Tertiary S-nitrosothiol-modified nitric—oxide-releasing xerogels and methods of using the same

Information

  • Patent Grant
  • 8981139
  • Patent Number
    8,981,139
  • Date Filed
    Monday, August 26, 2013
    11 years ago
  • Date Issued
    Tuesday, March 17, 2015
    9 years ago
Abstract
Provided according to embodiments of the invention are novel tertiary alkyl thiol compounds and novel tertiary alkyl nitrosothiol compounds. Further provided according to embodiments of the invention are methods of forming a nitric oxide (NO)-releasing xerogel coating that include (a) co-condensing a sol precursor solution comprising at least one backbone alkoxysilane and at least one tertiary thiol alkoxysilane in a solvent to form a sol; (b) coating a substrate with the sol; (c) optionally, drying the sol to form the xerogel coating; and (d) contacting the xerogel coating with a nitrosating agent. Methods of using xerogel coatings are also included.
Description
FIELD OF THE INVENTION

The present invention is directed to nitric oxide (NO)-releasing compounds. In particular, the present invention is related to compounds that may release NO upon exposure to light.


BACKGROUND OF THE INVENTION

Reactive radical species (e.g., hydroxyl radical and superoxide) are well-suited as antimicrobial agents as their biocidal activity is broad-spectrum, lessening the likelihood of bacterial resistance and improving efficacy against multiple microbial species and strains. Light-activated antimicrobial surfaces, including titanium dioxide films and photosensitizer-modified polymers, represent new strategies for eliciting antibacterial activity by light-induced generation of reactive radicals and singlet oxygen. Medical implants, catheters, and hospital-associated surfaces that are plagued by bacterial contamination may greatly benefit from the associated disinfection/sanitization capabilities of such surfaces.


Nitric oxide (NO) is another radical species with potent broad-spectrum antimicrobial activity as evidenced by its role in the innate immune response to pathogens. The antimicrobial therapeutic utility of exogenous NO delivery via NO donors (i.e., compounds that store and release NO) has been an active area of research. However, the clinical success of NO-based antimicrobial therapies has been hindered due the limited known methods of storing and controllably releasing enhanced payloads of NO. Macromolecular vehicles (e.g., silica nanoparticles, metallic clusters, and dendrimers) and polymers have been functionalized with multiple NO donor moieties to enable larger reservoirs of deliverable NO. The application of these materials as coatings provides localized NO release at a desired interface (e.g., an indwelling medical device) with effective mitigation of bacterial adhesion. Nevertheless, most of these formulations spontaneously liberate NO upon immersion in physiological solution.


SUMMARY OF THE INVENTION

A first aspect of the present invention comprises a co-condensed silica sol-gel coating formed from the reaction of the compound of Formula I and at least one backbone alkoxysilane:




embedded image


wherein R, R′ and R″ are each independently alkyl and n is in a range of 0 to 10.


A second aspect of the present invention comprises a sol-gel coating comprising a tertiary S-nitrosothiol.


A further aspect of the present invention comprises a method of forming a nitric oxide (NO)-releasing sol-gel coating comprising:


(a) co-condensing a sol precursor solution comprising at least one backbone alkoxysilane and at least one tertiary thiol alkoxysilane in a solvent to form a sol;


(b) coating a substrate with the sol;


(c) optionally, drying the sol to form the sol-gel coating; and


(d) contacting the sol-gel coating with a nitrosating agent.


Another aspect of the present invention comprises a method of reducing or eliminating bacterial adhesion to a substrate comprising


(a) coating the substrate with a sol-gel coating that comprises a tertiary nitrosothiol functional group;


(b) exposing the substrate to bacteria; and


(c) irradiating the substrate to release nitric oxide, which reduces or eliminates bacterial adhesion to the substrate.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, features and advantages of the invention will become more apparent from the following more particular description of exemplary embodiments of the invention and the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.



FIG. 1 provides a scheme for the synthesis of N-acetylpenicillamine propyltrimethoxysilane (NAPTMS).



FIG. 2 provides an 1H NMR spectrum of the NAPTMS compound.



FIG. 3 provides the chemical structures of backbone alkylalkoxy- and alkoxysilanes.



FIG. 4 provides an absorbance spectrum of a 20 mol % NAPTMS balance MTMOS (30 cast) xerogel film after 1 (dashed dotted black line), 2 (dashed red line), 3 (dotted blue line) and 4 h (solid green line) of nitrosation in a 100× molar excess (vs. thiols) of acidified nitrite.



FIG. 5 shows the nitric oxide flux from a 30 mol % NAPTMS balance TEOS (30 μL cast) xerogel at 37° C. and under periods of visible irradiation. Increasing bulb wattages are noted. Successive steps under each period of irradiation correspond to distances between the light source and sample of 0.9, 0.6, and 0.3 m.



FIG. 6 shows nitric oxide flux from a 20 mol % NAPTMS balance TEOS (30 μL cast) xerogel at 37° C. in the dark (solid line) and irradiated with 200 W light at a distance of 0.6 m (dotted line).



FIG. 7 shows the fragmentation for (A) TEOS and (B) MTMOS-derived xerogels during soaking in PBS at 37° C. for 1 week. Controls of uncoated glass substrates (open triangle) and glass substrates coated with polyurethane (open circles) were treated similarly. The compositions are as follows: (A) 20 mol % NAPTMS, 30 μL cast (black square), 45 μL cast (red circle), and 60 μL cast (green triangle); 30 mol % NAPTMS, 30 μL cast (blue inverted triangle). (B) 20 mol % NAPTMS, 30 μL cast (blue inverted triangle); 30 mol % NAPTMS 30 μL cast (black square), 45 μL cast (red circle), and 60 μL cast (green triangle). Measurements are mean ±SD for n=3.



FIG. 8 shows cytotoxicity of control (PBS) and 20 mol % NAPTMS balance TEOS (60 μL cast) xerogel soak solution against L929 mouse fibroblast cells as measured via the MTS assay after 24 h exposure.



FIG. 9 shows the effect of various storage conditions on (A) NO flux and (B) total NO released for 20 mol % NAPTMS (balance TEOS, 30 μL cast) xerogels after 30 d under the following conditions: in vacuo dark and −20° C. (black dashed line); in ambient air dark and −20° C. (purple solid line); in vacuo dark and room temperature (blue dash dot dotted line); in ambient air dark and room temperature (green dotted line); and in ambient air ambient light and room temperature (red dash dotted line).



FIG. 10 provides representative optical micrographs of bacterial adhesion to unnitrosated control (A, B) and RSNO-modified (C, D) xerogels at 37° C. in the dark (A, C) and under irradiation (B, D). Black regions are the adhered bacteria.



FIG. 11 shows P. aeruginosa adhesion to control, unnitrosated (dark) and RSNO-modified (light gray) 20 mol % NAPTMS balance TEOS (30 μL cast) xerogels at 37° C. in the dark or under irradiation. Bacterial adhesion reported as percent surface coverage.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The foregoing and other aspects of the present invention will now be described in more detail with respect to the description and methodologies provided herein. It should be appreciated that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the embodiments of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items. Furthermore, the term “about, ” as used herein when referring to a measurable value such as an amount of a compound, dose, time, temperature, and the like, is meant to encompass variations of 20%, 10%, 5%, 1%, 0.5%, or even 0. 1% of the specified amount. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Unless otherwise defined, all terms, including technical and scientific terms used in the description, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


All patents, patent applications and publications referred to herein are incorporated by reference in their entirety. In the event of conflicting terminology, the present specification is controlling.


The embodiments described in one aspect of the present invention are not limited to the aspect described. The embodiments may also be applied to a different aspect of the invention as long as the embodiments do not prevent these aspects of the invention from operating for its intended purpose.


Chemical Definitions


As used herein the term “alkyl” refers to C1-20 inclusive, linear (i.e., “straight-chain”), branched, or cyclic, saturated or at least partially and in some cases fully unsaturated (i.e., alkenyl and alkynyl)hydrocarbon chains, including for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tent-butyl, pentyl, hexyl, octyl, ethenyl, propenyl, butenyl, pentenyl, hexenyl, octenyl, butadienyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, and allenyl groups. “Branched” refers to an alkyl group in which a lower alkyl group, such as methyl, ethyl or propyl, is attached to a linear alkyl chain. Exemplary branched alkyl groups include, but are not limited to, isopropyl, isobutyl, tert-butyl. “Lower alkyl” refers to an alkyl group having 1 to about 8 carbon atoms (i.e., a C1-8 alkyl), e.g., 1, 2, 3, 4, 5, 6, 7, or 8 carbon atoms. “Higher alkyl” refers to an alkyl group having about 10 to about 20 carbon atoms, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms. In certain embodiments, “alkyl” refers, in particular, to C1-5 straight-chain alkyls. In other embodiments, “alkyl” refers, in particular, to C1-5 branched-chain alkyls.


Alkyl groups can optionally be substituted (a “substituted alkyl”) with one or more alkyl group substituents, which can be the same or different. The term “alkyl group substituent” includes but is not limited to alkyl, substituted alkyl, halo, arylamino, acyl, hydroxyl, aryloxyl, alkoxyl, alkylthio, arylthio, aralkyloxyl, aralkylthio, carboxyl, alkoxycarbonyl, oxo, and cycloalkyl. There can be optionally inserted along the alkyl chain one or more oxygen, sulfur or substituted or unsubstituted nitrogen atoms, wherein the nitrogen substituent is hydrogen, lower alkyl (also referred to herein as “alkylaminoalkyl”), or aryl.


Thus, as used herein, the term “substituted alkyl” includes alkyl groups, as defined herein, in which one or more atoms or functional groups of the alkyl group are replaced with another atom or functional group, including for example, alkyl, substituted alkyl, halogen, aryl, substituted aryl, alkoxyl, hydroxyl, nitro, amino, alkylamino, dialkylamino, sulfate, and mercapto.


The term “aryl” is used herein to refer to an aromatic substituent that can be a single aromatic ring, or multiple aromatic rings that are fused together, linked covalently, or linked to a common group, such as, but not limited to, a methylene or ethylene moiety. The common linking group also can be a carbonyl, as in benzophenone, or oxygen, as in diphenylether, or nitrogen, as in diphenylamine. The term “aryl” specifically encompasses heterocyclic aromatic compounds. The aromatic ring(s) can comprise phenyl, naphthyl, biphenyl, diphenylether, diphenylamine and benzophenone, among others. In particular embodiments, the term “aryl” means a cyclic aromatic comprising about 5 to about 10 carbon atoms, e.g., 5, 6, 7, 8, 9, or 10 carbon atoms, and including 5- and 6-membered hydrocarbon and heterocyclic aromatic rings.


The aryl group can be optionally substituted (a “substituted aryl”) with one or more aryl group substituents, which can be the same or different, wherein “aryl group substituent” includes alkyl, substituted alkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, aryloxyl, aralkyloxyl, carboxyl, acyl, halo, nitro, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, acyloxyl, acylamino, aroylamino, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, arylthio, alkylthio, alkylene, and —NR1R″, wherein R1 and R″ can each be independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, and aralkyl.


Thus, as used herein, the term “substituted aryl” includes aryl groups, as defined herein, in which one or more atoms or functional groups of the aryl group are replaced with another atom or functional group, including for example, alkyl, substituted alkyl, halogen, aryl, substituted aryl, alkoxyl, hydroxyl, nitro, amino, alkylamino, dialkylamino, sulfate, and mercapto. Specific examples of aryl groups include, but are not limited to, cyclopentadienyl, phenyl, furan, thiophene, pyrrole, pyran, pyridine, imidazole, benzimidazole, isothiazole, isoxazole, pyrazole, pyrazine, triazine, pyrimidine, quinoline, isoquinoline, indole, carbazole, and the like.


“Cyclic” and “cycloalkyl” refer to a non-aromatic mono- or multicyclic ring system of about 3 to about 10 carbon atoms, e.g., 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. The cycloalkyl group can be optionally partially unsaturated. The cycloalkyl group also can be optionally substituted with an alkyl group substituent as defined herein, oxo, and/or alkylene. There can be optionally inserted along the cyclic alkyl chain one or more oxygen, sulfur or substituted or unsubstituted nitrogen atoms, wherein the nitrogen substituent is hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl, thus providing a heterocyclic group. Representative monocyclic cycloalkyl rings include cyclopentyl, cyclohexyl, and cycloheptyl. Multicyclic cycloalkyl rings include adamantyl, octahydronaphthyl, decalin, camphor, camphane, and noradamantyl.


“Alkoxyl” refers to an alkyl-O— group wherein alkyl is as previously described. The term “alkoxyl” as used herein can refer to, for example, methoxyl, ethoxyl, propoxyl, isopropoxyl, butoxyl, f-butoxyl, and pentoxyl. The term “oxyalkyl” can be used interchangeably with “alkoxyl”. In some embodiments, the alkoxyl has 1, 2, 3, 4, or 5 carbons.


“Aralkyl” refers to an aryl-alkyl group wherein aryl and alkyl are as previously described, and included substituted aryl and substituted alkyl. Exemplary aralkyl groups include benzyl, phenylethyl, and naphthylmethyl.


