedures.
Anchors for use with the methods and devices described here may be any suitable anchor. The anchors may be made of any suitable material, may be any suitable size, and may be of any suitable shape. The anchors may be made of one material or more than one material. Examples of anchor materials include super-elastic or shape memory materials, such as nickel-titanium alloys and spring stainless steel. Examples of anchor shapes include T-tags, rivets, staples, hooks (e.g., C-shaped or semicircular hooks, curved hooks of other shapes, straight hooks, barbed hooks), multiple looped anchors, clips, and the like. The anchors may be configured to self-expand and self-secure into tissue, but need not be configured in such a fashion. Multiple anchors of the same shape may be used, or multiple anchors having different shapes may be used. Similarly, multiple anchors of the same size may be used, or multiple anchors having different sizes may be used. Illustrative examples of suitable anchors are described in more detail, for example, in U.S. Patent Application Publication Nos. US 2005/0273138 A1, US 2008/0045982 A1, US 2008/0045983 A1, US 2008/0051810 A1, and US 2008/0051832 A1, and US 2008/0058868 A1, all of which are hereby incorporated by reference in their entirety. Moreover, while anchors have been described, any other type of suitable fasteners or implants (e.g., leads, electrodes, etc.) may be used with one or more of the devices and/or methods described here. Additionally, some procedures employing the devices and methods described herein may not involve any anchors or other types of fasteners. As an example, certain variations of the devices and methods described here may be used to lock and/or cut a suture that has been sewn through tissue.
Tethers may be one long piece of material or two or more pieces, and may comprise any suitable material, such as suture, suture-like material, a DACRON® polyester strip, high-density polyethylene (HDPE), or the like. In some variations, tethers may be in the form of monofilament or multifilament textile yarns or fibers. Tethers may also have various braided textile configurations. While a procedure for tightening or compressing tissue using one tether has been described, other procedures for modifying tissue may involve the use of multiple tethers, such as two, three, four, five, or ten tethers. When multiple tethers are used, at least some of the tethers may be associated with (e.g., fixedly attached to) different anchors, and/or at least some of the tethers may be associated with (e.g., fixedly attached to) the same anchor. The devices and methods described herein may apply to single tether procedures, or to multiple tether procedures. As an example, a locking and/or cutting device may be used to lock and/or cut more than one tether, either simultaneously, or at different times.
As described above, after one or more anchors have been secured and the tether has been tensioned, the tether may then be locked or secured into place to maintain the tension (and, therefore, the cinching effect). Different variations of locking devices are described in further detail below.
For example,
While the device shown in
As shown in
Until the locking element is secured, the device may be moved along the tether (e.g., by sliding), or the tether may be pulled through the device. Thus, the tether may be used to provide a cinching effect by sliding the device distally down the tether. The apertures through the device shown in
The tether may be threaded or coupled to the device during manufacturing or by the user. For example, and as described further below, a lasso may be threaded through the apertures in the device. The lasso may then be used to engage the tether and to thread the tether through the apertures (e.g., by pulling on the opposite end of the lasso).
In some variations, the device may be slid along the tether until the tether has been pulled by the desired amount through the anchors, at which point the tether may be secured into position using the locking element. For example, and as described above, tether (210) of
In some variations, a device may comprise a plug and a hollow locking member, at least one of which comprises one or more features that limit the likelihood of the plug being released from the hollow locking member. For example, the plug and/or hollow locking member may include adhesive, glue, or cement, and/or may be at least partially deformable so that once the plug has been inserted into the hollow locking member, the plug is retained within the locking member. As an example, the plug may comprise a material which is compressible or elastic to aid in locking the plug into the locking member. In certain variations, the plug may have polygonal (e.g., hexagonal) sides that interact with the inner surface of the locking member. The plug may be solid or hollow. The plug may have bumps, dimples, ribs, grooves, or holes on its surface to increase friction with the tether. The locking member may also include or comprise one or more structures (e.g., rims, brackets, etc.) to help hold the plug in the locked configuration. In some variations, the locking member itself may alternatively or additionally be polygonal in cross-section. In certain variations, the plug and the locking member may have corresponding geometries, as described below. In some variations of devices, the plug and the locking member may each include different features that enhance the retention of the plug in the locking member.
The device shown in
As described above, a locking element may be releasably coupled to the rest of a device. Any appropriate method may be used to provide such a releasable coupling. In some variations, the locking element (or a portion thereof) may include a releasable coupling region, such as a region that can be separated or broken to release the locking element from the rest of the device. As an example, a locking element may be frangibly connected to the rest of a device, and may be decoupled from the device by breaking the frangible connection. For example, a locking element may be fused to another portion of the device (e.g., a distal portion of an elongated member). The fused region may later be broken to decouple the locking element from the other portion of the device. The amount of heat and/or pressure that is applied during the fusion process, as well as the number of fused regions and their locations, may be selected so that a specific amount of force can be applied to the fused regions to break them.
Different regions of a locking device may comprise different materials, or may comprise the same material. In some variations, a locking device may comprise a locking element formed of a first material, another portion formed of a second material, and a fused region between the locking element and the other portion that is formed of a third material (or combination of materials). Using different materials for different regions of a locking device may be advantageous if the different regions have different material requirements. For example, a more distal region of the device may be formed of one or more materials that provide relative flexibility, while a more proximal region may be formed of one or more materials that provide relative stiffness, or vice-versa. Moreover, while locking devices comprising one or more fused regions and multiple different materials have been described, some variations of locking devices may comprise fused regions and may be formed entirely of one material or combination of materials, and other variations of locking devices may comprise multiple different materials (e.g., two, three, four, or five different materials) without comprising any fused regions.
In certain variations, a locking device may comprise a detachable locking element that is coupled to the rest of the device by a structurally weakened region. The structurally weakened region may, for example, be scored, etched, perforated, fractured, creased, slotted, and/or dimpled. An example of a perforated region (220) is shown in
In some variations, a locking element may be releasably coupled to another portion of a locking device via at least one adhesive and/or a friction fit, so that the application of a certain amount of force causes the locking element to decouple from the other portion of the locking device. Additional non-limiting methods of releasably coupling a locking element to another portion of a locking device include fusing, brazing, soldering, and snap-locking. In some variations of locking devices, two or more different releasable coupling methods may be used in conjunction with each other.
As described above, in certain variations, a locking element may be controllably decoupled from the rest of a device by applying a force. Force may be applied in any appropriate manner (e.g., pushing on a pushing member, hydraulic force (using saline, water, or the like), magnetic force, pressurized gas, etc.). For example, the same pushing member (215) of
The amount of force required to decouple a locking element from the rest of a device may be predetermined. In variations where the same force applicator (e.g., a pushing member, fluid line, magnet, etc.) is used both to lock the tether and to decouple the locking element, the force required to decouple the locking element may be greater than the force required to secure the locking element and thereby lock the tether. For example, a device may be configured for its locking element to decouple after the application of greater than about 2 lbs of force, greater than about 3 lbs of force, greater than about 4 lbs of force, greater than about 5 lbs of force, greater than about 10 lbs of force, greater than about 20 lbs of force, or between about 2 lbs and about 5 lbs of force. The amount of force that is needed to decouple a locking element from the rest of a locking device can depend on any of a number of different factors. Such factors may include, for example, the thickness of the coupling region, the material or materials that form the coupling region, and/or the location of scoring, perforations, or other weakened points in the coupling region. In some cases, the amount of force that is required to decouple a locking element from the rest of a locking device, as well as the way in which the force is applied to decouple the locking element, may be controlled to prevent damage to the locking element, the tether, the anchors, and/or the surrounding tissue.
