None.
None.
None.
1. Field of the Invention
The present invention relates to structured land and the replaceable framing parts necessary for such structures and, more particularly, to the use of a joint and assembly system for terraced structured land, the system combining separate members for tension and compression forces into an integrated assembly member.
2. Description of the Related Art including Information Disclosed Under 37 C.F.R. 1.97 and 1.98
A search of the prior art located the following United States patents and patent publications which are believed to be representative of the present state of the prior art: U.S. Pat. No. 6,887,099, issued May 3, 2005; U.S. Pat. No. 6,088,852, issued Feb. 18, 1992; U.S. Pat. No. 4,677,804, issued Jul. 7, 1987; U.S. Pat. No. 6,108,984, issued Aug. 29, 2000; U.S. Pat. No. 5,626,434, issued May 6, 1997; U.S. Pat. No. 4,624,090, issued Nov. 25, 1986; U.S. Pat. No. 5,399,043, issued Mar. 21, 1995; U.S. Pat. No. 5,632,129, issued May 27, 1997; U.S. Pat. No. 4,819,399, issued Apr. 11, 1989; U.S. Pat. No. 5,051,019, issued Sep. 24, 1991; U.S. Pat. No. 5,568,993, issued Oct. 29, 1996; U.S. Pat. No. 7,024,834, issued Apr. 11, 2006; U.S. Patent Publication No. 1006/0112657, published Jun. 1, 2006; U.S. Pat. No. 5,341,611, issued Aug. 30, 1994; and U.S. Pat. No. 4,457,118, issued Jul. 3, 1984.
Terraced structural framing concepts encompass vertical and horizontal elements, and are best achieved using structured land that implements efficient use of unused land, such as land with weak stratum soil, slopes, and the dead air space of overcrowded cities, by making use of the air space above and in it.
Horizontal or planar structured land provides space where all activities take place; the ultimate form of which is the earth's surface. Proposed horizontal structured land platforms are placed one above the other in a stair like manner, terminating in a terraced mountain shape. These horizontal terraces are supported by vertical elements which transfer all loads to the ground.
Unlike most all structures which are built having a life span of effective functional use, terraced structural framing, like earth's surface, must function for a much longer time period. Thus, these structures must be constructed to be both adaptable and economical. In the near future, with building materials possibly using nano-technology, they may be self-sustaining. Until such time, today's technology must be implemented.
Thus, three-dimension efficient use of these unused spaces will address future overcrowding issues and would accelerate development to satisfy the following requirements: 1) ensure the flexibility necessary to accommodate quick changes in urban structures; 2) offer a variety of sizes, shapes or compositions and to readily apply to all types of use by setting a standardized variety of structural components; 3) ensure that every structural component with multiple component functions can be cheaply mass-produced in large quantities in the future; 4) ensure that fabrication and demolition of components can be achieved quickly and mechanically without posing problems of danger, noise, and vibration to areas adjacent to the construction site; 5) ensure safety in the event of natural or other disasters; 6) ensure that for the modularization of such necessary urban equipment systems as power supply, waste disposal-treatment, and information systems, that a terminal circuit net can be installed by compounding them and that such systems can be quickly fabricated as components to the highest possible degree; 7) ensure that systems for efficient use of energy and resources can be installed; 8) provide a structure that can cope with the distribution of traffic and materials; 9) provide an excellent living environment by planting trees on all levels, and to provide such mental comforts such as insulation, ventilation, soundproofing and privacy; 10) provide a constructed structure affording sufficient strength as an urban structure; and 11) reuse of resources must be possible after demolition.
The solution to achieve these requirements must also satisfy all of the following general assembly, maintenance, and disassembly criteria: a) structures constructed of materials readily available; b) structures made of components easily transportable; c) structures made of components easy to assemble and disassemble; and d) structural components replaceable without disruption to the structural system and the life activities of inhabitants of the structural system.
The best known solution to meet all these criteria are framing systems consisting of trusses. For the horizontal platform, a space frame is used. Truss columns and beams transfer the space frame loads to the ground. Truss members typically are modular length chords and associated connecting joints. For space framing, there are two members. For beams and columns there are three members. For the connection between space frame and beams or columns, joints are required. One type of joint is used for platforms or horizontal surface elements; another joint is used for the vertical elements. The efficiency of these structures is enhanced when tension members are inside compression members.