“Alkylene” refers to a straight or branched bivalent aliphatic hydrocarbon group having from 1 to about 20 carbon atoms, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms. The alkylene group can be straight, branched or cyclic. The alkylene group also can be optionally unsaturated and/or substituted with one or more “alkyl group substituents. ” There can be optionally inserted along the alkylene group one or more oxygen, sulfur or substituted or unsubstituted nitrogen atoms (also referred to herein as “alkylaminoalkyl”), wherein the nitrogen substituent is alkyl as previously described. Exemplary alkylene groups include methylene (—CH2—); ethylene (—CH2—CH2—); propylene (—(CH2)3—); cyclohexylene (—C6H10—); —CH═CH—CH═CH—; —CH═CH—CH2—; wherein each of q and r is independently an integer from 0 to about 20, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, and R is hydrogen or lower alkyl; methylenedioxyl (—O—CH2—O—); and ethylenedioxyl (—O—(CH2)2—O—). An alkylene group can have about 2 to about 3 carbon atoms and can further have 6-20 carbons.


“Arylene” refers to a bivalent aryl group. An exemplary arylene is phenylene, which can have ring carbon atoms available for bonding in ortho, meta, or para positions with regard to each other, i.e., respectively. The arylene group can also be napthylene. The arylene group can be optionally substituted (a “substituted arylene”) with one or more “aryl group substituents” as defined herein, which can be the same or different.


“Aralkylene” refers to a bivalent group that contains both alkyl and aryl groups. For example, aralkylene groups can have two alkyl groups and an aryl group (i.e., -alkyl-aryl-alkyl-), one alkyl group and one aryl group (i.e., -alkyl-aryl-) or two aryl groups and one alkyl group (i.e., -aryl-alkyl-aryl-).


The term “amino” and “amine” refer to nitrogen-containing groups such as NR3, NH3, NHR2, and NH2R, wherein R can be alkyl, branched alkyl, cycloalkyl, aryl, alkylene, arylene, aralkylene. Thus, “amino” as used herein can refer to a primary amine, a secondary amine, or a tertiary amine. In some embodiments, one R of an amino group can be a cation stabilized diazeniumdiolate (i.e., NONOX+). The terms “cationic amine” and “quaternary amine” refer to an amino group having an additional (i.e., a fourth) R group, for example a hydrogen or an alkyl group bonded to the nitrogen. Thus, cationic and quaternary amines carry a positive charge.


The term “alkylamine” refers to the -alkyl-NH2 group.


The term “carbonyl” refers to the —(C═O)— group.


The term “carboxyl” refers to the —COOH group and the term “carboxylate” refers to an anion formed from a carboxyl group, i.e., —COO.


The terms “halo”, “halide”, or “halogen” as used herein refer to fluoro, chloro, bromo, and iodo groups.


The term “hydroxyl” and “hydroxy” refer to the —OH group.


The term “hydroxyalkyl” refers to an alkyl group substituted with an —OH group.


The term “mercapto” or “thio” refers to the —SH group. The term “silyl” refers to groups comprising silicon atoms (Si).


The term “silane” refers to any compound that includes four organic groups, such as including any of the organic groups described herein (e.g., alkyl, aryl and alkoxy), bonded to a silicon atom.


As used herein the term “alkoxysilane” refers to a silane that includes one, two, three, or four alkoxy groups bonded to a silicon atom. For example, tetraalkoxysilane refers to Si(OR)4, wherein R is alkyl. Each alkyl group can be the same or different. An “alkylalkoxylsilane” refers to an alkoxysilane wherein one or more of the alkoxy groups has been replaced with an alkyl group. Thus, an alkylalkoxysilane comprises at least one alkyl-Si bond.


The term “fluorinated silane” refers to an alkylsilane wherein one of the alkyl groups is substituted with one or more fluorine atoms.


The term “cationic or anionic silane” refers to an alkylsilane wherein one of the alkyl groups is further substituted with an alkyl substituent that has a positive (i.e., cationic) or a negative (i.e. anionic) charge, or can become charged (i.e., is ionizable) in a particular environment (i.e., in vivo).


The term “silanol” refers to a Si—OH group.


NO-Releasing Sol-Gel Coatings


Provided according to some embodiments of the invention are NO-releasing sol-gel coatings that include a tertiary nitrosothiol functional group. Such sol gel coatings are formed from a tertiary thiol and at least one backbone alkoxysilane. As used herein, the term “backbone alkoxysilane” refers to an alkoxysilane that is not modified with a nitrosothiol functional group. In some embodiments of the invention, the sol-gel coatings are xerogel coatings. The coatings will generally be referred to herein as xerogel coatings, but one of skill in the art will appreciate that the compositions and methods described herein may also be with used to form other types of sol-gel coatings. Therefore, the term “xerogel” may be substituted with the term “sol-gel ” in embodiments described herein.


Also provided according to some embodiments of the invention are methods of producing NO-releasing xerogel coatings that include (a) co-condensing a sol precursor solution comprising at least one backbone alkoxysilane and at least one tertiary thiol alkoxysilane in a solvent to form a sol; (b) coating a substrate with the sol; (c) optionally, drying the sol to form the xerogel coating; and (d) contacting the xerogel with a nitrosating agent. The sol precursor solution may further include any additional components, including those described above, and/or any other additives known in the art of forming sol-gel coatings. Additionally, such methods may be performed by any method known to those of skill in the art.


Any suitable backbone alkoxysilane, or mixtures thereof, may be included in the sol precursor solution. However, in some embodiments, the backbone alkoxysilane may include a tetraalkoxysilane having the formula Si(OR)4, wherein each R is independently an H, alkyl or substituted alkyl. As such, the R groups in the backbone alkoxysilane may be the same or may be different. In particular embodiments, the tetraalkoxysilane may include tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetra-n-propoxysilane (TPOS) and/or tetra-n-butoxysilane (TBOS). In some embodiments of the invention, the backbone alkoxysilane may include an alkylalkoxysilane having the formula of R′—Si(OR)3, wherein R′ is an organic functional group (e.g., alkyl, aryl or alkylaryl) and each R is independently H, alkyl or substituted alkyl. As such, each R may be the same or may be different and each R group may be the same or different as R′. In particular embodiments, the backbone alkoxysilane may include methyltrimethoxysilane (MTMOS), ethyltrimethoxysilane (ETMOS), propyltrimethoxysilane (PTMOS), butyltrimethoxysilane (BTMOS), butyltriethoxysilane (BTEOS), and/or octadecyltrimethoxysilane (ODTMOS). In some embodiments of the invention, the backbone alkoxysilane may include an alkoxysilane having the formula R′R″—Si(OR)2, wherein R′ and R″ are each independently an organic functional group (e.g., alkyl, aryl or alkylaryl) and each R is independently H, alkyl or substituted alkyl. In some embodiments of the invention, the backbone alkoxysilane may include an alkoxysilane having the formula of R′R″R′″—SiOR, wherein R′, R″ and R′″ are each independently an organic functional group (e.g., alkyl, aryl or alkylaryl) and R is H, alkyl or substituted alkyl.


Examples of backbone alkoxysilanes that may be used in some embodiments of the invention include acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, allyltriethoxysilane, allytrimethoxysilane, amyltriethoxysilane, amyltrimethoxysilane, 5-(bicycloheptenyl)methyltriethoxysilane, 5-(bicycloheptenyl)methyltrimethoxysilane, 5-(bicycloheptenyl)dimethylmethoxysilane, 5-(bicycloheptenyl)methyldiethoxysilane, bis(3-cyanopropyl)diethoxysilane, bis(3-cyanopropyl)dimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, bis(trimethylsiloxy)methylsilane, bromomethyldimethylmethoxysilane, 3-bromopropyltriethoxysilane, n-butyldimethylmethoxysilane, tert-diphenylmethoxysilane, n-butyldimethoxysilane, n-butyldiethoxysilane, n-butyltrimethoxysilane, 2-(carbomethoxy)ethyltrimethoxysilane, 4-chlorobutyldimethylmethoxysilane, 4-chlorobutyldimethylethoxysilane, 2-chloroethyltriethoxysilane, chloromethyldimethylethoxysilane, p-(chloromethyl)phenyltriethoxysilane, p-(chloromethyl)phenyltrimethoxysilane, chloromethyltriethoxysilane, chlorophenyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltriethoxysilane, 2-cyanoethylmethyltrimethoxysilane, (cyanomethylphenethyl)triethoxysilane, 2-(3-cyclohexenyl)ethyl]trimethoxysilane, cyclohexydiethoxymethylsilane, cyclopentyltrimethoxysilane, di-n-butyldimethoxysilane, dicyclopentyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diethyldibutoxysilane, diethylphosphatoethyltriethoxysilane, diethyl(triethoxysilylpropyl)malonate, di-n-hexyldimethoxysilane, diisopropyldimethoxysilane, dimethyldimethoxysilane, 2,3-dimethylpropyldimethylethoxysilane, dimethylethoxysilane, diphenydiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane, 2-(diphenylphosphino)ethyltriethoxysilane, divinylethoxysilane, n-dodecyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, 3-glycidoxypropyldimethylethoxysilane, (3-glycidoxypropyl)methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-heptylmethyldimethoxysilane, n-hexadecyltriethoxysilane, 5-hexenyltrimethoxysilane, n-hexytriethoxysilane, n-hexyltnethoxysilane, 3-iodopropyltriethoxysilane, 3-iodopropyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, isocyanatopropyldimethylmethoxysilane, 3-isocyanatopropyltriethoxysilane, isooctyltriethoxysilane, 3-mercaptopropyl-methyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl-methyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-(4-methoxyphenyl)propyltrimethoxysilane, methylcyclohexyldiethoxysilane, methyldiethoxysilane, methyldimethoxysilane, methyldodecyldiethoxysilane, methyl-n-octadecyldimethoxysilane, methyl(2-phenethyl)dimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, methyl-n-propyldimethoxysilane, methyltriethoxysilane, neophylmethyldiethoxysilane, n-octadecyldimethylmethoxysilane, n-octadecyltriethoxysilane, n-octadecyltrimethoxysilane, 7-octenyltrimethoxysilane, n-octylmethyldimethoxysilane, n-octyltriethoxysilane, phenethyldimethylmethoxysilane, phenethyltriethoxysilane, phenyldimethylethoxysilane, phenyltriethoxysilane, phenyltriethoxysilane, phthalocyanatodimethoxysilane, n-propyltrimethoxysilane, styrylethyltrimethoxysilane, tetra-n-butoxysilane, tetraethoxysilane, tetrapropoxysilane, (tridecafluoro-1,1,2,2,-tetrahydrooctyl)-1-trimethoxysilane, triethoxysilane, triethoxysilylpropylethyl carbamate, triethylethoxysilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)triethoxysilane, trimethoxysilane, 1-trimethoxysilyl-2-(p,m-chloromethyl)phenylethane, trimethylethoxysilane, 2-(trimethylsiloxy)ethyl methacrylate, p-trimethylsiloxynitrobenzene, triphenylethoxysilane, n-undeceyltriethoxysilane, vinyldimethylethoxysilane and vinyltrimethoxysilane.


The particular backbone alkoxysilanes used and ratio of each in a sol precursor solution may be varied depending on the particular tertiary thiol alkoxysilanes present in the sol, the particular substrate coated, the porosity of the coating desired, the hydrophobicity of the coating desired, and the NO-release kinetics desired.


Any suitable tertiary thiol alkoxysilane, or mixtures thereof, may be included in the sol precursor solution. In some embodiments, the tertiary thiol alkoxysilane has the following structure: (OR)(OR′)(OR″)Si(Rx), wherein R, R′ and R″ are each independently H, alkyl or substituted alkyl and Rx is functional group that comprises a tertiary thiol group. In particular embodiments, the tertiary thiol alkoxysilane has the structure:




embedded image



wherein R, R′ and R″ are each independently H, alkyl or substituted alkyl and n is in a range of 0 to 10. In some embodiments, R, R′ and R″ are each independently alkyl and n is 0-5. Furthermore, in particular embodiments of the invention, the tertiary thiol is a compound having the structure:




embedded image


According to some embodiments of the invention, also provided are the nitrosothiol analogs of such compounds.


Once a xerogel coating has been formed, the tertiary thiol may be nitrosated to transform the tertiary thiol groups to tertiary nitrosothiol functional groups. Methods of nitrosating thiol functional groups are known in art and some methods are described in the examples below. Any suitable method of nitrosating the tertiary thiol groups may be used. An example of a nitrosating agent that may be used according to embodiments of the invention is acidified nitrite.


In some embodiments, other NO-releasing functional groups may also be present in the xerogel, including but not limited to, primary or secondary nitrosothiols, diazeniumdiolate, nitrosamine, hydroxyl nitrosamine, hydroxyl amine, hydroxyurea and metal nitrosyl complexes.


In some embodiments of the invention, the sol precursor solution may also include at least one multifunctional alkoxysilane. The term “multifunctional alkoxysilane” refers to an alkoxysilane that includes at least one functionality that provides at least one additional property to the xerogel coating. The multifunctional alkoxysilane may be a backbone alkoxysilane, a nitrosothiol alkoxysilane or may be a different alkoxysilane. In some embodiments, the multifunctional alkoxysilane has the formula R′R″R′″SiOR, wherein R is H, alkyl or substituted alkyl, R′, R″ and R′″ are each independently a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted alkylaryl, a substituted or unsubstituted arylalkyl or an organic moiety that provides at least one additional property to the xero-gel coating. At least one of R′, R″ and R′″ is an organic moiety necessary that provides the at least one additional property to the xerogel coating. This organic moiety may be chosen based on the property desired and the stability of a particular functionality under xerogel processing conditions. The multifunctional alkoxysilane may be introduced into the sol precursor solution with the backbone alkoxysilane and tertiary thiol alkoxysilane to form a sol which may then form a multifunctional co-condensed siloxane coating. Examples of additional properties that may be imparted to a substrate via the multifunctional alkoxysilane include:


Anti-corrosive—Any suitable alkoxysilane that may impart anti-corrosive properties to the xerogel coating may be used. Common inhibitors known to one skilled in the art to prevent corrosion of metallic surfaces include imines formed from the condensation products of aldehydes and amines, cinnamaldehyde and ascorbic acid. As such, in some embodiments, the multifunctional alkoxysilane may include a dipodal alkoxysilane formed from the condensation of glutaraldehyde and two 3-aminopropyltrimethoxysilanes and/or a cinnamamide silane derivative.