While the application of force to decouple a locking element from the rest of a locking device has been described, other decoupling methods may alternatively or additionally be employed. As an example, a locking element may be decoupled by cutting a joint between the locking element and the rest of the device using, for example, a cutter. In some variations, the cutter may be in the form of a shearing blade that slides to shear the joint between the locking element and the rest of the device. In certain variations, a cutter that cuts the connection between a locking element and the rest of a locking device may also be used to cut a tether being secured by the locking device. For example, the cutter may cut both the tether and the joint in a combined manner, thus completely releasing the locking element with the tether severed.
It should be understood that any of the methods and device components described here for actuating a locking device (e.g., threading a tether through the locking device, advancing a plug into a locking member of the locking device, etc.) and/or decoupling one or more components of the locking device from the rest of the locking device may be employed with any of the other locking devices described here, if suitable to do so.
While certain methods and devices have been described above, other methods and/or devices may be used to couple and/or decouple a locking element or locking member and another portion of a locking device. For example,
A sheath (306) surrounds coupling tube (302), as well as a portion of locking member (304). However, in some variations, a sheath may cover the entirety of a locking member, and may even extend distally beyond the locking member. Moreover, in certain variations, a sheath may surround only a portion of a coupling tube. Sheath (306) helps to couple coupling tube (302) to locking member (304) by compressing the coupling tube to the locking member. Additionally, locking member (304) includes a shoulder (308), and coupling tube (302) is configured to latch onto shoulder (308) when sheath (306) compresses coupling tube (302) to locking member (304). As shown, coupling tube (302) comprises a shoulder (311) that latches to shoulder (308). While shoulders (308) and (311) are shown as generally angular, in some variations, a locking member shoulder and/or a coupling tube shoulder may be ramp-shaped, or may have any other suitable shape. A ramp-shaped coupling tube shoulder may, for example, provide for relatively easy decoupling of the coupling tube from the locking member when such decoupling is desired.
Locking device (300) is configured such that if sheath (306) is proximally retracted, locking member (304) is decoupled from coupling tube (302). However, in certain variations, a sheath may be proximally retracted, while a coupling tube and locking member are distally pushed upon, in order to decouple the locking member from the coupling tube. Alternatively or additionally, the coupling element and locking tube may be distally pushed upon before and/or after the sheath is proximally retracted. Any other suitable methods for decoupling the locking member from the coupling tube may also be employed.
As shown in
During use of locking device (300), a tether (not shown) may be threaded through locking member (304) and coupling tube (302). Any appropriate method may be used to thread the tether including, for example, one or more of the methods described below. As an example, a lasso may be used to capture the distal end of the tether, and to thread the tether first through aperture (305), and then through coupling tube (302). In some methods, the locking device may be advanced along the tether to a desired position. As shown in
Referring now to
Referring finally to
Although only a few of the ways in which a locking member or locking element may be releasably coupled to a device have been described, it should be understood that any appropriate coupling may be used, including snap-fits and other coupling mechanisms (e.g., threads, etc.). Additionally, the couplings described herein may be readily scaled in size for use even with applications that may require very small locking members or locking elements (e.g., for use in percutaneous applications and/or surgical applications, such as microsurgical applications). Locking members or locking elements that are releasably coupled to devices are described, for example, in U.S. Patent Application Publication No. US 2008/0172035 A1, and in U.S. patent application Ser. No. 12/253,885, filed on Oct. 17, 2008, and U.S. patent application Ser. No. 12/480,568, filed on Jun. 8, 2009, each of which is hereby incorporated by reference in its entirety.
Locking devices including plugs and tubular components having a relatively fixed shape or configuration have been shown. However, in some variations, a locking device may include a plug and another component that does not have a relatively fixed shape or configuration. For example, a locking device may include a plug and an adjustable sleeve configured to be fitted over the plug to secure a tether therebetween. As an example,
Sleeve (402) may be formed of, for example, one or more elastomeric materials and/or metal alloys (e.g., Nitinol foil). Alternatively or additionally, plug (406) may be formed of, for example, one or more polymers, such as nylon, polycarbonate, polyetheretherketone (PEEK), and/or one or more other polymers suitable for implantation in a body of a subject. The sleeve may be configured to fit over a portion of the plug, or to fit over the entire plug. Additionally, in some variations, multiple sleeves may be used with a single plug. For example, a first sleeve may be fitted over a plug to secure a tether therebetween, and then a second sleeve may be fitted over a second sleeve to secure the same tether (or a different tether) therebetween.
In some variations, a sleeve may comprise a wall portion having one or more apertures sized and shaped for passage of a tether therethrough. The sleeve may be maintained in a straight or taut configuration as a tether is routed through the apertures and a plug is pushed into the sleeve to secure the tether therebetween. In certain variations, the sleeve may be maintained in a straight or taut configuration using a sheath (e.g., as described above with reference to
Locking device plugs may be configured to be fixedly positioned within a hollow portion of a locking member, or to be movably positioned within a hollow portion of a locking member. For example, in some variations, a locking device may comprise a hollow locking member and a rotatable plug configured to rotate within the hollow locking member. As shown in
Referring now to
As shown in
In some variations, a relatively low plug force may be used to plug locking tube (502) with plug (512). Even though a relatively low plug force may be used, the resulting lock force may be relatively high. Thus, in certain variations, a tether may be locked very securely by applying minimal force to a locking device that locks the tether.
Other variations of plugs and/or locking members may also be used. As an example,
In certain variations, a locking device may lock a tether using one or more methods that are different from those described above. The method or methods may be used in addition to, or as an alternative to, tensioning a tether to rotate a rotatable plug and thereby lock the tether.
For example,
In use, plug (593) may be advanced into lumen (533) of locking member (586), and a tether (not shown) may be routed through the locking member when the locking member is in its unlocked position. It should be noted that in some variations, a locking device may comprise a locking member and a rotatable plug that are preassembled. Locking member (586) includes two apertures (587) and (591) configured for passage of a tether therethrough, and plug (593) also has a slot (588) configured for passage of a tether when the locking device is in its unlocked position.
After a tether has been routed through locking device (585), pullwire (589) may be actuated (e.g., by pulling on the pullwire) to transition locking device (585) into its locked position. Plug (593) includes a notch (531) (
As discussed above, in certain variations, a locking device may comprise a plug having one or more grooves, apertures, etc. configured for passage of a tether therethrough. As an example,
Plugs may comprise any of a number of different features suitable for routing of a tether around, through, and/or against the features. As an example,
While a plug having one channel therethrough has been shown, plugs may have any suitable number and combination of apertures (e.g., holes, channels), grooves, etc. For example,
Locking tubes, plugs, and other locking device components may have any appropriate size, shape, and/or configuration. For example,
In some variations, plug (1402) and locking member (1404) may be preassembled to avoid having loose parts. In other words, the plug and the locking member may be preassembled as a single unit having components that can slide with respect to each other, via engagement between protruding end portion (1418) on plug (1402) and corresponding snap-fit end portions (1422) and (1424) on locking member (1404). In certain variations, a ratcheting feature or additional snap-fits may be implemented to ensure that the plug and the locking member are secured in the final configuration.
Additional variations of methods that include routing a tether through an aperture in a plug may be employed. As an example, in some variations, a tether may be routed through a lumen or channel within a body of a plug, and a sheath or sleeve may then be pushed over the plug to compress the tether, thereby securing the tether.
Other locking member configurations may also be used. For example,
During the initial advancement of plug (1604) into semi-tubular locking member (1602), groove (1606) aligns with apertures (1608) and (1612), and the tip (1616) of plug (1604) aligns with apertures (1610) and (1614). At this time, plug (1604) may be prevented from being loose within the body of the subject (i.e., the plug may be secured within locking member (1602)). At the same time, tether (1620) is allowed to move freely within the locking device because there is sufficient room for the tether to be pulled through the space between plug (1604) and locking member (1602) and through apertures (1608), (1610), (1612), and (1614). The tether fills the circumferential space formed between groove (1606) and locking member (1602) sufficiently to still allow tether movement while not allowing the plug to disengage from the locking member. To lock tether (1620), the plug may be further advanced into the semi-tubular locking member. While a semi-tubular locking member is shown, in certain variations, a plug may engage with a tubular locking member (as shown above, for example), or a locking member having any other appropriate shape or configuration.