Many truss based connectors for variable space frame structural systems have been developed. In total, these systems have limitations as to one or more of the necessary criteria for terraced structural framing systems using known construction materials. Similarly, these known systems do not lend themselves to be self-sustaining with future construction materials.
Accordingly, it is desirable to provide a truss joint and assembly system with tension and compression members integrated into the same connector element between each joint.
It is a further objective to provide a truss joint and assembly system which can be quickly constructed from known materials without the necessity of welding or other specialized construction trades.
It is yet a further objective to provide a truss joint and assembly system easily assembled and disassembled, and maintainable without disruption to the life activities of inhabitants.
A further objective is to provide a truss joint and assembly system which can be easily assembled without the necessity of advanced training or specialized knowledge.
Finally, it is an objective to provide a truss joint and assembly system the components of which are easily transportable to a point of assembly.
The terraced structured land joint and assembly system is directed to a such an efficient and affordable structural system and method for constructing terraced structural framing of any scale. Joints are used to provide space framing and truss columns and beams, and to connect the two systems. All framing members between joints have tension members within compression members. These intermediary framing members combine internal couplers and turnbuckles and external couplers to transfer compressive or load forces to or from the joint. As such, space framing members support horizontal platforms. Truss columns and beams transfer the space frame loads to the ground.
Other features, advantages, and objects of the present invention will become apparent with reference to the following description and accompanying drawings.
The following detail description of exemplary embodiments of the terraced structured land joint and assembly wherein reference numbers for the same and similar elements are carried forward throughout the various drawing figures. It is understood and should be noted that the figures are not drawn to any particular scale and are provided herein principally for illustrative purposes only.
The preferred embodiment of structured land using the terraced structured land joint and assembly is the mountain,
With reference to drawing
An embodiment of the land joint and assembly further includes: a) a plurality of compression members 40 of predetermined length defining a uniform compression member cross-sectional area and uniform compression member interior volume 44 for receiving and housing at least one tension member 50, and having two compression ends sized to receive a monolithic ball joint tenon 24,
In an embodiment of the terraced structured land joint and assembly for structured land, each first tension coupling assembly 100 includes two equal sized split annular flange portions 102A and 102B, each split portion including an outer radius defining two, small semi-circle openings 104 sized to receive the tension member 50 and tension member 70 diameters of approximately the same uniform cross-sectional area between the smaller sized swelled end portion 52 and larger sized swelled end portion 54, and monolithic tenon 24 and monolithic tension stub swelled end portion 72, respectively,
In an embodiment of the terraced structured land joint and assembly for structured land, each turn buckle assembly 80 includes a flanged cylinder 86 having an interior recess 81 sized to receive and hold a tension member small swelled end portion 52. The turn buckle assembly further includes a threaded opening 84 on one end corresponding to the tension member threaded extension 55 to adjustably tighten the tension member 50. The turnbuckle assembly 80 further includes a keyed opening 82 on the other end swelled end portion sized to accept the tension members 50 and 60 uniform cross-sectional areas between swelled end portions 54 and 52 and 53 and 52, respectively, while securing the smaller swelled end portion 52 within the flanged cylinder interior recess 81,
In an embodiment of the terraced structured land joint and assembly for structured land, each second tension coupling assembly 90 includes two equal sized split annular flange portions 92A and 92B, each split portion including an outer radius defining two, small semi-circle openings 94 sized to receive the tension member 50 diameters of approximately the same uniform cross-sectional area between the smaller sized swelled end portion 52 and larger sized swelled end portion 54,
All elements of the terraced structured land joint and assembly for structured land are manufactured from metals, advanced carbon fibers, including buckyballs, buckytubes and other nano-fiber graphenes and fullerenes, and other advanced structural composites.