Anti-inflammatory—Any suitable alkoxysilane that may impart anti-inflammatory properties to the xerogel coating may be used. Widely accepted anti-inflammatory agents includingibuprofen, diclofenac, and naproxen may be covalently attached to a medical device surface to minimize inflammation and pain caused by device implantation. As such, in some embodiments, the multifunctional alkoxysilane may include an ibuprofen alkoxysilane derivative, a diclofenac alkoxysilane derivative or a naproxen alkoxysilane derivative. Ester linkages sensitive to enzymatic or hydrolytic cleavage may also be employed to provide controlled release of the anti-inflammatory agent into the surrounding tissue.


Anti-microbial—Any suitable alkoxysilane that may impart antimicrobial properties to the xerogel coating may be used. Broad spectrum antimicrobial agents including quaternary ammonium compounds, chlorhexidine, polyhexamethylene biguanide, triclosan, ionic silver complexes, iodine, and hypochlorite may be derivatized with an alkoxysilane to provide microbicidal activity to the device surface or the surrounding tissue. In some embodiments, the multifunctional alkoxysilane may include a quaternary ammonium alkoxysilane derivative, a chlorhexidene alkoxysilane derivative, a polyhexamethylene biguanide alkoxysilane derivative, a triclosan alkoxysilane derivative, an ionic silver alkoxysilane derivative, a iodine-releasing alkoxysilane derivative and a hypochlorite alkoxysilane derivative.


Anti-oxidative—Any suitable alkoxysilane that may impart anti-oxidative properties to the xerogel coating may be used. In some embodiments, the multifunctional alkoxysilane may include a vitamin E alkoxysilane derivative, an ascorbic acid alkoxysilane derivative, a glutathione alkoxysilane derivative, a N-acetylcysteine alkoxysilane derivative and other thiol alkoxysilane derivatives. Such alkoxysilanes may be incorporated into medical device coatings to mediate oxidative stress at the implant surface or in the surrounding tissue.


Crosslinking—Any suitable alkoxysilane that may impart additional crosslinking to the xerogel coating may be used. Functional alkoxysilanes are routinely used by those skilled in the art of xerogel chemistry to enable methods of curing and forming a stable siloxane network via covalent bonding other than siloxane bonds. In the present invention this affords a method for forming stable tertiary thiol coatings that do not involve sintering at high temperatures. In some embodiments, the multifunctional alkoxysilane may include an epoxy group including (3-glycidoxypropyl)trimethoxysilane, (3-glycidoxypropyltriethoxysilane), (3-glycidoxypropyl)methyldiethoxysilane), 1,3-bis(glycidoxypropyl)tetramethyl-disiloxane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; acrylo including (3acryloxypropyl)trimethoxysilane, acryloxymethyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane); isocyano including 3-isocyanatopropyltriethoxysilane, isocyanatopropyltrimethoxysilane; vinyl including vinylmethyldiethoxysilane, vinylmethyldimethoxysilane amino, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriisopropxysilane; and amino including 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane.


In addition to intra-silane bonding, the functionalities may be used to facilitate crosslinking of the xerogel coating with a top coated polymer layer. The top-coated polymer layer may be polymerized at the surface and react with the R3 functionality from the multifunctional alkoxysilane in the xerogel coating in order to facilitate bonding between the two surface layers and prevent delamination of the polymer top-coat. The top-coat may be applied during device fabrication or applied on a macroscopic scale upon device implantation as is the case with methacrylate-based bone cement used to anchor artificial joints. Acrylate or methacrylate derivatized alkoxysilane residues can participate in the free-radical initiated polymerization of the two bone cement monomers.


Surface charge—Any suitable alkoxysilane that may impart surface charge to the xerogel coating may be used. One of the most widely known strategies to alter protein adsorption, bacterial adhesion, and concomitant biofouling of implantable devices is to alter the charge of the implant surface. However, these passive surface functionalites alone have been unable to dramatically improve foreign body response. In the present invention, the combination of nitric oxide and surface charge may provide medical devices with improved biocompatibility. Thus, in some embodiments, the multifunctional alkoxysilane may include a cationic alkoxysilane such as (2-N-benyzlaminoethyl)-3-aminopropyl-trimethoxysilane, hydrocholoride; bis(methoxyethyl)-3-trimethoxysilylpropyl-ammonium chloride; N—N-didecyl-N-methyl-N-(3-trimethoxysilyl)ammonium chloride; N-trimethyoxysilylpropyl-N,N,N-trimethyl ammonium chloride; octadecylbis(triethoxysilylpropyl)-ammonium chloride; and octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride. In some embodiments, the multifunctional alkoxysilane may include an anionic alkoxysilanes such as 3-trihydroxysilylpropylmethyl phosphonate, sodium salt and carboxyethylsilanetriol, sodium salt.


Surface hydrophilicity—Any suitable alkoxysilane that may impart hydrophilic properties to the xerogel coating may be used. Alkoxysilanes containing repeat poly(ethylene)oxy groups may be used to increase the wetability of the NO-releasing coating thereby helping to improve biocompatibility upon implantation and also enhance the rate of water uptake in the co-condensed siloxane coating. Therefore, in some embodiments, the multifunctional alkoxysilane may include a hydrophilic silane such as N-triethoxysilylpropyl)-O-polyethyleneoxide urethane; N-3-[amino(polypropylenoxy)]aminopropyltrimethoxysilane; bis-[3-(triethoxysilylpropoxy)-2-hydroxypropoxy]polyethylene oxide; bis(3-triethoxysilylpropyl)polyethylene oxide (25-30); [hydroxy(polyethyleneoxy)propyl]-triethoxysilane; and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane.


Surface hydrophobicity—Any suitable alkoxysilane that may impart hydrophobic properties to the xerogel coating may be used. Hydrophobic silanes are known to those skilled in the art to increase lipophilicity of surfaces. In some embodiments, the multifunctional alkoxysilane may include linear alkyl, branched and cyclic alkylalkoxysilanes having at least three carbon atoms, substituted and unsubstituted phenyl alkoxysilanes, and fluorinated alkoxysilanes. For example, a concentration of 10-20% (v/v) fluoroalkoxysilane may be included in the sol precursor solution. Exemplary fluoroalkoxysilanes may include heptadecafluoro-1,1,2-2-tetrahydrodecyl)triethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane, (perfluoroalkyl)ethyltriethoxysilane, nonafluorohexyltrimethoxysilane, nonafluorohexyltriethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane, and (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)trimethoxysilane.


The silane precursors may be combined in any suitable ratio in the sol. In particular embodiments, the concentration of the tertiary thiol alkoxysilane may be in a range of about 1 to about 40 mol percent, and in some embodiments, 10 to 30 mol %, and the concentration of the backbone alkoxysilane may be in a range of about 70 to about 90 mol %. The concentrations are based on the total silane concentration in the sol precursor solution.


The volume and type of the solvent employed in the sol precursor solution may vary. Examples of solvents include water, methanol, ethanol, propanol, butanol, 2-ethoxyethanol, formamide, dimethylformamide, dioxane, tetrahydrofuran, and mixtures thereof. In some embodiments, drying control additives may be included in the sol to facilitate the drying of the gels. Such drying control additives may allow for drying of the gel without cracking. Examples of drying control additives include formamide, dimethylformamide, diethylamine amine, acetonitrile, dioxane, glycerol, oxalic acid, surfactants and mixtures thereof.


In some embodiments of the invention, the sol precursor solution may include an acid or base catalyst. The catalyst may initiate the sol-gel formation process. Any suitable base catalyst may be used. However, examples of base catalysts include ammonia, alkali metal hydroxides, fluorides (NaF) and organic bases. An example of an acid catalyst is HCl. In some embodiments, the concentration of the acid catalyst is in a range of about 0.025M to about 0. 75M. In some embodiments, the concentration of the acid catalyst is about 0. 050M.


In some embodiments of the invention, a radical initiator may be added to the sol precursor solution. Any suitable radical initiator may be used, but in some embodiments, initiators may include organic peroxides and azo compounds (e.g. azobisisobutyronitrile, AIBN) that may be used to initiate polymerization of modified alkoxysilanes (e.g. 3-methacryloxypropyl trimethoxysilane) to strengthen the siloxane coating.


In some embodiments of the invention, a porogen may be included in the sol precursor solution. Control of porosity of the sol may enable increased or decreased water uptake of the coating, and thus may facilitate tissue and bone ingrowth on and into the device, and may provide a mechanism for analyte diffusion in the case of sensor-based implants. Any suitable porogen may be used. However, examples of porogens include dendrimers, water soluble polymers such as PVP, PVA, PEG, and biodegradable polymers such as PLA, PGA, PLGA, caprolactones, polyesters and polypeptides. In some embodiments, the concentration of the porogen may be in a range of from about 0.05 to about 20% (w/v) of the cast sol solution. The molecular weights and resulting macromolecular structure of the sol may govern pore size and geometry.


The substrate may be coated with the sol and/or sol precursor solution to form the coating. In some embodiments of the present invention, methods of coating the substrate include applying the coating to a device via dip-coating, spread-coating, spray coating, spin coating, brushing, imbibing, rolling and/or electrodeposition. Other methods may be used and are known to those of skill in the art. The casting volume may also affect the properties of the coating because it may affect drying time and the amount of material deposited, and hence the concentration of NO release. In some embodiments, the casting volumes may be in the range of from about 1 to about 200 μL/cm2, and in particular embodiments, in a range of about 4 to about 60 μL/cm2.


In some embodiments of the invention, the coating may be applied to the substrate as only one layer. In some embodiments, the substrate may be coated two or more times to a form multi-layered coating. A multi-layered coating may include multiple layers of a single xerogel containing one NO donor composition according some embodiments of the invention. The multiple layers may allow the combination of relatively thin layers, which may dry more evenly and therefore show less cracking, to form a thicker coated layer.


Alternatively, a multi-layered coating may include at least one layer formed from a different xerogel composition according to an embodiment of the invention. Such a combination of different types of NO-releasing xerogel coatings may impart additional functionality to the device surface. Furthermore, in some embodiments, a multi-layer coating may include at least one coating layer that is formed from a different xerogel composition or a different type of coating material altogether. For example, a NO-releasing xerogel coating according to an embodiment of the invention may be top coated with additional polymeric materials that may impart stability to the underlying xerogel coating and regulate diffusion of water to the coating. Such coatings may also reduce or eliminate biofouling at the surface. Any suitable top coating may be used. However, examples of top coatings include polyurethane, collagen, silicone rubber, polystyrene, polymethylmethacrylate, polyvinylchloride and combinations thereof. While a top coat may be applied, in some embodiments, a NO-releasing xerogel coating according to an embodiment of the invention is the top layer of a multiple layered coating.


In some embodiments, the surface may be coated with an additional polymer substrate designed to impart passive surface functionality in combination with the NO-released from the underlying xerogel coating. Examples may include polyurethane, collagen, silicone rubber, polystyrene, polymethylmethacrylate and polyvinylchloride.


In some embodiments, a sol and/or sol precursor solution according to an embodiment of the invention may be further treated after being applied to the substrate. For example, the coating may be dried under vacuum, photocured, or heat cured to form the xerogel coating. As additional examples, drying agents may also be applied to aid in the complete co-condensation of the components of the sol precursor solution and to prevent cracking/breaking during evaporation of the sol solvent(s). Additionally the siloxane network may be further aged (i.e., driven to complete conversion of silanols into siloxanes bridges) by exposing the coating and substrate to basic solutions up to several orders of magnitude higher in base concentration than that employed during the coating preparation.


Coatings according to embodiments of the invention may be of any suitable thickness. The thickness may depend on the number of layers contained within the coating and on the method used to apply the coating. In some embodiments, the total thickness of the coating (including all layers, both NO-releasing co-condensed siloxane coating layers and other layers) may be in a range of from about 1 to about 250 μm, in some embodiments, in a range of about 20 to about 150 μm, and in some embodiments, in a range of about 5 to about 20 μm.


The NO-releasing xerogel coatings may have desirable properties such as increased NO storage, lengthened NO-release durations, and environmentally triggered mechanisms of NO donor decomposition. Furthermore, in some embodiments of the invention, the NO-releasing xerogel coatings may have a total NO storage ranging from about 0.01 to about 10 μmol NO.cm−2, and in particular embodiments, in a range of about 0. 8 to 2 μmol NO.cm−2. In some embodiments the NO release upon irradiation of light is in a range of about 1 to 150 μmol NO/cm2s2, and in some embodiments, in a range of about 10 to 120 μmol/cm2s2. The NO release may depend on light wattage and distance of the lamp.