As described above, in some cases, a locking device may comprise at least two components that engage with each other by forming a snap-fit to lock a tether. As an example,
While certain variations of snap-fitting plugs have been shown and described, other suitable configurations may also be used. Additionally, other suitable configurations of locking devices in general may be used.
For example, different types of locking tubes may be used in tether-locking devices. Locking tubes may have any suitable number of apertures along the locking tube body. Moreover, the apertures may be in any appropriate location, including but not limited to being located within a wall portion of the locking tube body, and/or on either end or both ends of the locking tube body. The apertures may be sized and shaped for the passage of one or more tethers therethrough. The location, size, and number of apertures in a locking tube may vary depending, for example, on the size of the tether to be threaded through, the anticipated level of tension that may be sustained by the tether, the geometry of the corresponding plug, and other related factors. In some variations, the location, size, and number of apertures may be selected to withstand the forces that may result from tensioning the tether (e.g., pressure, tensional, shear), so that the locking tube is unlikely to collapse under stress.
Other variations of locking tubes may include apertures in other locations, which may be aligned in different configurations. For example,
The characteristics of a locking tube's apertures, such as their diameters, relative locations, and/or methods of formation, may be modified as desired (e.g., to ensure that the locking tube is able to sustain the pressure of a particular tensioned tether during use). While certain variations of locking tubes have been shown and described, other suitable configurations may also be used.
In some variations, a locking device plug may comprise one or more one-way features that help to engage the plug with one or more other locking device components. As an example,
Other plug and locking member configurations are possible. As an example,
As another example,
As noted above, locking device plugs may have any suitable size, shape, and/or configuration. For example,
Locking member (2502) comprises a wall portion (2520) having an aperture (2522) therethrough suitable for passage of such a tether. Wall portion (2520) also comprises an aperture (2560) at the distal end (2562) of locking member (2502). In certain variations, aperture (2560) may be sized and shaped for routing of a tether therethrough. In some cases, locking device (2500) may be pre-assembled, such that plug (2506) is coupled to locking member (2502) prior to use. During use, the plug may, for example, be further advanced into the locking member to secure a tether. The pre-assembling of the plug and the locking member may, for example, prevent the plug from becoming displaced from the target site when the locking device is in use.
Additional different configurations of plugs are shown in
The head portions of the plugs shown in
While certain plug configurations have been shown, others are possible. For example, in some variations, a plug may have a pointed tip that is off-center with respect to a longitudinal axis of the plug. The off-center location of the tip may, for example, help prevent the plug from inadvertently spearing a tether crossing the center of a locking tube lumen.
Plugs may be formed of any suitable material, and in some cases, a plug may be formed of a swellable and/or otherwise expandable material. For example, a plug may be formed of a hydrogel that absorbs water over time to provide enhanced locking. In some variations, a nylon plug may be employed (e.g., with a Nitinol locking tube).
In certain variations, a plug may comprise one or more anchor portions. The anchor portions may, for example, help to anchor the plug to body tissue during use. As an example, the plug may be used to lock a tether that is coupled to multiple anchors. The anchors may be embedded in tissue, and the anchor portion of the plug may also be embedded in tissue. This may, for example, limit the likelihood of the plug becoming displaced from the target site and traveling to a non-target area. As an example,
In some variations, a tether may comprise one or more features that help the tether to engage body tissue. For example.
In certain variations, a plug may comprise two or more portions that are capable of being closed toward each other to engage one or more tethers therebetween. For example,
In certain variations, one or more of the portions may have a modified surface and/or one or more other features that help to maintain the coupling between the portions. For example,
While the first and second portions of the plugs shown in
In certain variations, a locking device may comprise a plug and a locking member that are coupled to each other. The locking member and the plug may be coupled in any of a number of different ways. As an example,
As shown in
Locking devices comprising components that are coupled to each other by at least one coupling member may have any suitable configuration. For example,
A coupling member may be attached to at least two components of a locking device at any appropriate location on the components. For example,
Another variation of a locking device (3700) is depicted in
In certain variations, one or more components of a locking device may comprise at least one hook configured to engage one or more other components of the locking device. For example,
As described above, in certain variations, one or more components of a locking device may comprise at least one tether ring configured for passage of a tether therethrough. For example,
While locking members comprising tether rings have been shown, other components of locking devices may alternatively or additionally include one or more tether rings. For example,
While locking devices comprising plugs and various locking member configurations have been shown, in some cases, other types of locking devices may be used to secure one or more tethers. For example,
Referring now to
Locking device (4000) may be deployed using, for example, a catheter comprising an outer sheath, a pushing member, and a tubular member that is a slidable element within a lumen of the pushing member. The locking device may initially be constrained within the catheter. When the tubular member is retracted, the frictional forces between the tubular member and the locking device may pull the locking device proximally up against the pushing member. This may prevent further movement of the locking device, and the tubular member may slide proximally, thereby causing locking device (4000) to clamp down on a tether. Subsequently, the pushing member may be pushed distally to release the locking device from the catheter.
While locking member (4004) comprises clamping portions (4006) and (4008) having a particular configuration, locking members comprising clamping portions with different configurations may also be used. For example,
Referring to
During use, tether (4208) is drawn into locking device (4200) through release tube (4209) using snare (4207). The locking device is then advanced over tether (4208) until collet (4201) reaches the desired locking location. At the desired locking location, tether (4208) may be tensioned to provide a cinching effect, and sleeve (4203) may be pushed over collet (4201) using a pushing member (4205). When sleeve (4203) comes into contact with a stop (4210) on collet (4201), pushing member (4205) retracts to expose an interlocking collet feature (4206) and the distal end of a pull tube (4202). Release tube (4209) may then be advanced distally, causing collet (4201) to decouple from the rest of locking device (4200).
A method of using locking device (4200) to lock a tether is shown more in more detail in
While a certain variation of a collet has been shown and described, any other suitable variations may be used. As an example, in some variations, a collet may be releasably coupled to a locking device by threading on the collet and/or one or more other components of the locking device. The number of threads on the collet and/or other component or components may be selected to minimize the amount of turning required to release the collet, and may be, for example, one to three threads. In variations in which threading is used, the collet may be decoupled from the locking device (e.g., after the collet has been used to lock a tether) by rotating the locking device to release the collet. In certain variations, a collet may have a slotted key feature that couples the collet to the rest of a locking device (e.g., in which a protrusion on the collet keys into a slot on one of the other components of the locking device, or vice versa). In some variations, and referring now to
Some variations of locking devices may comprise a collet deployment mechanism (e.g., the distal portion of locking device (4200)) comprising one or more relatively rigid components. Alternatively or additionally, a collet deployment mechanism may comprise one or more relatively flexible components. A relatively rigid collet deployment mechanism may, for example, exhibit high structural integrity, which may be particularly advantageous for pushing the collet components. In some cases in which a relatively rigid collet deployment mechanism is used, the collet deployment components may be relatively short in length. As the length of the components decreases, the flexibility of the locking device and the maneuverability of its distal portion may increase.
One variation of a collet deployment mechanism is shown in
Another variation of a collet deployment mechanism is depicted in
Interlocking collet feature (4411) is also shown in
Other modifications to the collet geometry and/or interlocking collet feature may be made to reduce the length of the distal portion of the locking device. For example, some variations of collets may not have a distal cap (the dome-shaped structure in
Modifications to various collet and/or sheath dimensions may also be made to adjust the compressive force on a tether threaded through the collet. As an example,
Other features of the collet may alternatively or additionally be modified to effect different levels of compressive force on a tether threaded through the collet via slit (4425). Moreover, certain modifications may help to secure and lock a tether within slit (4425) of the collet. For example, a material with increased surface friction may be used to form the collet, the surface friction in the slit may be increased, the tether may be coated or otherwise modified to increase the surface friction on the tether, and/or the tether may have a relatively large diameter. Modifications such as these or other appropriate modifications may be made to the collet, sheath, and/or tether to ensure that the compressive force of the collet on the tether (or other force(s) relevant for retaining a tether in the collet) is sufficient to withstand the forces sustained during use, which may be, for example, approximately 2 lbs.