As disclosed herein above, the terraced structured land joint and assembly for structured land can be assembled to provide an assembly for space frame 600, a horizontal support assembly 700 for supporting the assembly for space frame 600, and vertical support assembly 800 for transferring loads from the horizontal support assembly 700 to the earth 2000,
The terraced structured land joint and assembly for structured land can include a series of interlocking chords and joints in a horizontal, planar geometric pattern, and wherein the cords and joints to provide an assembly for space frame 600, a horizontal support assembly 700 for supporting the assembly for space frame 600, and vertical support assembly 800 for transferring loads from the horizontal support assembly 700 to the earth 2000,
The terraced structured land joint and assembly for structured land further can include two member trusses consisting of modular length chords and joints, and wherein the cords and joints to provide an assembly for space frame 600, a horizontal support assembly 700 for supporting the assembly for space frame 600, and vertical support assembly 800 for transferring loads from the horizontal support assembly 700 to the earth 2000.
The terraced structured land joint and assembly for structured land further can include three member trusses consisting of modular length chords and joints, and wherein the cords and joints to provide an assembly for space frame 600, a horizontal support assembly 700 for supporting the assembly for space frame 600, and vertical support assembly 800 for transferring loads from the horizontal support assembly 700 to the earth 2000.
All connector parts and frame members of the terraced structured land joint and assembly for structured land are simply designed and are without complex formations. All of these elements can be cast or forged in simple two-part molds. Depending on structural requirements, these elements may be manufactured out of a range of materials from metals, advanced carbon fibers, including buckyballs, buckytubes and other nano-fiber graphenes and fullerenes, and other advanced structural composites.
Accordingly, any appropriate casting of forging method for metal components may be used in their manufacture. The fasteners and threaded members can be fabricated using forging techniques for metal components that are commonly used in the manufacture of high strength bolts, and related fasteners. Medium carbon alloy steels with protective coatings that resist corrosion are also highly suitable for fabricating the ball joints, monolithic mortices or tenons, and monolithic tension studs for certain applications. That portion of the ball joint in contact with compression members can additionally be finished to provide a low friction hardened surface.
By the foregoing disclosure, a highly structural, simply designed, economical to manufacture and assemble terraced structured land joint and assembly system is presented. The terraced structured land joint and assembly system disclosed herein demonstrates high flexibility of application and high economy of use. By incorporating the principles and features described herein, the improved terraced structured land joint and assembly system is capable of wide-ranging applications in common building construction. The preferred embodiment of the improved joint and assembly system is particularly suited to structured land and, as such, is useful in a wide spectrum of artificial land concepts and applications. The drawings and embodiments of the improved terraced structured land joint and assembly system are illustrative and should not be construed to limit the full range of possible variations which fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
111453 | Mason et al. | Jan 1871 | A |
1833649 | Kartvelichvili et al. | Nov 1931 | A |
2929473 | Lindsay | Mar 1960 | A |
3418768 | Bernhard | Dec 1968 | A |
3632147 | Finger | Jan 1972 | A |
3685221 | Mangan | Aug 1972 | A |
3864049 | Ono | Feb 1975 | A |
3882650 | Gugliotta | May 1975 | A |
3942291 | Hirata et al. | Mar 1976 | A |
4027449 | Alcalde Cilveti | Jun 1977 | A |
4457118 | Bowen | Jul 1984 | A |
4562682 | Arvedi et al. | Jan 1986 | A |
4566246 | Sanger | Jan 1986 | A |
4624090 | Stienen | Nov 1986 | A |
4637193 | Lange | Jan 1987 | A |
4648223 | Richard | Mar 1987 | A |
4677804 | Holt | Jul 1987 | A |
4796389 | Bini et al. | Jan 1989 | A |
4819399 | Onoda | Apr 1989 | A |
4905443 | Sutcliffe et al. | Mar 1990 | A |
5051019 | Kohl | Sep 1991 | A |
5088852 | Davister | Feb 1992 | A |
5341611 | Lewis | Aug 1994 | A |
5399043 | Plumeyer | Mar 1995 | A |
5568993 | Potzick | Oct 1996 | A |
5626434 | Cook | May 1997 | A |
5632129 | Imai et al. | May 1997 | A |
5718090 | Wei-Hwang | Feb 1998 | A |
6108984 | Davidson | Aug 2000 | A |
6887009 | Lopez | May 2005 | B1 |
7024834 | Gimpel et al. | Apr 2006 | B2 |
20030101663 | Boots | Jun 2003 | A1 |
20060112657 | Abbot-Wilcox | Jun 2006 | A1 |
20100083605 | Wallner | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090311053 A1 | Dec 2009 | US |