The xerogel coating may then be nitrosated by any suitable method, including but not limited to contacting the xerogel with nitrosating agents such as nitrous acid/acidified nitrite. In some embodiments, the nitrosating agent may be in excess of the thiol groups, in some cases an excess in a range of 10 fold to 100 fold.


Substrates


NO-releasing xerogel coatings according to embodiments of the invention may be applied to any suitable substrate. However, in some embodiments, the NO-releasing xerogel coating may be applied to a medical device. As used herein, the term “medical device” refers to any devices or structures used in medical diagnosis, therapy or surgical procedure, including any physical object that can be implanted into the body or which comes in direct contact with the body. These devices may be useful for diagnostic or therapeutic purposes, and can be implanted for use on a permanent or temporary basis. They may be made to replace and act as a missing biological structure. They may be sensors or probes. They may be devices, such as drug delivery devices, for example, in the form of implantable pills or drug-eluting implants. Medical devices may contain electronics, such as artificial pacemakers, retinal implants, cochlear implants, and pulse-generators. Also included are components of these devices, such as electrical leads and guide wires.


Specific medical devices include but are not limited to orthopedic implants, including replacement joints, re-constructive prosthesis (e.g. maxillofacial prostheses), bone cement, bone defect fillers, spinal cages, bone anchors, bone screws, fracture-fixation plates, screws, and tacks, artificial tendons and ligaments, and dental implants; cardiovascular implants, including vascular grafts, vascular access devices and ports, stents, balloons, pacemakers, myocardial plugs, lead coatings including coatings for pacemaker leads, defibrillation leads and coils; ventricular-assist-device devices (e.g. left ventricular assist hearts and pumps, total artificial hearts, shunts, valves including heart valves and vascular valves, anastomosis clips and rings, suture anchors, tissue staples and ligating clips at surgical sites); ophthalmic implants, including corneal implants, retinal implants, and introcular lenses; drug delivery systems; cochlear implants; tissue screws and tacks; tissue adhesives and sealants; tissue staples and ligating clips at surgical sites; matrices for cell encapsulation and tissue engineering; tissue bulking devices and agents; tissue engineering scaffolds for cartilage, bone, skin and other in vivo tissue regeneration; sutures; suture anchors; surgical drapes; gauze; protective platings; breast enlargement prostheses; ostomy devices and long-term urinary devices; bracheotherapy devices; ventriculo-peritoneal shunts; pumps (including implantable infusion pumps); stents (e.g. coronary vascular stents, arterial stents, peripheral vascular stents, cerebral, urethral, ureteral, biliary, tracheal, gastrointestinal and esophageal stents); stent grafts; catheters (e.g., renal or vascular catheters such as balloon catheters, dialysis catheters, long term tunneled central venous catheters, peripheral venous catheters, short-term central venous catheters, arterial catheters, pulmonary artery Swan-Ganz catheters, urinary catheters, long term non-tunneled central venous catheters, peritoneal catheters, and ventricular catheters); guide wires; trocar needles; electrical leads, balloons; implantable stimulators; implantable pulse generators; filters (e.g., vena cava filters and mesh filters for distil protection devices); vascular grafts, abdominal aortic aneurysm devices such as stents and grafts; dialysis ports, embolization devices including cerebral aneurysm filler coils (including Guglilmi detachable coils and metal coils); embolic agents; bulking agents; septal defect closure devices; anastomosis clips and rings; cannulae; contraceptive intrauterine devices; metal wire ligatures; urethral slings; hernia “meshes;” sensors, including biosensors, and biopsy devices, as well as any other device that is implanted or inserted into the body for medical purposes.


The medical device itself may be formed from or include any suitable material. The material comprising a given medical device is chosen based in part on the particular application; for example, the mechanical properties of the device may need to conform to the natural tissue surrounding it. Thus, a different material may be used, for example, for a sensor versus a suture, and for an orthopedic implant versus a retinal implant. For a discussion of the many materials that can be used in medical devices, see Helmus et al., Toxicologic Pathology 36:70-80 (2008), incorporated herein by reference. Examples of materials that may form or be included in the medical device include metals (including germanium, cobalt, chromium, nickel, aluminum, zirconium, tin, hafnium, vandaium, and titanium), metal alloys (including titanium-niobium, titanium-aluminum-vanadium, titanium-aluminum-niobium, vanadium steel, cobalt chrome, the superalloy CoCrMo, and stainless steel), carbon, carbon fibers, carbon polymer, ceramics and glasses (including oxides, carbides, nitrides, or nitro-carbides of silicon, titanium, tantalum, tungsten, zirconium, niobium, chromium, or aluminum), ceramic-metal composites; synthetic and natural polymers and copolymers (including rubber, nylon, silicone, polyurethane, polyethylene, polyvinyl chloride, polystyrene, polyetheretherketone, polytetrafluoroethylene tetraphthalate, polyethylene tetraphthalate, polytetrafluoroethylene, polyglycolic acid, latex, polyglycolic acid, polylactide-co-glycolide, polylactic acid polymethyl methacrylate; latex, gelatin, collagen, albumin, and globulin) and any combination thereof.


In some embodiments of the present invention, at least one material of a medical device may be pretreated prior to the coating of the device with a NO-releasing xerogel coating according to an embodiment of the invention. For example, mechanical surface modifications may include machining, grinding, polishing, or blasting metal surfaces prior to deposition of the NO-releasing coating to increase interfacial surface area and allow for increased silane bonding/functionalization. Chemical methods of surface preparation may include alkaline treatment, acidic treatment, hydrogen peroxide treatment, argon and oxygen plasma cleaning, and ozone cleaning. In some embodiments of the the present invention, the surface is pretreated with a dipodal alkoxysilane or an aminoalkoxysilane/glutaraldehyde treatment to facilitate proper adhesion of the NO-releasing siloxane coating and prevent hydrolysis at the substrate surface. In some embodiments, a metal surface may be pretreated, for example with an alkaline treatment, in order to form a metal hydroxide layer that may react with a silane such as a backbone alkoxysilane or tertiary thiol alkoxysilane. The bonding between the silanes in the sol precursor solution with the metal surface may facilitate adhesion and stability of the xerogel coating on the surface.


Also provided herein are methods of reducing or eliminating microbial adhesion to a substrate that include (a) coating the substrate with a sol-gel coating that comprises a tertiary nitrosothiol functional group; (b) exposing the substrate to microbes; and (c) irradiating the substrate to release nitric oxide, which reduces or eliminates microbe adhesion to the substrate. In some embodiments, the microbes are bacterial and such methods reduce bacterial adhesion. Any sol-gel coating described herein may be used, including xerogel coatings.


EXAMPLES

Materials


3-Aminopropyltrimethoxysilane (APTMS), tetraethoxysilane (TEOS), and isobutyltrimethoxysilane (BTMOS) were purchased from Gelest (Tullytown, Pa.). Methyltrimethoxysilane (MTMOS) and diethylenetriamine pentaacetic acid (DTPA) were purchased from Fluka (Bucks, Switzerland). Tetramethoxysilane (TMOS) and Dulbecco's Modified Eagle's Medium (DMEM) were purchased from Sigma (St. Louis, Mo.). D(−)-Penicillamine, ethanol, and tetrahydrofuran (THF) were obtained from Fisher Scientific, (Fair Lawn, N.J.). Pseudomonas aeruginosa(ATCC #19143) was obtained from American Type Culture Collection (Manassas, Va.). Nitric oxide calibration gas (26.8 ppm; balance N2) was purchased from National Welders Supply Co. (Durham, N.C.). Type A19 60 and 100 W General Electric and type A21 200 W Sylvania incandescent light bulbs were purchased from Lowe's (Chapel Hill, N.C.). Tecoflex SG-80A polyurethane was a gift from Thermedics (Woburn, Ma.). Other solvents and chemicals were analytical-reagent grade and used as received. Distilled water was purified to 18. 2 MΩ·cm with a Millipore Milli-Q Gradient A-10 water purification system (Bedford, Mass.).


Silane and Xerogel Synthesis


Synthesis of N-Acetyl Penicillamine (NAP) Thiolactone. Acetic anhydride (96 mmol, 9.80 g) was added dropwise to a well stirred solution of D-(−) penicillamine (40 mmol, 5.97 g) in pyridine (50 mL) at 0° C. After 30 min, the flask was removed from ice and allowed to stir at room temperature for 15 h. The resultant orange solution was partitioned between chloroform and dilute HCl and washed 4× with dilute HCl. After drying over MgSO4, the organic phase was evaporated to yield an orange residue. The residue was first dissolved in absolute ethanol (20 mL), and then precipitated in pentane at −78° C. The light yellow crystalline product was isolated by filtration (2.07 g, 30%). 1H NMR (CDCl3) δ 1.65 (s, CH3), 1.86 (s, CH3), 2.05 (s, NHCOCH3), 5.68-5.70 (d, CH(CH3)2), 6.56 (NHCOCH3). 13C NMR (CDCl3) δ 22.52 (NHCOCH3), 26.20 (CH(CH3)2), 30.22 (CH(CH3)2), 51.23 (CH), 169.37 (NHCOCH3), 192.21 (SCO).


Synthesis of N-Acetyl Penicillamine Propyltrimethoxysilane (NAPTMS). APTMS (10 mmol, 1.78 g). was added to a stirring solution of NAP thiolactone (10 mmol, 1.72 g) in methylene chloride (20 mL). The light yellow solution was stirred for 4 h at room temperature before distillation of the methylene chloride to yield NAPTMS as a viscous clear oil. 1H NMR (CDCl3) δ 0.54 (t, SiCH2), 1.24 and 1.39 (s, CH(CH3)2SH), 1.54 (m, SiCH2CH2), 1.96 (s, NHCOCH3), 2.96 and 3.21 (m, SiCH2CH2CH2), 3.44 (s, Si(OCH3)3), 4.63 (d, CHC(CH3)2SH), 6.99 (d, CHNHCOCH3), 7.70 (t, CH2NHCOCH). 13C NMR (CDCl3) δ □6.59 (SiCH2), 22.42 and 22.97 (CH(CH3)2SH), 28.64 (NHCOCH3), 30.80 (SiCH2CH2), 41.93 (CHC(CH3)2SH), 46.23 (SiCH2CH2CH2), 50.35 (Si(OCH3)3), 60.32 (CHC(CH3)2SH), 169. 64 (CHNHCOCH3), 170.17 (CHCONH).


Synthesis of NAPTMS-derived Xerogels. Xerogel coatings were prepared as follows. Sols containing 10-40 mol % NAPTMS (balance MTMOS, BTMOS, TMOS, or TEOS) were prepared by shaking ethanol (1050 μL), backbone alkylalkoxy- or alkoxysilane (86-201 μL), NAPTMS (53-210 mg; total silane molar amount=1 mmol), water (46 μL) and 0.5 M HCl (136 μl) for 30 min-4 h. All substrates were sonicated in ethanol for 20 min, dried under N2, and ozone (UV) cleaned for 20 min in a BioForce TipCleaner (Ames, Iowa) prior to casting. Aliquots of 30-120 μl were cast onto 9×25 mm2 precleaned glass substrates. After casting of the sol, all physisorbed films were allowed to dry at room temperature overnight, and then transferred to a 45° C. oven for 2 d. S-Nitrosothiols were then formed on the room temperature-cooled films.


S-Nitrosothiol Formation. Thiols of xerogels were nitrosated by reaction with acidified nitrite. Films were protected from light and incubated for fixed intervals in solution (2 mL) containing a 100-fold molar excess of NaNO2 and HCl (vs. moles thiol) and 500 μM DTPA. The xerogels were washed with 500 μM DTPA and stored in the dark at −20° C. until used, Spectral characterization of RSNO formation was performed by affixing the slides normal to the light path of a PerkinElmer Lambda 40 UV/vis spectrophotometer (Norwalk, Conn.) in cuvettes containing 2 mL phosphate buffered saline (PBS; 10 mM phosphate, pH 7.4). Absorbance at 590 nm was monitored as a function of nitrosation reaction time and concentration of excess nitrosating agent for each composition of xerogel,


Characterization


Nitric Oxide Release. Nitric oxide release from RSNO-modified xerogels was monitored in 1 s intervals using a Sievers model 280i chemiluminescence nitric oxide analyzer (NOA) (Boulder, Colo.), Calibration of the instrument was performed prior to each experiment using 26.8 ppm NO gas (balance N2) and air passed through a Sievers NO zero filter. Individual slides were immersed in 25 mL PBS containing 500 μM DTPA and sparged with a 200 mL/min N2 stream. Temperature of the sample was maintained at 37° C. during irradiation by circulating thermostatted water through a custom-made flow cell. The water was circulated between the flow-cell housing the sample flask and a thermostatted water bath shielded from the lamp. Light-initiated NO release was examined by using incandescent bulbs of various wattages placed 0.6 m above the sample flask to monitor light induced fluxes and at a distance of 0.3 m without thermostatting for assaying total NO storage. The sample flask was shielded from light with aluminum foil when light was not the intended initiator of NO release.


Xerogel Film Stability. Nitrosated xerogel films on glass slides (n=3) were immersed in 10 mL PBS and incubated at 37° C. Films were removed and transferred to fresh solutions of PBS at fixed intervals of 6, 12, 24 h and 7 d. Silicon (Si) concentrations in the PBS soak solutions were determined using a Teledyne Leeman Labs Prodigy inductively coupled plasma optical emission spectrometer (ICP-OES) (Hudson, N.H.) calibrated with 0-50 ppm Si standard solutions in PBS, Blank glass slides as well as slides cast with 30 μL of a 20 mg mL−1 polyurethane in THF solution (to examine Si leaching of glass substrates with one side coated with a polymer) were assessed as controls.