Collets that are used to clamp a tether may have any appropriate configuration. As shown above, in some variations, a sleeve may be used to essentially clamp a collet over a tether. For example,
In some variations, locking device (4500) may also comprise an elongated tubular member (4506), and both collet (4502) and sleeve (4504) may be contained within the elongated tubular member, as shown in
As shown in
During use, a tether (4560) may be threaded through collet (4552), into collet coupler (4556), and through slit (4564). After the tether has been threaded through the collet and the collet coupler, the collet and collet coupler may be slid distally (e.g., toward a terminal anchor in a mitral valve repair procedure). Locking device (4550) also comprises a pushing member (4562) and a sleeve (4554). Pushing member (4562) may be used to push sleeve (4554) distally so that collet (4552) is seated in aperture (4555). In some variations, the diameter of collet (4552) may be slightly larger than the diameter of aperture (4555), such that when collet (4552) is retained in sleeve (4554), it is compressed. The compression of the collet may act to pinch tether (4560) and thereby secure it in the collet. During and/or after securement of the tether, pushing member (4562) may be retracted proximally. Collet (4552) may then be disengaged from collet coupler (4556) by, for example, compressing spring (4558) while sliding protrusion (4559) out from curved grooves (4551). This may allow for controlled and reversible engagement between collet (4552) and collet coupler (4556). For example, when the spring is compressed, collet (4552) may be moved with respect to collet coupler (4556) and when the spring is expanded, collet (4552) may be retained by collet coupler (4556) via protrusion (4559). While one variation of a retractable spring system is shown, in some cases, other suitable variations of retractable spring systems may be used to control the engagement between collet (4552) and collet coupler (4556).
While sleeves have been shown and described, in some variations, a collet may be used to lock a tether without the use of a sleeve. Such a collet may, for example, be temporarily expanded to receive a tether, and then allowed to collapse back onto the tether to lock the tether. As an example,
Collet (4602) has an open configuration (
Still other variations of tether locking devices may be used. In some variations, a locking device may comprise a one-piece locking component that is slid over a tether and then crimped into place with the tether trapped inside. The locking component may be formed of, for example, a malleable metal, such that the locking component may be collapsed by drawing the locking component into a catheter with a smaller inner diameter. As another example, a polymer locking component may be configured to snap together and lock when it is drawn into a catheter. In certain variations, a locking component may be formed of a shape-memory alloy (e.g., Nitinol), such that the locking component may be held open during delivery and then allowed to collapse onto a tether to lock the tether.
In some variations, a locking component may be in the form of a self-collapsing tube that is propped open by a catheter shaft. In use, the tube may be pushed off the catheter shaft to allow the tube to collapse and clamp on a tether. The tube may be made of, for example, a spring-like material (e.g., Nitinol) or any other suitable material. In some variations, the tube may initially have an elliptical cross-section. In certain variations, the tube may comprise a liner made of one or more polymers (e.g., polyurethane) that fill up any gaps inside the tube. The tube may be propped open into a more circular shape by the catheter shaft. A tether may run through the inner lumen of the catheter shaft freely so that the tube may be advanced over the tether to the target locking site by advancing the catheter shaft over the tether. At the target locking site, tension may be applied to the tether to provide a cinching effect, and the tube may then be pushed off the delivery catheter shaft, leading to its collapse onto the tether.
In some variations, a tether-locking effect may be achieved by deploying a spring element that expands outward to clamp a tether against an outer tube. For example, a locking device may comprise an inner spring element disposed within an outer tube, with a catheter shaft propping up a space between the inner spring element and the outer tube. During use, a tether may be routed through the inner lumen of the catheter shaft, and the tube-spring combination may be pushed off the end of the catheter shaft to remove the compressive effect of the catheter shaft and allow the spring to expand outward, thereby clamping the tether against the outer tube.
While certain variations of tether-locking tubular members have been shown, additional variations of tubular members may be used to lock a tether. As an example,
While
Other variations of locking devices comprising different portions that close toward each other to lock a tether may be used. For example,
In some variations, and as shown schematically in
In certain cases, multiple (i.e., at least two) tethers may be wound together and effectively tangled to provide a locking effect. This may be achieved, for example, by temporarily coupling the tethers to a winding feature on a catheter, such as a Y-shaped rod with each tether coupled to a leg. The rod may then be rotated (e.g., on multiple axes) to wind the tethers together.
In some variations, a tether may have a feature that effectively locks the tether in place. As an example,
Some methods may include clamping a tether to lock the tether. As an example,
Still other locking devices may be employed. For example,
In some methods, it may be necessary to load a tether into a device, such as a locking device, a cutting device, or a combination locking and cutting device. Various methods and/or devices may be used to accomplish this loading.
As an example, and referring now to
While the use of tether-loading devices to load tethers into locking devices has been described, such tether-loading devices may have other uses, such as to load tethers into cutting devices or combination locking and cutting devices (described in further detail below). Other uses may also apply. Moreover, any of the features described herein with respect to a locking device may also be used, as appropriate, in a cutting device, or in a combined locking and cutting device.
Additionally, while certain variations of tether-loading devices have been described, other variations of devices may be used to load tethers into locking devices and/or other types of devices. For example, in some variations, a tether may be loaded into a device, such as locking device or a cutting device, using magnetic components. As an example,
During use, tether (5824) may, for example, be threaded through locking device (5826) by inserting the tether through aperture (5827) and advancing the tether, which may be guided by the attraction between first and second magnetic components (5822) and (5821). While tether (5824) and locking device (5826) are shown as each having one magnetic component in a particular position, other variations of locking devices and tethers may have different numbers and/or arrangements of magnetic components. In some variations, the magnetic components and their configurations may be selected based on the desired routing of a tether through a locking device. Moreover, the path of a tether through a locking device may be determined using both attractive and repulsive magnetic forces.
In some circumstances, it may be inappropriate or undesirable to introduce a magnetic material into a patient. In some such cases, and as shown in
Tethers may be routed through a device, such as a locking device or a cutting device, in any of a number of different configurations. For example,
While locking catheter (5900) is shown as including four apertures through which tether (5914) is threaded, locking catheters can include other numbers of apertures. For example, some variations of locking catheters may include fewer apertures (e.g., two apertures), while other variations of locking catheters may include more apertures (e.g., six apertures, eight apertures, etc.). As the number of apertures in a locking catheter increases, the likelihood of movement by a tether that is threaded through the apertures may decrease.
As noted above, tethers may be routed through tubular members or other elongated members in any appropriate tether routing configuration. Different non-limiting examples of tether-routing configurations are shown, for example, in
In some cases, a tether may be routed into and out of a lumen of a tubular member multiple times. For example,
Still further tether routing configurations are possible. For example,
Additional tether routing configurations through various different locking device components may be employed. For example,
Tethers may be routed through the center of a lumen or hollow portion of a locking tube or other locking member, or may be routed so that they do not cross the center of the lumen or hollow portion (e.g., to limit the likelihood of being pierced by a plug tip).
In some variations, a tether may be routed along an outer surface of a locking member (e.g., a locking tube). The tether may, for example, be routed into or through one or more apertures and/or grooves on the outer surface. In certain variations, a tether may be wound around an outer surface of a locking member (e.g., a locking tube). An outer surface of a locking member may include one or more features (e.g., barbs, texturing, etc.) that help to retain the tether. For example, the outer surface may be bead-blasted. In some variations, a tether may be melted to an outer surface of a locking member (e.g., by applying RF energy to the tether). Alternatively, if it is desired for the tether not to engage with the outer surface of a locking member, the outer surface may, for example, be super polished.
In some cases, one or more components of a locking device may be configured to couple with a tethered anchor. As an example, a locking tube may comprise a slot configured to receive and couple to an anchor. This may, for example, help to securely situate the locking device component at a target site.
While methods using one locking device have been described, it should be understood that multiple locking devices may be employed to lock one or more tethers. The locking devices may be the same as each other, or different from each other.
As described above, in operation, a locking device may be used to secure a tether to fix the length of the tether and/or to prevent the tether from moving. After the tether has been locked, any excess length of the tether may be cut and removed. In some variations in which a detachable locking member is used, a tether may be cut to remove excess material either before or after detaching the locking member from the rest of the device. Generally, the tether may be cut proximal to the locking mechanism. In many cases, it may be desirable to cut the tether as closely as possible to the locking mechanism, while leaving enough excess length to allow for any slippage that may occur. Examples of various methods and devices that may be used to cut tethers are described in more detail below.
In some variations, and as shown in
Tubular cutters may have any suitable cutting edge configuration. For example, a tubular cutter may have a beveled cutting edge, as exemplified by tubular cutter (6155) of
In some variations, and as shown in
The cutting devices shown above in
During use of cutting device (6320), a tether (6300) may be threaded into catheter (6345), and may exit catheter (6345) through a side aperture (6346). Tether (6300) may be threaded into catheter (6345) using any suitable method, including methods described herein. As tubular cutter (6350) is advanced in a distal direction toward side aperture (6346), end (6353) of tubular cutter (6350) severs tether (6300).
As shown in
While tubular cutters having certain configurations have been shown, a tubular cutter may have any suitable configuration. For example, as shown in
While tubular cutter (6410) has a V-shaped cutting edge, any other appropriate notched feature may be used on a cutter, and other cutting edge configurations may also be used. As an example,
In some variations, tubular cutters may be used to sever a tether by cutting in a direction roughly perpendicular to the longitudinal axis of a catheter. For example, one concentric tube may be rotated relative to a second concentric tube to cut a tether. As an example, in
Other variations may also be used. As an example,
In some variations, a pair of concentric tubular cutters may be used to cut a tether. The concentric tubular cutters may be either internal or external to a catheter. For example, as illustrated in
Tubular tether cutters have been described. However, in some variations, a tether-cutting device may alternatively or additionally comprise one or more non-tubular tether cutters. For example,
Tether-cutting device (6600) may have at least two configurations. The first configuration is shown in
Alternate blade geometries may be used in other variations of tether-cutting devices. For example,
Another variation of a tether-cutting device (6680) is shown in
As described above, a tether-cutting device may comprise any appropriate structure or material. Additionally, tether-cutting devices may comprise one or more tubular cutters, as described above, and/or one or more tether cutters that cut by heat, electricity, chemical reaction, or the like. For example, in some variations, a tether-cutting device may comprise an electrode or filament through which electrical energy is applied to cut a tether.
In some variations, multiple cutting devices may be used together to cut one or more tethers. The cutting devices may be the same as each other or different from each other. Moreover, while tether cutting has been described, in some variations, a tether may not be cut, or the tether may be cut, but may still maintain some length. The extra tether length may, for example, help to maintain the tether in a locked state.
While locking devices and cutting devices have been described, in some variations, a single device may provide both locking and cutting functions.
For example,
As described above, other types of tether cutters may be used as well. For example,
In some variations, a locking and cutting device may comprise a tether cutter located on the outer surface of a plug. For example,
A tether cutter may be situated in any location on a plug. Several non-limiting examples of tether cutters are illustrated in
In some variations in which a plug comprises one or more cutting members, the cutting members may be formed into the body of the plug, and/or may be integral with the body of the plug. For example,
While device (6999) has been described, other variations of locking and cutting devices may be used, as appropriate. As an example,
Other variations of plugs may comprise a cutting member that encircles the perimeter of a plug. For example,
In some variations, a plug may comprise a cutting element comprising a sharpened edge, where the cutting element is coupled to the plug, but is actuated separately from the plug. An example of such a plug is shown in
In some variations, plug (7103) may be actuated by a first pushing member (7109), and cutting element (7107) may be actuated by a second pushing member (7108). To lock and cut tether (7111) that is threaded through locking member (7101), plug (7103) may first be advanced into locking member (7101) by pushing on plug (7103) with pushing member (7109). Cutting element (7107) may be advanced in the direction of the plug (7103), but in some cases, may not be advanced as far into locking member (7101) as the plug is. Once tether (7111) has been secured between the plug and the wall of the locking member, the tether, which is threaded such that it crosses notch (7113), may be cut by pushing cutting element (7107) further into locking member (7101), so that sharpened edge (7115) contacts and cuts the tether against the notch. After tether (7111) has been locked and cut, both pushing members (7108) and (7109) may be withdrawn. In some variations, cutting element (7107) may also be withdrawn. Such a variation of a locking and cutting device may, for example, permit specific control of each of the lock and cut functions, thereby limiting the likelihood of a tether being cut prior to being fully secured.
In some combination locking and cutting devices, a locking member may comprise a cutting member. One example of such a device is depicted in
Referring now to
In some variations of combined locking and cutting devices comprising a locking member and a plug, the locking member and the plug may each comprise a cutting member. For example,
Another variation of a combined locking and cutting device comprising a locking member and a plug that each comprise a cutting member is shown in
As described above, in some variations of combined locking and cutting devices, a plug may be advanced by a pushing member into the lumen of a locking member to secure a tether that is threaded through the locking member. In certain variations, the pushing member may comprise a cutting member that may cut the tether (e.g., after it has been locked). Some variations of pushing members comprising a cutting member are shown in
Another variation of a pushing member comprising a cutting element is shown in
Yet another variation of a pushing member comprising a cutting element is shown in
Additional variations of devices that serve both a tether-locking function and a tether-cutting function may be used, as appropriate.
While certain variations of locking and/or cutting devices and methods have been described above, other variations may be used. As an example, in some variations, one or more locking and/or cutting device components may include one or more radiopaque markers (e.g., platinum markers). The markers may enhance visualization of the components and identification of their location during a procedure (e.g., under X-ray fluoroscopy). As another example, in certain variations, a locking device may comprise a tubular locking member and a plug, where the plug may be advanced within the tubular locking member by a wedge underneath the plug. A tether may be routed between the plug and an inner wall of the tubular locking member, and the wedge may be used to move the plug to secure the tether between the plug and the inner wall. As an additional example, in some variations, a cutting device may be used to cut a tether that is not under tension. In such variations, the tether may be cut, for example, by forcing the tether against a wall of the cutting device and using the wall as a backing for cutting the tether. Moreover, some variations of devices may be used to provide a cinching effect with a tether. These devices may be used for any procedure where these functions (or combinations thereof) are desired. Locking, cutting, and cinching devices are described, for example, in U.S. Patent Application Publication Nos. US 2006/0190030 A1 and US 2006/0122633 A1, and US 2008/0172035 A1, all of which were previously incorporated by reference in their entirety.