Film Thickness. Measurements of the RSNO-modified xerogels were acquired with a KLA Tencor P15 Profilometer (Milpitas, Calif.) at a scan speed of 100 μm s−1, 200 Hz sampling rate, and a scan length of 2000 μm. Half of the RSNO-modified xerogel coating was physically removed from the glass substrate and this interface probed to acquire film thickness.


Elemental analysis of RSNO Xerogels. The xerogel materials were analyzed for sulfur weight percent (S wt %) by Midwest Microlab, LLC (Indianapolis, Ind.).


Bacterial Assays. P. aeruginosa was cultured at 37° C. in tryptic soy broth (TSB), pelleted by centrifugation, resuspended in 15% glycerol (v:v in PBS), and stored at −80° C. Cultures for bacterial adhesion studies were grown from a −80° C. stock in 37° C. TSB overnight. A 1 mL aliquot of overnight culture was inoculated into 100 mL fresh TSB, incubated at 37° C. with rotation, and grown to a concentration of 108 colony forming units (cfu) mL−1 (verified by 10-fold serial dilutions in PBS, plating on tryptic soy agar nutrient plates, and subsequent cfu enumeration). The bacteria were pelleted by centrifugation, rinsed with ultrapure water, and resuspended in sterile PBS. Control (unnitrosated) and RSNO-modified xerogels were immersed in 4 mL aliquots of bacterial suspension and incubated at 37° C. in dark or light conditions (200 W at a distance of 0.6 in). Temperature was maintained during irradiation by circulating thermostatted water through a custom-made flow cell housing the samples. The xerogel substrates were removed from the bacterial suspension after 1 h and gently immersed in ultrapure water to dislodge loosely adhered cells. The slides were dried under a stream of N2. To quantify bacterial adhesion, substrates were imaged in phase-contrast mode using a Zeiss Axiovert 200 inverted optical microscope (Chester, Va.) at 20× magnification. Digital micrographs were captured with a Zeiss Axiocam digital camera (Chester, Va.) and digitally processed to differentiate adhered cells from background. The darkened pixels, corresponding to adhered bacteria, were digitally enumerated with the extent of bacterial adhesion reported as the percent of the xerogel substrate surface covered with bacterial cells. The viable (still alive) bacteria adhered to the xerogel were determined by swabbing the non-xerogel-coated side of the slide with 70% EtOH and PBS to remove/kill adhered bacteria and residual EtOH, respectively. The slide was then placed in 4 mL of sterile PBS and bacteria adhered to the xerogel-coated side were removed from the substrate surface via sonication (40 kHz, 15 min). 36 The resulting bacterial suspensions were subjected to serial 10-fold dilutions in sterile PBS, and 100 μL aliquots of each dilution were plated on tryptic soy agar (TSA) nutrient plates. The plates were incubated at 37° C. overnight and the number of live bacteria was determined by counting the number of colonies that grew on each plate overnight.


Cytotoxicity. To assess the impact of xerogel fragmentation on healthy cells, L929 murine fibroblasts were exposed directly to the xerogel fragmentation solutions. Briefly, the fibroblasts were cultivated in DMEM supplemented with 10% fetal bovine serum (v/v), 100 units penicillin, and 100 μg streptomycin, then incubated in 5% CO2/95% air under humidified conditions at 37° C. After attaining confluency, the cells were trypsinized and then seeded onto tissue-culture-treated polystyrene 96-well plates at a density of 1×105 cells mL−1. Three days later, the media was aspirated and replaced with 1:1 dilution of the fragmentation solutions with media for 24 h viability experiments, respectively. Subsequently, the solutions were aspirated, cells were washed with sterile PBS, and 100 μL of fresh media was added to the cells. Cellular viability was assessed using the MTS assay (CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay; Promega, Madison, Wis.). Briefly, the MTS reagent (20 μL) was added to each well until a purple formazan color was formed in the control (untreated) wells. The supernatant from each well was then transferred to a new 96-well plate prior to reading the absorbance at 490 nm using a Labsystems Multiskan RC microplate reader (Helsinki, Finland). Viability was expressed as a percent viability relative to cells treated to control PBS solutions.


Results and Discussion


The preparation of tertiary thiol-based precursors was investigated for the development of biomedical devices/therapeutics with continuous and photoactivatable NO release. A NAP thiolactone was thus synthesized to design such a precursor for the synthesis of NO-releasing xerogels. Penicillamine was reacted in the presence of acetic anhydride to generate the NAP thiolactone in situ. After characterization by 1H and 13CNMR, the NAP thiolactone was directly coupled with APTMS to result in a tertiary thiol-bearing silane, referred to as NAPTMS (see FIG. 1). Successful synthesis of this tertiary thiol-bearing silane was verified via 1HNMR characterization (FIG. 2).


Nitric oxide-releasing xerogels may be composed of organosilanes hydrolyzed and co-condensed with alkoxy- or alkylalkoxysilanes (termed “backbone silanes”). The backbone silanes impart both structural stability and tunable NO payloads by varying the silane molar ratio. Unfortunately, co-condensation of silanes is not a trivial objective. Disparate hydrolysis and condensation rates between mixed silanes impact xerogel formation, at times preventing it altogether. As NAPTMS is a novel silane with uncharacterized reaction rates, a systematic examination of the most favorable conditions to form NAPTMS-based xerogels was undertaken. Co-condensation of NAPTMS was attempted with backbones of varying structures and reaction rates (FIG. 3), including tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMOS), and isobutyltrimethoxysilane (BTMOS), to determine which composition allowed for suitable xerogel synthesis.


Initial investigations into the synthesis of tertiary thiol-modified films began with 40 mol % NAPTMS as a mid-range concentration to produce films that release significant amounts of NO while maintaining desirable physical characteristics (e.g., smooth, crack-free, and optically transparent). After being dried, these NAPTMS films appeared well-formed regardless of backbone identity. However, each composition became opaque when immersed in water. Such behavior may be attributed to the presence of unreacted silicate oil within the xerogel network, leading to phase separation from reacted silanes. Exposure of the xerogels to ethanol resulted in complete film dissolution as unreacted and partially reacted silanes were washed away, corroborating the hypothesis of incomplete xerogel formation. While not being bound to any particular theory, incomplete formation of 40 mol % NAPTMS xerogels is attributed to significant disparity between the slow condensation rate of NAPTMS, due to substantial steric hindrance around the silicon atom, and the more rapid reaction of the backbone silanes. Multiple synthetic parameters that influence silane reaction rates were varied to investigate this problem. Strategies such as altering the water to total silane ratio (1:4, 2:1, 4:1, 10:1, and 20:1) did not lead to improved stability, nor did modifications to the reaction time (0.5-5 h), acid catalyst concentration (0.01-0.20M), catalyst type (NaOH vs. HCl), ethanol solvent volume (25-1050 μL), drying time (0.25-5 d), or drying temperature (25-70° C.). In the end, the high concentration of NAPTMS (i.e., ≧40 mol %) was concluded to be prohibitive for xerogel formation under the wide range of conditions assessed.


Lowering the amount of NAPTMS in the sols resulted in stable xerogels. Films were formed by systematically adjusting a wide range of synthetic parameters in the xerogel synthesis using a model composition consisting of 20 mol % NAPTMS balanced with MTMOS. While not entirely stable, the initial 40 mol % NAPTMS films indicated that a 10:1 water to silane ratio resulted in slightly better formulations (i.e., xerogels turned less opaque in aqueous solution). This water to silane ratio (based on a 1 mmol total silane amount) was thus selected for study. The amount of acid catalyst may also influence the resulting xerogel formation.


NAPTMS-based xerogels synthesized with greater amounts of catalyst (i.e., 0.075 M HCl) led to non-uniform coatings and resulted in opaque xerogels with significant topographical heterogeneity. Reactions with lower amounts of catalyst (i.e., 0.025MHCl) did not adequately promote xerogel formation. However, films synthesized with 0.05M HCl had desirable properties. Diluting sols when fabricating xerogel coatings with highly viscous sols may ensure a homogenous casting solution. Based on these preliminary experiments, a large volume of ethanol (1054 μL) and an acid concentration of 0.05M were used for all subsequent investigations. Using this water to silane ratio and acid catalyst molarity, xerogel composition was varied by altering the backbone silane structure. Initially, films were formed using TMOS because of its similar hydrolysis/condensation kinetics to MTMOS, suggesting potential for well-formed films. Unfortunately, TMOS-derived solutions did not coat substrates uniformly and resulting xerogels fractured upon drying/curing. During xerogel drying, a meniscus at the vapor/liquid interface causes a pressure gradient within the polymer structure. If the network is not sufficiently pliant or porous to deal with such stress, evaporation may proceed non-uniformly and result in cracking. The inflexible and regimented silica network observed when using TMOS may be attributed to its four bridging ligands that enhance polymer crosslinking and interchain cohesion. The main strategy to decrease the pressure gradient and resulting xerogel fracture is to reduce the evaporation rate. However, applying this strategy (e.g., drying at 25° C.) to NAPTMS/TMOS xerogels still led to cracking.


The similarities in size and associated steric hindrance between TMOS and MTMOS suggest that another reason might be responsible for the successful film formation using MTMOS and failure (i.e., cracking) with TMOS. The incorporation of one nonhydrolyzable ligand when using MTMOS as compared to TMOS lessens steric constraints and interchain cohesion within the silica network and is the predominant factor for preparing films with high integrity upon drying MTMOS-based xerogels.


Varying the backbone from TMOS to TEOS represents a less significant alteration to the structure of the backbone (i.e., ethoxy instead of methoxy ligands at the silicon center) yet resulted in a significant improvement to xerogel stability and uniformity. The increase in steric hindrance that accompanies the increased carbon chain length effectively decreases the rate of hydrolysis and condensation under acid-catalyzed xerogel reactions. Successful xerogel formation in this instance likely results from similar kinetic rates of TEOS and NAPTMS, thus facilitating successful co-condensation. Similar to TMOS, TEOS features four bridging ligands and therefore should also form non-pliant networks. However, cracking was not observed in NAPTMS/TEOS xerogels. Successful xerogel formation may be attributed to more successful incorporation of NAPTMS within the network, affording greater flexibility of the network as a result of the nonhydrolyzable ligand. Additionally, reactions with TEOS produced films of greater integrity at shorter reaction times (i.e., 30 min vs. 1 h) than MTMOS. If the TEOS precursor retained a large degree of unhydrolyzed ligands due to the shorter reaction time, the resulting network would be more pliant and avoid fracture upon drying.


Increasing the size of the nonhydrolyzable ligand in the backbone silane from a methyl (MTMOS) to a branched isobutyl group (BTMOS) represents a large contribution to steric hindrance and should significantly decrease condensation rates for acid-catalyzed xerogel reactions. Akin to the 40 mol % NAPTMS films, xerogels derived from BTMOS exhibited incomplete co-condensation and xerogel formation. It can be assumed that although BTMOS and NAPTMS may have similarly matched reaction rates, both rates are too slow for adequate xerogel formation. Increasing the catalyst amount or the reaction time to promote reaction between the two silanes did not improve xerogel stability for BTMOS-based films.


Since the NAPTMS concentrations were ideally ≦30 mol %, alternative strategies were investigated to increase/tune NO release kinetics and payloads. We thus focused on increasing the amount of sol cast per surface area of substrate. To evaluate xerogel thickness and NAPTMS concentration as means of affecting NO release, 30-120 μL aliquots of 10, 20, and 30 mol % NAPTMS compositions with either TEOS or MTMOS were cast on glass substrates. Marked differences in xerogel stability were observed for the variations in mol %, casting volume, and backbone.


Xerogels formed from casting volumes >60 μL cracked upon drying regardless of backbone identity or mol %. An upper threshold was expected as increasing the thickness would contribute to an enhanced pressure gradient within the xerogel that causes fracturing upon drying. Unfortunately, 10 mol % NAPTMS balance MTMOS compositions were opaque and did not uniformly coat substrates. These films were stable in ethanol, indicating that xerogel formation was complete despite the opacity. Thus, the opacity is attributed to microsyneresis or the clustering of the silica network that results in phase separation from the residual solvent. Xerogels lacking optical transparency are considered undesirable if photoinitiated NO release is the intended application of such materials. While 30 μL cast from a 20 mol % NAPTMS balance MTMOS composition formed glassy, homogenous films (7.84±0.91 μm), 45 and 60 μL casts were similar in opaque appearance to the 10 mol % compositions. Xerogels consisting of 30 mol % NAPTMS balance MTMOS at 30, 45, and 60 μL casting volumes formed, optically transparent xerogels with resulting thicknesses of 10.03±1.42, 15.43±2.28, and 19.05±2.05 μm, respectively.


Similarly, ideal TEOS films were formed using 20 mol % NAPTMS at 30, 45, and 60 μL casting volumes and 30% NAPTMS at 30 μL cast with corresponding thicknesses of 8.65±0.81, 14.35±0.34, 19.33±3.32, and 10.28±1.95 μm, respectively. Greater casting volumes for the 30% NAPTMS balance TEOS films exhibited cracking upon drying. Compositions derived from 10 mol % NAPTMS balance TEOS cracked upon drying as well, ostensibly due to an excessive concentration of TEOS in the silica network causing a lack of pliancy within the xerogel framework. Altogether, eight stable xerogel formulations composed of NAPTMS/MTMOS and NAPTMS/TEOS as a function of silane mol % and casting volumes were further investigated as novel NO-releasing photoantimicrobial surfaces.