While methods and devices have been described in some detail here by way of illustration and example, such illustration and example is for purposes of clarity of understanding only. It will be readily apparent to those of ordinary skill in the art in light of the teachings herein that certain changes and modifications may be made thereto without departing from the spirit and scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/577,044, filed Oct. 9, 2009, which claims the benefit of U.S. Provisional Application No. 61/104,681, filed Oct. 10, 2008, the disclosures of both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2618137 | White | Nov 1952 | A |
3537666 | Lewis | Nov 1970 | A |
3656185 | Carpentier | Apr 1972 | A |
3727614 | Kniazuk | Apr 1973 | A |
3773034 | Burns et al. | Nov 1973 | A |
3961419 | Schwartz | Jun 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4014492 | Rothfuss | Mar 1977 | A |
4034473 | May | Jul 1977 | A |
4042979 | Angell | Aug 1977 | A |
4043504 | Hueil et al. | Aug 1977 | A |
4053979 | Tuthill et al. | Oct 1977 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4069825 | Akiyama | Jan 1978 | A |
4290151 | Massana | Sep 1981 | A |
4373923 | Kilwin | Feb 1983 | A |
4384406 | Tischlinger | May 1983 | A |
4445892 | Hussein et al. | May 1984 | A |
4489446 | Reed | Dec 1984 | A |
4494542 | Lee | Jan 1985 | A |
4510934 | Batra | Apr 1985 | A |
4549545 | Levy | Oct 1985 | A |
4619247 | Inoue et al. | Oct 1986 | A |
4700250 | Kuriyama | Oct 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4726371 | Gibbens | Feb 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4758221 | Jureidini | Jul 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4845851 | Warthen | Jul 1989 | A |
4848341 | Ahmad | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4961738 | Mackin | Oct 1990 | A |
4969893 | Swor | Nov 1990 | A |
4976710 | Mackin | Dec 1990 | A |
5035701 | Kabbara | Jul 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5084058 | Li | Jan 1992 | A |
5087263 | Li | Feb 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5133723 | Li et al. | Jul 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5221255 | Mahurkar et al. | Jun 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5257975 | Foshee | Nov 1993 | A |
5282832 | Toso et al. | Feb 1994 | A |
5312341 | Turi | May 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5324298 | Phillips et al. | Jun 1994 | A |
5346500 | Suchart | Sep 1994 | A |
5358479 | Wilson | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5364407 | Poll | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5383905 | Golds et al. | Jan 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5409499 | Yi | Apr 1995 | A |
5417700 | Egan | May 1995 | A |
5423837 | Mericle et al. | Jun 1995 | A |
5431659 | Ross, Jr. et al. | Jul 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5439470 | Li | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452513 | Zinnbauer et al. | Sep 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5520702 | Sauer et al. | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5527323 | Jervis et al. | Jun 1996 | A |
5531686 | Lundquist et al. | Jul 1996 | A |
5531763 | Mastri et al. | Jul 1996 | A |
5545134 | Hilaire et al. | Aug 1996 | A |
5545168 | Burke | Aug 1996 | A |
5565122 | Zinnbauer et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5591194 | Berthiaume | Jan 1997 | A |
5626590 | Wilk | May 1997 | A |
5626614 | Hart | May 1997 | A |
5630824 | Hart | May 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5690655 | Hart et al. | Nov 1997 | A |
5702397 | Goble | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5741260 | Songer et al. | Apr 1998 | A |
5741301 | Pagedas | Apr 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5752964 | Mericle | May 1998 | A |
5752966 | Chang | May 1998 | A |
5755730 | Swain et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5810848 | Hayhurst | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5827171 | Dobak, III et al. | Oct 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5860992 | Daniel et al. | Jan 1999 | A |
5860993 | Thompson et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5885238 | Stevens et al. | Mar 1999 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5902321 | Caspari et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5919208 | Valenti | Jul 1999 | A |
5935149 | Ek | Aug 1999 | A |
5947983 | Solar et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6086608 | Ek et al. | Jul 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6125852 | Stevens et al. | Oct 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6152934 | Harper et al. | Nov 2000 | A |
6162168 | Schweich, Jr. et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6171317 | Jackson et al. | Jan 2001 | B1 |
6197017 | Brock et al. | Mar 2001 | B1 |
6200329 | Fung et al. | Mar 2001 | B1 |
6221084 | Fleenor | Apr 2001 | B1 |
6228096 | Marchand | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6254620 | Koh et al. | Jul 2001 | B1 |
6258118 | Baum et al. | Jul 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6283993 | Cosgrove et al. | Sep 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6378289 | Trudeau et al. | Apr 2002 | B1 |
6409743 | Fenton, Jr. | Jun 2002 | B1 |
6423088 | Fenton, Jr. | Jul 2002 | B1 |
6432123 | Schwartz et al. | Aug 2002 | B2 |
6461327 | Addis et al. | Oct 2002 | B1 |
6471715 | Weiss | Oct 2002 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6524328 | Levinson | Feb 2003 | B2 |
6524338 | Gundry | Feb 2003 | B1 |
6533753 | Haarstad et al. | Mar 2003 | B1 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6575987 | Gellman et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6616667 | Steiger et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6648903 | Pierson, III | Nov 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652562 | Collier et al. | Nov 2003 | B2 |
6655386 | Makower et al. | Dec 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6676702 | Mathis | Jan 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6716243 | Colvin et al. | Apr 2004 | B1 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6723107 | Skiba et al. | Apr 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6793618 | Schweich, Jr. et al. | Sep 2004 | B2 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6923818 | Muramatsu et al. | Aug 2005 | B2 |
6932792 | St. Goar et al. | Aug 2005 | B1 |
6986775 | Morales et al. | Jan 2006 | B2 |
6991643 | Saadat | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7004958 | Adams et al. | Feb 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7044957 | Foerster et al. | May 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7094246 | Anderson et al. | Aug 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7241310 | Taylor et al. | Jul 2007 | B2 |
7326231 | Phillips et al. | Feb 2008 | B2 |
7374530 | Schaller | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7452325 | Schaller | Nov 2008 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7666193 | Starksen et al. | Feb 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7727247 | Kimura et al. | Jun 2010 | B2 |
7753922 | Starksen | Jul 2010 | B2 |
7758637 | Starksen et al. | Jul 2010 | B2 |
7815659 | Conlon et al. | Oct 2010 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7922762 | Starksen | Apr 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8066766 | To et al. | Nov 2011 | B2 |
8287555 | Starksen et al. | Oct 2012 | B2 |
8287557 | To et al. | Oct 2012 | B2 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
9072513 | To et al. | Jul 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9468528 | Starksen et al. | Oct 2016 | B2 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010014800 | Frazier et al. | Aug 2001 | A1 |
20010023332 | Hahnen | Sep 2001 | A1 |
20010031979 | Ricci | Oct 2001 | A1 |
20010041821 | Wilk | Nov 2001 | A1 |
20020013621 | Stobie et al. | Jan 2002 | A1 |
20020029080 | Mortier et al. | Mar 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020065536 | Hart et al. | May 2002 | A1 |
20020072757 | Ahmed et al. | Jun 2002 | A1 |
20020077524 | Schweich, Jr. et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020087049 | Brock et al. | Jul 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020095167 | Liddicoat et al. | Jul 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020095180 | West, Jr. et al. | Jul 2002 | A1 |