Thiols are readily converted to NO donor form (i.e., RSNOs) by exposure to nitrosating agents such as nitrous acid (commonly generated in situ from acidified nitrite solutions). S-Nitrosothiol formation is accompanied by a color change with primary RSNOs red in appearance and tertiary RSNOs green. Thus, characteristic RSNO absorbance bands in the UV (330-350 nO→π*) and visible (550-600 nm; nN→π*) regions are used to monitor RSNO formation. Initial UV/vis spectroscopy studies indicated that optimal nitrosation of the NAPTMS-derived films required a 100-fold molar excess of acidified nitrite.


The optimal nitrosation time was studied as a function of backbone and casting volume and determined after absorbance at 590 nm no longer increased, indicating extent of nitrosation had ceased. As shown in FIG. 4, the degree of nitrosation was not enhanced with reaction times >3 h for the MTMOS-based films (casting volume of 30 μL). Identical analysis revealed that 45 and 60 μL casts of MTMOS-based films (regardless of NAPTMS mol %) required slightly longer reaction time (4 h), presumably due to slowed diffusion of the nitrosating agent through the thicker coatings. Xerogels derived from TEOS reacted more rapidly and were nitrosated to a maximum extent after 1 h incubation, regardless of casting volume. The difference between TEOS and MTMOS may be attributed to the less organic character associated with TEOS-based network that facilitates more rapid penetration of the aqueous nitrosating agent within the xerogel network.


Although more stable than their primary counterparts, tertiary RSNOs still undergo decomposition (and NO release) by typical RSNO pathways including thermal and photolytic-based S—NO cleavage and copper ion-mediated reduction. However, minimal amounts of “free” copper ions are found physiologically, suggesting this method of NO release may be physiologically irrelevant. While previous primary RSNO-modified xerogels exhibited NO release that had a slight dependence on copper ion concentration, thermal and photoinitiated fluxes led to more substantial NO. Due to this knowledge and the intended photoinitiated release of NO from these tertiary RSNO-modified xerogels, the effect of copper on NO release was deemed extraneous. Accordingly, trace copper ions in PBS buffer were chelated with diethylenetriaminepentaacetic acid (DTPA) to inhibit any Cu-ion mediated decomposition when characterizing the NO release of these films.


Photoinitiated NO release from RSNO-modified xerogels was measured in real time using chemiluminescence. Individual films were immersed in 500 μM DTPA (pH 7.4 PBS) at 37° C. As expected, exposure to visible irradiation greatly influenced the NO release from the coatings. As shown in FIG. 5, the NO flux from a representative xerogel film (30 mol % NAPTMS balance TEOS, 30 μL cast) increased with both greater bulb wattage and decreasing distance between the lamp and sample flask. The rapid NO release kinetics associated with the 200 W light at a distance of 0.3 m were ideal for quantifying the total amount of NO stored within the films. A period of 16 h of irradiation under these conditions was sufficient to completely liberate all of the NO from the films as indicated by both a return to baseline on the instrument and the absence of a greenish hue within assayed films.


To aid in comparison among different compositions as well as previous materials, two criteria should be met when reporting the total NO storage. The total should be reported relative to the surface area of the coating as well as normalized per mass of deposited material. As shown in Table 1, the tertiary RSNO-modified xerogels were found to store 0.20-0.62 μmol NO per mg of material.









TABLE 1







Total NO stored, sulfur content, and degree of thiol to S-nitrosothiol


conversion for tertiary RSNO-modified xerogels.



















con-








version


(mol




(weight
efficiency


%)
Backbone
(μL)
(μmol cm−2)
(μmolmg−1)
%)
(%)





20
TEOS
30
1.02 ± 0.26
0.25 ± 0.06
3.89
20.2


20
TEOS
45
1.16 ± 0.44
0.20 ± 0.08
3.89
16.9


20
TEOS
60
1.48 ± 0.29
0.24 ± 0.05
3.89
19.9


30
TEOS
30
1.78 ± 0.09
0.62 ± 0.03
5.05
39.2


20
MTMOS
30
0.87 ± 0.31
0.31 ± 0.11
2.51
39.3


30
MTMOS
30
1.13 ± 0.23
0.47 ± 0.10
4.57
32.9


30
MTMOS
45
1.22 ± 0.48
0.27 ± 0.11
4.57
19.1


30
MTMOS
60
1.64 ± 0.39
0.28 ± 0.07
4.57
19.9









Of note, the mass-normalized NO storage was not equivalent at different casting volumes of the same composition. For example, 30 mol % NAPTMS/MTMOS compositions stored 0.47±0.10 μmol mg−1 when cast at 30 μL (˜5 mg of xerogel upon drying), but only 0.28±0.07 μmol mg−1 when 60 μL was cast (˜12 mg of deposited material). Although nitrosation times were optimized for individual casting volume, this nonlinearity indicates the extent of nitrosation for each film differs and is presumably limited by casting volume (thickness). For example, thiols located within the interior of the coating may be inaccessible to the nitrosating agent.


Although thicker films stored less NO per mass of identical xerogel for all compositions, the difference was more pronounced for MTMOS-derived films. This was somewhat expected as these films also required different nitrosation times dependent on casting volume, whereas TEOS-based films reached optimal nitrosation at equivalent times regardless of casting volume. Nevertheless, the variation in NO storage per mass was small enough such that when total NO storage is normalized to surface area of coating, a clear correlation was observed between xerogel thickness and NAPTMS mol % (Table 1). Increasing either the thickness or NAPTMS concentration of the coating enhanced NO storage to the range of 0.87-1.78 μmol cm−2. When comparing equivalent concentrations of NAPTMS and casting volumes, the TEOS-based films stored slightly more NO than MTMOS-based films. The large reservoirs of NO stored within these coatings are comparable to previously reported NO-releasing xerogels that have shown efficacy in reducing bacterial adhesion, fighting infection, and mitigating the foreign body response, illustrating the biomedical potential of these tertiary RSNO-modified xerogels.


To confirm that the degree of nitrosation varied for each composition, elemental analysis of the films was used to deduce the amount of sulfur in the xerogels. As provided in Table 1, 20 mol % NAPTMS balance TEOS films consisted of 3.89 wt % sulfur while the equivalent MTMOS counterpart contained 2.51 wt % sulfur. Likewise, the 30 mol % NAPTMS xerogels contained 5.05 and 4.57 wt % for films formed with TEOS and MTMOS, respectively. As shown in Table 1, nitrosation efficiencies for 20 mol % NAPTMS/TEOS films were ˜17-20% regardless of casting volume. Increasing the NAPTMS concentration to 30 mol % resulted in a greater nitrosation efficiency (˜39%), suggesting that higher thiol incorporation increases thiol accessibility to the nitrosating agent (i.e., nearer to the surface). Xerogels derived from MTMOS were characterized by similar conversion efficiencies at 20 and 30 mol % NAPTMS, but the nitrosation efficiency decreased for greater casting volumes (i.e., ˜33 vs. ˜20% for 30 and 60 μL casting volume, respectively). These results again indicate that thicker films limit the extent of nitrosation, due most likely to the dense structure of the xerogel and a large degree of thiols being solvent inaccessible.


One motivation for employing tertiary RSNO-modified xerogels as photoantimicrobials is that the enhanced stability may negate substantial thermal decomposition leading to NO release in the absence of light. To verify such thermal stability, NO fluxes were measured from xerogels immersed in 500 μM DTPA (pH 7. 4 PBS) at 37° C. without light. As expected, little if any NO was released under these conditions (see Table 2).









TABLE 2







Nitric oxide flux from tertiary RSNO-modified films at 37° C. and in the dark.












Casting



NAPTMS

volume
Nitric oxide flux (pmol cm−2 s−1)


















(mol %)
Backbone
(μL)
0 h
1 h
6 h
12 h
1 d
2 d
3 d
5 d
1 week





20
TEOS
30
21.6 ±
2.20 ±
1.23 ±
0.55 ±
0.25 ±
0.43 ±
0.29 ±
0.28 ±
0.22 ±





0.7
0.02
0.06
0.01
0.01
0.01
0.01
0.01
0.01


20
TEOS
45
18.5 ±
2.90 ±
1.84 ±
0.87 ±
0.54 ±
0.40 ±
0.31 ±
0.40 ±
0.29 ±





0.6
0.50
0.02
0.01
0.08
0.03
0.01
0.01
0.01


20
TEOS
60
31.9 ±
3.95 ±
2.73 ±
1.29 ±
0.97 ±
0.67 ±
0.44 ±
0.37 ±
0.31 ±





1.0
0.04
0.03
0.02
0.02
0.01
0.01
0.01
0.01


30
TEOS
30
40.0 ±
2.70 ±
2.07 ±
1.27 ±
1.17 ±
0.91 ±
0.51 ±
0.39 ±
0.41 ±





0.5
0.03
0.02
0.02
0.02
0.01
0.01
0.01
0.01


20
MTMOS
30
6.3 ±
3.05 ±
2.03 ±
1.44 ±
0.95 ±
0.72 ±
0.61 ±
0.38 ±
0.22 ±





0.9
0.03
0.02
0.03
0.02
0.01
0.01
0.10
0.05


30
MTMOS
30
9.5 ±
2.10 ±
1.86 ±
1.26 ±
0.83 ±
0.61 ±
0.52 ±
0.60 ±
0.28 ±





0.7
0.02
0.04
0.02
0.02
0.01
0.01
0.01
0.07


30
MTMOS
45
30.3 ±
2.07 ±
2.32 ±
1.38 ±
0.89 ±
0.80 ±
0.58 ±
0.49 ±
0.39 ±





6.8
0.02
0.04
0.02
0.02
0.03
0.01
0.01
0.01


30
MTMOS
60
26.9 ±
2.26 ±
2.26 ±
1.67 ±
1.33 ±
0.91 ±
0.61 ±
0.66 ±
0.51 ±





2.0
0.02
0.03
0.02
0.03
0.01
0.01
0.01
0.01









Any initial NO release (˜6-40 pmol cm−2 s−1) rapidly subsided within 10 min to fluxes<4 pmol cm−2 s−1. The initial NO release is attributed to RSNO decomposition resulting from the sudden temperature increase when films at room temperature are immersed in 37° C. PBS. The fluxes monitored over the one week period proved to be stable yet low, dropping to <1 pmol cm−2s−1 for all compositions after 48 h. After 7 d at 37° C. in the dark, the xerogels released 0.24-0.54 μmol NO per cm−2, corresponding to an average of ˜32% of the total NO storage. Shorter periods (i.e., 24 h) resulted in an average of only ˜11% of the NO reservoir being depleted, illustrating a stronger than expected thermal stability for the RSNO-modified films. Furthermore, xerogels still retained their greenish hue (indicative of tertiary RSNOs) after 1 week of soaking at these conditions with irradiation of these xerogels at that time resulting in NO liberation with fluxes comparable to freshly nitrosated xerogels (data not shown).


Photoinitiated NO release due to a 200 W light at a distance of 0.6 m above the sample was assessed at physiological temperature maintained via circulating water from a thermostatted bath shielded from direct irradiation. As shown in Table 2, the average NO flux over 1 h of irradiation was steady for each composition (21.9-39.0 pmol cm−2 s−1). When compared to the average NO fluxes for identical compositions assayed in the dark, a marked contrast is observed as illustrated in FIG. 6. Photoactivation enhanced NO release from the materials by an order of magnitude compared to the strictly thermally-induced fluxes (Table 3).









TABLE 3







Average NO flux from RSNO-modified xerogels over


1 h at 37° C. either irradiated or in the dark.










NAPTMS

Casting
Nitric oxide flux (pmol cm−2 s−1)











(mol %)
Backbone
volume(μL)
200 W irradiation
Dark





20
TEOS
30
22.7 ± 3.0
2.7 ± 0.4


20
TEOS
45
27.3 ± 3.2
3.4 ± 0.4


20
TEOS
60
27.4 ± 3.6
4.2 ± 0.4


30
TEOS
30
39.0 ± 6.5
3.2 ± 0.5


20
MTMOS
30
23.8 ± 2.4
3.3 ± 0.1


30
MTMOS
30
21.9 ± 2.1
2.3 ± 0.2


30
MTMOS
45
22.4 ± 2.3
2.3 ± 0.2


30
MTMOS
60
28.0 ± 2.9
2.5 ± 0.2









While increasing mol % and casting volume (i.e., xerogel thickness) led to slight increases in the observed NO fluxes, the backbone identity had seemingly no effect on light-induced NO fluxes from the xerogels. In general, the photoinitiated fluxes were comparable across all compositions. Thus, the variation in mol % and casting volume seemingly has a greater impact on the total reservoir of stored NO rather than the achievable fluxes under irradiation. Methods to achieve varied fluxes include alterations to irradiation intensity (FIG. 5).


The structural stability of a biomaterial is important to its potential utility for a particular biomedical application. The stability of the xerogel films was thus evaluated by soaking the RSNO-modified coatings in pH 7.4 PBS for 1 week. Film degradation was evaluated at specific intervals by monitoring the silicon concentration in solution using ICP-OES.


In this manner, observed silicon in the soak solutions would represent fragmentation or instability of the siloxane bonds constituting the xerogel network. As the xerogels were cast on glass substrates, a measurable background of silicon was expected for controls. Surprisingly, the background measured for control xerogels was lower than glass alone (blanks). This behavior was attributed to the xerogels masking ˜50% of the surface of the substrates and reducing leached silicon from the glass. To control for this when assessing the fragmentation of tertiary RSNO-modified xerogels, both bare glass substrates and glass substrates coated with polyurethane (a non Si-containing polymer) were employed as controls. As expected, the polyurethane-coated films exhibited roughly half the silicon observed for glass slides alone up to 24 h, after which the difference was narrower due to delamination of the polyurethane from the glass substrate. Thus, the polyurethane-coated substrates are more suitable controls and were used for background correction to quantify xerogel leaching.


More leaching due to xerogel instability was observed for thicker xerogel coatings (controlled by casting volumes). As shown in FIG. 7, xerogels formed using 60 μL of sol exhibited the most fragmentation for both backbone groups. Coatings derived from TEOS exhibited greater fragmentation than MTMOS-based films. The presence of the methyl group on MTMOS likely sterically hinders cleavage of the siloxane backbone and provides one less hydrolyzable ligand in the network. Additionally, the longer reaction time for MTMOS-based films may contribute to enhanced condensation and stability compared to TEOS-based films.


Although some silicon leached from the xerogels, the level of leaching was still less than controls at 24 h with the exception of the 20 mol % NAPTMS/TEOS compositions. Longer incubation times (i.e., 7 d) resulted in greater observed leaching for all materials and controls. After 7 d PBS immersion, the MTMOS-based films were still characterized by less leaching than controls, while the 20 mol % NAPTMS/TEOS films leached up to 2.4 ppm silicon into solution at levels proportional to the thickness. Visual inspection of the films after this soaking verified material instability for the xerogels cast from 60 μL. However, those of 30 and 45 μL casting volumes appeared intact, implicating the detected silicon to be due to microleaching and not a major detriment to material stability. Nevertheless, the potential toxicity of this minimal degree of xerogel fragmentation was evaluated. The fragmentation soak solution of the least stable composition, 20 mol % NAPTMS balance TEOS 60 μL cast, was diluted to 2. 4 ppm silicon with cell culture media to match the actual amount of silicon leached from just xerogel fragmentation and not background silicon from the substrate. The solution was incubated with L929 mouse fibroblast cells for 24 h, after which cell viability was assessed. The amount of fragmentation did not result in any loss to viability as compared to control cells in PBS and media (FIG. 8).


The shelf-life of NO-releasing xerogels was evaluated as a function of storage conditions to assess the suitability of these materials for future applications and clinical potential. As NO release is photoinitiated from these materials, exposure to ambient light during storage may reduce the material's NO release capacity. Moreover, thermally-induced NO release may still prove to be a factor even for tertiary-derived RSNOs for extended storage periods. If appreciable levels of NO were liberated (either photolytically or thermally) in the presence of oxygen, the formation of NO2 and N2O3 would result, making the autocatalytic decomposition of RSNOs by N2O3 a concern.


The effects of ambient light exposure, temperature, and under vacuum on NO payload after 30 d of storage were thus tested to evaluate the shelf life of RSNO-modified 20 mol % NAPTMS balance TEOS (30 μL cast) xerogels. As shown in FIG. 9, storage in vacuo in the dark at −20° C. were effective at preserving RSNO functionalities; xerogels stored in this manner exhibited the greatest NO fluxes and payloads. RSNO-modified xerogels stored at ambient pressure in the dark at −20° C. resulted in a slight decrease in both achievable NO fluxes (9A) and payloads (9B). Storage in vacuo in the dark and room temperature further decreased the available NO, yet yielded similar total NO storage to conditions of ambient pressure in the dark at −20° C.


Lastly, films stored at ambient pressure in the dark and room temperature were characterized as having slightly less NO storage capacity. Overall, the total NO released for xerogels stored under these conditions were not vastly different from each other. As expected, the storage of films at ambient pressure in ambient light and room temperature was the most detrimental to NO storage and flux. As a whole, the results suggest that light exposure even at ambient levels most negatively affects long-term stability. The presence of oxygen is only problematic if sufficient NO is generated to result in autocatalytic decomposition of RSNO groups by N2O3. Due to the stability of the tertiary RSNO to thermally-induced cleavage, the levels of NO generated via this pathway were minimal at room temperature and did not lead to significant additional NO loss. The only means where enough NO was generated in the presence of oxygen to drastically reduce the stored NO was ambient light exposure. While long-term tertiary RSNO-modified xerogel stability would benefit from storage under anaerobic conditions at reduced temperatures, protection from light is the most pressing condition that should be met to ensure sufficient NO donor stability within xerogels.


The xerogels described here exhibit light-initiated fluxes exceeding ˜20 pmol NO cm−2s−1, indicating their potential to reduce bacterial adhesion. To evaluate the anti-fouling potential of these materials, we investigated the antibacterial adhesion properties for a model composition (20 mol % NAPTMS balance TEOS, 30 μL cast) under various NO release conditions. P. aeruginosa (108 CFU mL−1) were incubated under static conditions (i.e., non-nutrient, PBS) with nitrosated and control (unnitrosated) xerogels for 1 h at 37° C. either with exposure to 200 W irradiation (at a distance of 2 ft) or in the dark. The extent of bacterial adhesion was subsequently determined by phase-contrast optical microscopy. Light irradiation itself did not reduce bacterial adhesion to control xerogels (FIG. 10). The minimal NO release from the RSNO-modified.xerogels in the dark proved ineffective at reducing bacterial adhesion as expected for NO fluxes below the previously determined thresholds capable of reducing bacterial adhesion.


Upon exposing the RSNO-modified xerogels to visible irradiation, the observed bacterial adhesion was significantly reduced relative to controls. Indeed, bacterial adhesion was reduced by 88, 87, and 87% on RSNO-modified xerogels in the presence of light when compared to controls under irradiation, controls in the dark, and RSNO-modified xerogels in the dark, respectively (FIG. 11). Clearly, the decrease in bacterial adhesion is solely due to the photoinitiated release of NO. To verify the antibacterial efficacy, the viability of adhered bacteria was also assessed. A significant reduction in bacterial viability was only observed for the RSNO-modified xerogels under irradiation, corroborating the photoantimicrobial efficacy of these films (Table 4).









TABLE 4







Bacterial viability of adhered bacteria to either control (unnitrosated)


or RSNO-modified xerogels under various conditions at 37° C.










Bacterial Viability (CFU mL−1)











200 W irradiation
Dark















Control
4.0 (±2.3) × 105
6.2 (±1.5) × 105



RSNO-modified
0.2 (±0.1) × 105
4.4 (±3.7) × 105










The amount of NO released during this 1 h period of irradiation was ˜0.08 μmol cm−2, corresponding to only <10% of the large reservoir of NO stored within the materials. Since the impinging irradiation dictates the ensuing NO flux (See, FIG. 5), variation of the light source and irradiation intensity may be used to maintain a constant flux of ˜20 pmol NO cm−2 s−1 as long as there is sufficient NO stored within the films.


As the total NO storage of the xerogels ranges from 0.7-1.78 μmol cm−2, a theoretical duration of 12.1-24.7 h of NO release at this critical flux may be achieved before the NO reservoir is depleted. As such, the potential of these materials to reduce bacterial adhesion for prolonged time is promising. Overall, these results illustrate the promise of these films as photoantimicrobial NO-releasing surfaces with enhanced NO storage stability at physiological temperatures.


Future development of successful NO-based therapies hinge on the ability to store and release NO in a controlled manner. The RSNO-modified xerogels described herein represent materials that offer such control over release via photoinitiation. Furthermore, the stability of the NO reservoir is enhanced over previous NO release coatings by using sterically-hindered tertiary RSNOs rather than thermally labile primary RSNOs. Exposure to physiological temperature (i.e., 37° C.) does not significantly deplete the NO payload, indicating these films may be suitable for biomedical applications necessitating precisely controlled delivery of NO via light.


Indeed, the generation of NO under ambient room lighting, evident by the loss of NO storage after 30 d of ambient light exposure, suggest these materials may prove useful for common household or hospital surfaces requiring bacterial disinfection. With UV irradiation, even more powerful antibacterial action is envisioned since such irradiation alone also kills microbes. Xerogel materials are amenable to several forms including stand-alone coatings, particles and dopants that allow their application to different substrates and devices. For example, application of tertiary RSNO-modified xerogels to optical fibers would enable NO generation from a point source. Akin to an endoscope, such a device could be positioned at a specific location in the body (e.g., a tumor mass) to facilitate localized NO release when coupled to a light source of appropriate intensity.


Alterations to the impinging irradiation proved to be more critical in achieving varied NO flux as xerogel compositions of different mol % and casting volume exhibited diverse total NO storage but similar NO fluxes under a set irradiation intensity. The ability to deliver a specific NO flux determined solely by the irradiation intensity may allow for the systematic examination of concentration-dependant roles of NO within physiological systems. As NO plays a highly concentration-dependent role in tumor biology and the immune response, such knowledge would be beneficial in the design of future anticancer therapies. As such, the potential of tertiary RSNO-modified xerogels encompass both their application as novel therapeutics as well as tools in elucidating NO's flux-dependant role in physiology.


The synthesis of a tertiary thiol-bearing silane precursor (i.e., NAPTMS) is described to enable enhanced NO storage stability at physiological temperature. The novel silane was co-condensed with a range of alkoxy- and alkylalkoxysilanes (i.e., TMOS, TEOS, MTMOS, and BTMOS) under various synthetic parameters to systematically evaluate the formation of stable xerogel films. Resulting xerogels were subsequently nitrosated to yield tertiary RSNO-modified coatings. Variation in both the concentration of the NAPTMS and xerogel coating thickness provided tunability in the total NO storage of the films (0.87-1.78 μmol Steric hindrance surrounding the nitroso functionality resulted in limited NO release at physiological temperature and allowed photolysis to be used as a more selective trigger for controlled NO delivery. Over a 1 h incubation period at 37° C., average NO fluxes were an order of magnitude larger under irradiation than in the dark for a given composition (e.g., ˜23 vs. 3 pmol cm−2s−1 for 20% NAPTMS balance TEOS, 30 μL cast in the light and dark, respectively). The utility of such controllable NO-releasing films was demonstrated in their ability to significantly reduce bacterial adhesion (by ˜90%) exclusively under irradiation, illustrating the potential of these films as photoantimicrobial surfaces.

Claims
  • 1. A co-condensed silica sol-gel coating formed from the reaction of the compound of Formula I and at least one backbone alkoxysilane:
  • 2. The co-condensed silica sol-gel coating of claim 1, wherein compound of Formula I has the following structure:
  • 3. The co-condensed silica sol-gel coating of claim 1, wherein the sol-gel coating is a xerogel.
  • 4. The co-condensed silica sol-gel coating of claim 3, wherein the compound of Formula I is present at a concentration in a range of 10 mol% and 30 mol% based on total silane monomer concentration.
  • 5. The co-condensed silica sol-gel coating of claim 3, wherein the backbone alkoxysilane comprises tetraethoxysilane (TEOS) and/or methyltrimethoxysilane (MTMOS).
  • 6. The co-condensed silica sol-gel coating of claim 1, wherein at least some of the thiol groups in the coating have been reacted with a nitrosating agent to form S-nitrosothiol functional groups.
  • 7. A sol-gel coating comprising a tertiary S-nitrosothiol.
  • 8. The sol-gel coating of claim 7, wherein the sol gel coating is a xerogel.
  • 9. The sol-gel coating of claim 8, wherein the NO storage of the xerogel is at a concentration in a range of 0.8 to 2 μmol/cm2.
  • 10. A method of forming a nitric oxide (NO)-releasing sol-gel coating comprising: (a) co-condensing a sol precursor solution comprising at least one backbone alkoxysilane and at least one tertiary thiol alkoxysilane in a solvent to form a sol;(b) coating a substrate with the sol;(c) optionally, drying the sol to form the sol-gel coating; and(d) contacting the sol-gel coating with a nitrosating agent.
  • 11. The method of claim 10, wherein the sol-gel coating is a xerogel.
  • 12. The method of claim 10, wherein the at least one tertiary thiol alkoxysilane has the structure of (OR)(OR′)(OR″)Si(Rx), wherein R, R′ and R″ are each independently H, alkyl or substituted alkyl and Rx is functional group that comprises a tertiary thiol group.
  • 13. The method of claim 8, wherein the tertiary thiol alkoxysilane has the structure:
  • 14. The method of claim 13, wherein the tertiary thiol alkoxysilane has the structure
  • 15. The method of claim 10, wherein the at least one backbone alkoxysilane comprises TEOS and/or MTMOS.
  • 16. The method of claim 10, wherein the sol precursor solution further comprises an acid catalyst.
  • 17. The method of claim 16, wherein the acid catalyst is present in the sol precursor solution at a concentration in a range of 0.025M to 0. 075M.
  • 18. The method of claim 10, wherein the tertiary thiol alkoxysilane is present at a concentration of less than 40 mol % based on the total alkoxysilane concentration.
  • 19. A method of reducing or eliminating bacterial adhesion to a substrate comprising (a) coating the substrate with the co-condensed silica_sol-gel coating of claim 1;(b) exposing the substrate to bacteria; and(c) irradiating the substrate to release nitric oxide, which reduces or eliminates bacterial adhesion to the substrate.
  • 20. The method of claim 19, wherein the sol-gel coating is a xerogel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation under 35 U.S.C. §111(a) of PCT Application No. PCT/US2012/026972, filed on Feb. 28, 2012, which claims the benefit, under 35 U.S.C. §119, of U.S. Provisional Application Serial No. 61/447,368, filed Feb. 28, 2011, and U.S. Provisional Application No. 61/565,694, filed Dec. 1, 2011, the disclosure of each of which is hereby incorporated by reference herein in its entirety.