20020116012 | May et al. | Aug 2002 | A1 |
20020138044 | Streeter et al. | Sep 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020165486 | Bertolero et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20020193815 | Foerster et al. | Dec 2002 | A1 |
20030009196 | Peterson | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030032979 | Mortier et al. | Feb 2003 | A1 |
20030033006 | Phillips et al. | Feb 2003 | A1 |
20030060813 | Loeb et al. | Mar 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078603 | Schaller et al. | Apr 2003 | A1 |
20030093118 | Ho et al. | May 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030125767 | Collier et al. | Jul 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030144673 | Onuki et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030158581 | Levinson | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030181800 | Bonutti | Sep 2003 | A1 |
20030181926 | Dana et al. | Sep 2003 | A1 |
20030191497 | Cope | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204205 | Sauer et al. | Oct 2003 | A1 |
20030220659 | Schmieding et al. | Nov 2003 | A1 |
20030220685 | Hlavka et al. | Nov 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20030229361 | Jackson | Dec 2003 | A1 |
20030233105 | Gayton | Dec 2003 | A1 |
20030233142 | Morales et al. | Dec 2003 | A1 |
20030236535 | Onuki et al. | Dec 2003 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040093023 | Allen et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040097865 | Anderson et al. | May 2004 | A1 |
20040122450 | Oren et al. | Jun 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162465 | Carrillo | Aug 2004 | A1 |
20040172046 | Hlavka et al. | Sep 2004 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040204724 | Kissel et al. | Oct 2004 | A1 |
20040210238 | Nobles et al. | Oct 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040236372 | Anspach, III et al. | Nov 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20050033325 | May et al. | Feb 2005 | A1 |
20050055052 | Lombardo et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050065550 | Starksen et al. | Mar 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050107810 | Morales et al. | May 2005 | A1 |
20050107811 | Starksen et al. | May 2005 | A1 |
20050107812 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119523 | Starksen et al. | Jun 2005 | A1 |
20050119673 | Gordon et al. | Jun 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050143762 | Paraschac et al. | Jun 2005 | A1 |
20050165424 | Gallagher et al. | Jul 2005 | A1 |
20050184122 | Hlavka et al. | Aug 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050209690 | Mathis et al. | Sep 2005 | A1 |
20050216078 | Starksen et al. | Sep 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050251157 | Saadat et al. | Nov 2005 | A1 |
20050251159 | Ewers et al. | Nov 2005 | A1 |
20050251166 | Vaughan et al. | Nov 2005 | A1 |
20050251177 | Saadat et al. | Nov 2005 | A1 |
20050251205 | Ewers et al. | Nov 2005 | A1 |
20050251207 | Flores et al. | Nov 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050251210 | Westra et al. | Nov 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050277966 | Ewers et al. | Dec 2005 | A1 |
20050277981 | Maahs et al. | Dec 2005 | A1 |
20050277983 | Saadat et al. | Dec 2005 | A1 |
20060004409 | Nobis et al. | Jan 2006 | A1 |
20060025750 | Starksen et al. | Feb 2006 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060058817 | Starksen et al. | Mar 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060106422 | Del Rio et al. | May 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060129188 | Starksen et al. | Jun 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060178682 | Boehlke | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060190030 | To et al. | Aug 2006 | A1 |
20060200199 | Bonutti | Sep 2006 | A1 |
20060207606 | Roue et al. | Sep 2006 | A1 |
20060235413 | Denham et al. | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060264975 | Pipenhagen et al. | Nov 2006 | A1 |
20060265010 | Paraschac et al. | Nov 2006 | A1 |
20060271060 | Gordon | Nov 2006 | A1 |
20060271101 | Saadat et al. | Nov 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20070005081 | Findlay, III et al. | Jan 2007 | A1 |
20070005394 | Bleyendaal et al. | Jan 2007 | A1 |
20070010852 | Blaeser et al. | Jan 2007 | A1 |
20070010857 | Sugimoto et al. | Jan 2007 | A1 |
20070016250 | Blaeser et al. | Jan 2007 | A1 |
20070032820 | Chin-Chen et al. | Feb 2007 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070066994 | Blaeser et al. | Mar 2007 | A1 |
20070106310 | Goldin et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112424 | Spence et al. | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070156172 | Alvarado | Jul 2007 | A1 |
20070213746 | Hahn et al. | Sep 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20080004622 | Coe et al. | Jan 2008 | A1 |
20080033460 | Ziniti et al. | Feb 2008 | A1 |
20080045977 | To et al. | Feb 2008 | A1 |
20080045982 | To et al. | Feb 2008 | A1 |
20080045983 | To et al. | Feb 2008 | A1 |
20080051810 | To et al. | Feb 2008 | A1 |
20080051832 | To et al. | Feb 2008 | A1 |
20080051837 | To et al. | Feb 2008 | A1 |
20080058868 | To et al. | Mar 2008 | A1 |
20080065156 | Hauser et al. | Mar 2008 | A1 |
20080097484 | Lim et al. | Apr 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177304 | Westra et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080228198 | Traynor et al. | Sep 2008 | A1 |
20080228265 | Spence et al. | Sep 2008 | A1 |
20080228266 | McNamara et al. | Sep 2008 | A1 |
20080234701 | Morales et al. | Sep 2008 | A1 |
20080234702 | Morales et al. | Sep 2008 | A1 |
20080234728 | Starksen et al. | Sep 2008 | A1 |
20080234815 | Starksen | Sep 2008 | A1 |
20080294177 | To et al. | Nov 2008 | A1 |
20090182417 | Tremulis et al. | Jul 2009 | A1 |
20090204125 | Onishi et al. | Aug 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090276038 | Tremulis et al. | Nov 2009 | A1 |
20090292353 | Yoganathan et al. | Nov 2009 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100076408 | Krever et al. | Mar 2010 | A1 |
20100076548 | Konno | Mar 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20120271331 | To et al. | Oct 2012 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20150164639 | Starksen et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
0 669 101 | Aug 1995 | EP |
WO-9403227 | Feb 1994 | WO |
WO-9515715 | Jun 1995 | WO |
WO-9608208 | Mar 1996 | WO |
WO-9639942 | Dec 1996 | WO |
WO-9727799 | Aug 1997 | WO |
WO-9727807 | Aug 1997 | WO |
WO-9730639 | Aug 1997 | WO |
WO-9807375 | Feb 1998 | WO |
WO-0060995 | Oct 2000 | WO |
WO-0060995 | Oct 2000 | WO |
WO-0067640 | Nov 2000 | WO |
WO-0067640 | Nov 2000 | WO |
WO-0126586 | Apr 2001 | WO |
WO-0154618 | Aug 2001 | WO |
WO-0203892 | Jan 2002 | WO |
WO-02051329 | Jul 2002 | WO |
WO-02074178 | Sep 2002 | WO |
WO-02074178 | Sep 2002 | WO |
WO-02085251 | Oct 2002 | WO |
WO-02085252 | Oct 2002 | WO |
WO-03049648 | Jun 2003 | WO |
WO-03049648 | Jun 2003 | WO |
WO-03073913 | Sep 2003 | WO |
WO-03088875 | Oct 2003 | WO |
WO-03105667 | Dec 2003 | WO |
WO-03105667 | Dec 2003 | WO |
WO-03105670 | Dec 2003 | WO |
WO-03105670 | Dec 2003 | WO |
WO-2004037317 | May 2004 | WO |
WO-2004037317 | May 2004 | WO |
WO-2004045367 | Jun 2004 | WO |
WO-2004045367 | Jun 2004 | WO |
WO-2004082523 | Sep 2004 | WO |
WO-2004082523 | Sep 2004 | WO |
WO-2004082538 | Sep 2004 | WO |
WO-2004082538 | Sep 2004 | WO |
WO-2005025644 | Mar 2005 | WO |
WO-2005025644 | Mar 2005 | WO |
WO-2005062931 | Jul 2005 | WO |
WO-2005062931 | Jul 2005 | WO |
WO-2005102181 | Nov 2005 | WO |
WO-2005110241 | Nov 2005 | WO |
WO-2006037073 | Apr 2006 | WO |
WO-2006039296 | Apr 2006 | WO |
WO-2006097931 | Sep 2006 | WO |
WO-2006097931 | Sep 2006 | WO |
WO-2006116558 | Nov 2006 | WO |
WO-2006116558 | Nov 2006 | WO |
WO-2006116558 | Nov 2006 | WO |
WO-2006128092 | Nov 2006 | WO |
WO-2006128092 | Nov 2006 | WO |
WO-2007001936 | Jan 2007 | WO |
WO-2007001936 | Jan 2007 | WO |
WO-2007005495 | Jan 2007 | WO |
WO-2007021564 | Feb 2007 | WO |
WO-2007021834 | Feb 2007 | WO |
WO-2007035449 | Mar 2007 | WO |
WO-2007056502 | May 2007 | WO |
WO-2007100409 | Sep 2007 | WO |
WO-2008028135 | Mar 2008 | WO |
WO-2008028135 | Mar 2008 | WO |
WO-2008112740 | Sep 2008 | WO |
WO-2008112740 | Sep 2008 | WO |
WO-2009052438 | Apr 2009 | WO |
WO-2009052438 | Apr 2009 | WO |
WO-2009061611 | May 2009 | WO |
WO-2010042845 | Apr 2010 | WO |
WO-2010042857 | Apr 2010 | WO |
Entry |
---|
Australian First Examination Report mailed May 9, 2014, for Australian Patent Application No. 2009302169, filed on Oct. 9, 2009, 3 pages. |
De Simone, R. et al. (Apr. 15, 1993). “Adjustable Tricuspid Valve Annuloplasty Assisted by Intraoperative Transesophageal Color Doppler Echocardiography,” Am. J. Carl. 71:926-931. |
De Simone, R. et al. (Apr. 1, 1994). “Adjustable Annuloplasty for Tricuspid Insufficiency with External Control,” Reader's Comments and Reply, Am. J. Cardiol. 73(9):721-722. |
Downing, S.W. et al. (2002). “Feasibility of Off-Pump ASD Closure Using Real-Time 3-D Echocardiography,” The Heart Surgery Forum 5(2):96-99, Abstract 7025. |
European Examination Communication mailed on Dec. 8, 2009, for EP Application No. 06 837 222.6 filed on Nov. 8, 2006, three pages. |
Final Office Action mailed on Aug. 30, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 9 pages. |
Final Office Action mailed on May 28, 2008, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages. |
Final Office Action mailed on Aug. 1, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Final Office Action mailed on Jul. 21, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Final Office Action mailed on Sep. 2, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Final Office Action mailed on Jul. 26, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Final Office Action mailed on Sep. 15, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages. |
Final Office Action mailed on Jun. 11, 2012, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 7 pages. |
Final Office Action mailed on Oct. 23, 2012, for U.S. Appl. No. 12/576,955, filed Oct. 9, 2009, 8 pages. |
Final Office Action mailed on Jan. 22, 2013, for U.S. Appl. No. 12/480,568, filed Jun. 8, 2009, 6 pages. |
Final Office Action mailed on Mar. 20, 2013, for U.S. Appl. No. 12/577,044, filed Oct. 9, 2009, 7 pages. |
International Search Report mailed on Dec. 10, 2009, for PCT Patent Application No. PCT/US2009/060202, filed on Oct. 9, 2009, 3 pages. |
Nagy, Z.L. et al. (Dec. 2000). “Mitral Annuloplasty with a Suture Technique,” European Journal of Cardio-thoracic Surgery 18(6):739-740. |
Non-Final Office Action mailed on Dec. 27, 2006, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Non-Final Office Action mailed on Mar. 12, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages. |
Non-Final Office Action mailed on Aug. 30, 2007, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages. |
Non-Final Office Action mailed Jan. 9, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Non-Final Office Action mailed on Jan. 23, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Non-Final Office Action mailed on Jan. 23, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Non-Final Office Action mailed on Jan. 19, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages. |
Non-Final Office Action mailed on Feb. 18, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages. |
Non-Final Office Action mailed on Oct. 29, 2010, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 11 pages. |
Non-Final Office Action mailed on Feb. 11, 2011, for U.S. Appl. No. 12/132,328, filed Jun. 3, 2008, 9 pages. |
Non-Final Office Action mailed on Oct. 13, 2011, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages. |
Non-Final Office Action mailed on Dec. 22, 2011, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Non-Final Office Action mailed on Jan. 27, 2012, for U.S. Appl. No. 12/480,568, filed Jun. 8, 2009, 5 pages. |
Non-Final Office Action mailed on Mar. 14, 2012, for U.S. Appl. No. 12/576,955, filed Oct. 9, 2009, 7 pages. |
Non-Final Office Action mailed on Jun. 28, 2012, for U.S. Appl. No. 12/577,044, filed Oct. 9, 2009, 7 pages. |
Notice of Allowance mailed on Nov. 17, 2010, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages. |
Notice of Allowance mailed on Jul. 26, 2011, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 10 pages. |
Notice of Allowance mailed on Jun. 8, 2012, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 9 pages. |
Notice of Allowance mailed on Mar. 31, 2014, for U.S. Appl. No. 12/576,955, filed Oct. 9, 2009, 8 pages. |
Shumway, S.J. et al. (Dec. 1988). “A ‘Designer’ Annuloplasty Ring for Patients with Massive Mitral Annular Dilatation,” Ann. Thorac. Surg. 46(6):695-696. |
Notice of Allowance mailed on Mar. 2, 2015, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages. |
Final Office Action mailed Feb. 5, 2015, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages. |
Final Office Action mailed May 18, 2015, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 17 pages. |
Australian Notice of Acceptance mailed on Jan. 4, 2016, for Australian Patent Application No. 2009302169, Internationally filed on Oct. 9, 2009, 3 pages. |
Canadian Office Action mailed on Sep. 23, 2015, for Canadian Application No. 2,740,233, Internationally filed on Oct. 9, 2009, 3 pages. |
Canadian Office Action mailed on Oct. 5, 2015, for Canadian Patent Application No. 2,702,466, Internationally filed on Oct. 17, 2008, 4 pages. |
European Extended Search Report mailed on May 17, 2016, for EP Application No. 09 819 970.6, filed on May 4, 2011, 8 pages. |
European Extended Search Report mailed on May 17, 2016, for EP Application No. 09 819 978.9 filed on Oct. 9, 2009, 9 pages. |
Final Office Action mailed Feb. 24, 2016, for U.S. Appl. No. 13/948,009, filed Jul. 22, 2013, 13 pages. |
International Search Report mailed on May 19, 2009, for PCT Patent Application No. PCT/US2008/080381, filed on Oct. 17, 2008, 5 pages. |
International Search Report mailed on Jan. 12, 2010, for PCT Patent Application No. PCT/US2009/60227, filed on Oct. 9, 2009, 2 pages. |
International Search Report mailed on Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 1 page. |
International Search Report mailed Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed on Aug. 10, 2006, 3 pages. |
International Search Report mailed on Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed on Nov. 8, 2006, 4 pages. |
Non-Final Office Action mailed Jun. 18, 2015, for U.S. Appl. No. 13/948,009, filed Jul. 22, 2013, 20 pages. |
Non-Final Office Action mailed Nov. 17, 2016, for U.S. Appl. No. 13/948,009, filed Jul. 22, 2013, 22 pages. |
Non-Final Office Action mailed Apr. 21, 2016, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 13 pages. |
Notice of Allowance mailed on Apr. 28, 2010, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 7 pages. |
Notice of Allowance mailed on Oct. 29, 2015, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 8 pages. |
Notice of Allowance mailed on Jun. 15, 2016, for U.S. Appl. No. 14/156,347, filed Jan. 15, 2014, 7 pages. |
Written Opinion of the International Searching Authority mailed on May 19, 2009, for PCT Patent Application No. PCT/US2008/080381, filed on Oct. 17, 2008, 10 pages. |
Written Opinion of the International Searching Authority mailed on Dec. 10, 2009, for PCT Patent Application No. PCT/US2009/060202, filed on Oct. 9, 2009, 10 pages. |
Written Opinion of the International Searching Authority mailed on Jan. 12, 2010, for PCT Patent Application No. PCT/US2009/60227, filed on Oct. 9, 2009, 5 pages. |
Written Opinion of the International Searching Authority mailed on Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 4 pages. |
Written Opinion of the International Searching Authority mailed Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed on Aug. 10, 2006, 6 pages. |
Written Opinion of the International Searching Authority mailed on Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed on Nov. 8, 2006, 7 pages. |
Written Opinion of the International Searching Authority mailed on Feb. 15, 2007, for PCT Application No. PCT/US2006/035933, filed on Sep. 15, 2006, 4 pages. |
U.S. Appl. No. 15/265,781, filed Sep. 14, 2016, by Starksen et al. |
Number | Date | Country | |
---|---|---|---|
20140188140 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61104681 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12577044 | Oct 2009 | US |
Child | 14033369 | US |