STATEMENT OF GOVERNMENT FUNDING

The present invention was funded in part by government support under grant number 5-R01-EB000708 from the National Institutes of Health. The United States Government has certain rights in this invention.

US Referenced Citations (498)
Number Name Date Kind
4507466 Tomalia et al. Mar 1985 A
4558120 Tomalia et al. Dec 1985 A
4568737 Tomalia et al. Feb 1986 A
4587329 Tomalia et al. May 1986 A
4631337 Tomalia et al. Dec 1986 A
4694064 Tomalia et al. Sep 1987 A
4713975 Tomalia et al. Dec 1987 A
4737550 Tomalia Apr 1988 A
4857599 Tomalia et al. Aug 1989 A
4871779 Killat et al. Oct 1989 A
4985023 Blank et al. Jan 1991 A
4990338 Blank et al. Feb 1991 A
5035892 Blank et al. Jul 1991 A
5045322 Blank et al. Sep 1991 A
5061487 Blank et al. Oct 1991 A
5079004 Blank et al. Jan 1992 A
5380758 Stamler et al. Jan 1995 A
5405919 Keefer et al. Apr 1995 A
5418301 Hult et al. May 1995 A
5428070 Cooke et al. Jun 1995 A
5504117 Gorfine Apr 1996 A
5519020 Smith et al. May 1996 A
5525357 Keefer et al. Jun 1996 A
5574068 Stamler et al. Nov 1996 A
5593876 Stamler et al. Jan 1997 A
5599984 Bianchi et al. Feb 1997 A
5629322 Guthikonda et al. May 1997 A
5632981 Saavedra et al. May 1997 A
5650442 Mitchell et al. Jul 1997 A
5650447 Keefer et al. Jul 1997 A
5665077 Rosen et al. Sep 1997 A
5676963 Keefer et al. Oct 1997 A
5691423 Smith et al. Nov 1997 A
5693676 Gorfine Dec 1997 A
5700830 Korthuis et al. Dec 1997 A
5718892 Keefer et al. Feb 1998 A
5726156 Girten et al. Mar 1998 A
5750573 Bianchi et al. May 1998 A
5753684 Bianchi et al. May 1998 A
5760001 Girten et al. Jun 1998 A
5770645 Stamler et al. Jun 1998 A
5786332 Girten et al. Jul 1998 A
5789447 Wink, Jr. et al. Aug 1998 A
5797887 Rosen et al. Aug 1998 A
5810010 Anbar Sep 1998 A
5814666 Green et al. Sep 1998 A
5814667 Mitchell et al. Sep 1998 A
5821261 Durette et al. Oct 1998 A
5837736 Mitchell et al. Nov 1998 A
5840759 Mitchell et al. Nov 1998 A
5849794 Bianchi et al. Dec 1998 A
5852058 Cooke et al. Dec 1998 A
5854289 Bianchi et al. Dec 1998 A
5859062 Bianchi et al. Jan 1999 A
5861168 Cooke et al. Jan 1999 A
5863890 Stamler et al. Jan 1999 A
5891459 Cooke et al. Apr 1999 A
5891472 Russell Apr 1999 A
5910316 Keefer et al. Jun 1999 A
5932538 Garvey et al. Aug 1999 A
5958427 Salzman et al. Sep 1999 A
5961466 Anbar Oct 1999 A
5962520 Smith et al. Oct 1999 A
5994294 Garvey et al. Nov 1999 A
5994444 Trescony et al. Nov 1999 A
5999843 Anbar Dec 1999 A
6008255 Bianchi et al. Dec 1999 A
6022900 Bianchi et al. Feb 2000 A
6035225 Anbar Mar 2000 A
6043358 Caldwell et al. Mar 2000 A
6045827 Russell Apr 2000 A
6070928 Campbell Jun 2000 A
6087479 Stamler et al. Jul 2000 A
6103275 Seitz et al. Aug 2000 A
6110453 Keefer et al. Aug 2000 A
6143037 Goldstein et al. Nov 2000 A
6147068 Smith et al. Nov 2000 A
6151522 Alfano et al. Nov 2000 A
6160021 Lerner et al. Dec 2000 A
6171232 Papandreou et al. Jan 2001 B1
6174539 Stamler et al. Jan 2001 B1
6180082 Woltering et al. Jan 2001 B1
6180676 Bianchi et al. Jan 2001 B1
6190704 Murrell Feb 2001 B1
6200558 Saavedra et al. Mar 2001 B1
6207855 Toone et al. Mar 2001 B1
6218016 Tedeschi et al. Apr 2001 B1
6232336 Hrabie et al. May 2001 B1
6232434 Stamler et al. May 2001 B1
6238683 Burnett et al. May 2001 B1
6248787 Bianchi et al. Jun 2001 B1
6255277 Stamler et al. Jul 2001 B1
6261594 Smith et al. Jul 2001 B1
6270779 Fitzhugh et al. Aug 2001 B1
6287601 Russell Sep 2001 B1
6290981 Keefer et al. Sep 2001 B1
6291424 Stamler et al. Sep 2001 B1
6294517 Garvey et al. Sep 2001 B1
6299980 Shah et al. Oct 2001 B1
6323211 Garvey et al. Nov 2001 B1
6350467 Demopoulos et al. Feb 2002 B1
6352709 Stamler et al. Mar 2002 B1
6358536 Thomas Mar 2002 B1
6359167 Toone et al. Mar 2002 B2
6359182 Stamler et al. Mar 2002 B1
6369071 Haj-Yehia Apr 2002 B1
6372733 Caldwell et al. Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6379660 Saavedra et al. Apr 2002 B1
6379691 Tedeschi et al. Apr 2002 B1
6391895 Towart et al. May 2002 B1
6403759 Stamler et al. Jun 2002 B2
6410622 Endres Jun 2002 B1
6417162 Garvey et al. Jul 2002 B1
6432077 Stenzler Aug 2002 B1
6433182 Garvey et al. Aug 2002 B1
6436975 Del Soldato Aug 2002 B1
6441254 Dobert Aug 2002 B1
6448267 Anggard et al. Sep 2002 B1
6451337 Smith et al. Sep 2002 B1
6455542 Anggard et al. Sep 2002 B1
6469065 Garvey et al. Oct 2002 B1
6471978 Stamler et al. Oct 2002 B1
6472390 Stamler et al. Oct 2002 B1
6488951 Toone et al. Dec 2002 B2
6492405 Haj-Yehia Dec 2002 B2
6511991 Hrabie et al. Jan 2003 B2
6514934 Garvey et al. Feb 2003 B1
6538033 Bing Mar 2003 B2
6560478 Alfano et al. May 2003 B1
6562344 Stamler et al. May 2003 B1
6562785 Shapiro May 2003 B1
6583113 Stamler et al. Jun 2003 B2
6583311 Toone et al. Jun 2003 B2
6605447 Weiss et al. Aug 2003 B2
6610660 Saavedra et al. Aug 2003 B1
6627602 Stamler et al. Sep 2003 B2
6642208 Cooke et al. Nov 2003 B2
6642260 Haj-Yehia Nov 2003 B2
6645518 Tedeschi et al. Nov 2003 B2
6646006 Cooke et al. Nov 2003 B2
6656217 Herzog, Jr. et al. Dec 2003 B1
6673338 Arnold et al. Jan 2004 B1
6673891 Stamler et al. Jan 2004 B2
6699846 Elliott et al. Mar 2004 B2
6703046 Fitzhugh et al. Mar 2004 B2
6706274 Hermann et al. Mar 2004 B2
6709681 Benjamin et al. Mar 2004 B2
6723703 Gaston et al. Apr 2004 B2
6737447 Smith et al. May 2004 B1
6747062 Murrell Jun 2004 B2
6750254 Hrabie et al. Jun 2004 B2
6758214 Fine et al. Jul 2004 B2
6759430 Anggard et al. Jul 2004 B2
6780849 Herrmann et al. Aug 2004 B2
6793644 Stenzler Sep 2004 B2
6796966 Thomas Sep 2004 B2
6841166 Zhang et al. Jan 2005 B1
6855366 Smith et al. Feb 2005 B2
6875840 Stamler et al. Apr 2005 B2
6887485 Fitzhugh et al. May 2005 B2
6887994 Stamler et al. May 2005 B2
6894073 Lee et al. May 2005 B2
6896899 Demopolos et al. May 2005 B2
6897218 Casella et al. May 2005 B2
6911433 Saavedra et al. Jun 2005 B2
6911478 Hrabie et al. Jun 2005 B2
6946484 Adams et al. Sep 2005 B2
6949530 Hrabie et al. Sep 2005 B2
6951902 McDonald et al. Oct 2005 B2
6964984 Stamler et al. Nov 2005 B2
6974801 Honda et al. Dec 2005 B2
7012098 Manning et al. Mar 2006 B2
7015347 Toone et al. Mar 2006 B2
7025869 Fine et al. Apr 2006 B2
7030238 Stamler et al. Apr 2006 B2
7033999 Stamler et al. Apr 2006 B2
7040313 Fine et al. May 2006 B2
7048951 Seitz et al. May 2006 B1
7049308 Stamler et al. May 2006 B2
7052711 West et al. May 2006 B2
7070798 Michal et al. Jul 2006 B1
7081524 Saavedra et al. Jul 2006 B2
7087588 Del Soldato Aug 2006 B2
7087709 Stamler et al. Aug 2006 B2
7122018 Stenzler et al. Oct 2006 B2
7122027 Trescony et al. Oct 2006 B2
7122529 Ruane et al. Oct 2006 B2
7128904 Batchelor et al. Oct 2006 B2
7135189 Knapp Nov 2006 B2
7135498 Chopp et al. Nov 2006 B1
7157500 Stamler et al. Jan 2007 B2
7169809 Berthelette et al. Jan 2007 B2
7176237 Honda et al. Feb 2007 B2
7179475 Burnett et al. Feb 2007 B1
7189761 Gorfine Mar 2007 B2
7199154 Berthelette et al. Apr 2007 B2
7204980 Clark Apr 2007 B2
7226586 Fitzhugh et al. Jun 2007 B2
7234079 Cheng Jun 2007 B2
7259250 Stamler et al. Aug 2007 B2
7279176 West et al. Oct 2007 B1
7282519 Garvey et al. Oct 2007 B2
7314857 Madhyastha Jan 2008 B2
7335383 Meyerhoff et al. Feb 2008 B2
7345053 Garvey Mar 2008 B2
7348319 Hrabie et al. Mar 2008 B2
7364585 Weber Apr 2008 B2
7396829 Garvey et al. Jul 2008 B2
7417109 Stamler et al. Aug 2008 B2
7425218 Keefer et al. Sep 2008 B2
7432301 Gaston et al. Oct 2008 B2
7452916 Cooke Nov 2008 B2
7468435 Waterhouse et al. Dec 2008 B2
7485324 Miller et al. Feb 2009 B2
7520866 Stenzler et al. Apr 2009 B2
7531164 Daaka et al. May 2009 B2
7569559 Arnold et al. Aug 2009 B2
7582623 Mascharak Sep 2009 B2
7595313 Garvey et al. Sep 2009 B2
7622501 Dufresne et al. Nov 2009 B2
7622502 Berthelette et al. Nov 2009 B2
7645748 Orchansky et al. Jan 2010 B2
7645749 Orchansky et al. Jan 2010 B2
7651697 West et al. Jan 2010 B2
7655423 Chopp et al. Feb 2010 B2
7678391 Graham et al. Mar 2010 B2
7678830 Honda et al. Mar 2010 B2
7696247 Herrmann et al. Apr 2010 B2
7745656 Toone et al. Jun 2010 B2
7763283 Batchelor et al. Jul 2010 B2
7785616 Stamler et al. Aug 2010 B2
7795286 Lucet-Levannier Sep 2010 B2
7799335 Herrmann et al. Sep 2010 B2
7807716 Farber Oct 2010 B2
7811600 Cheng et al. Oct 2010 B2
7820284 Terry Oct 2010 B2
7829553 Arnold et al. Nov 2010 B2
7838023 Garvey et al. Nov 2010 B2
7846400 Hyde et al. Dec 2010 B2
7862598 Hyde et al. Jan 2011 B2
7892198 Stenzler Feb 2011 B2
7897399 Hyde et al. Mar 2011 B2
7928079 Hrabie et al. Apr 2011 B2
7928096 Waterhouse et al. Apr 2011 B2
7947299 Knapp May 2011 B2
7972137 Rosen Jul 2011 B2
7975699 Hyde et al. Jul 2011 B2
8003811 Almirante Aug 2011 B2
8017074 Arnold Sep 2011 B2
8021679 Chen Sep 2011 B2
8034384 Meyerhoff Oct 2011 B2
8043246 Av-Gay et al. Oct 2011 B2
20010012851 Lundy et al. Aug 2001 A1
20010025057 Gorfine Sep 2001 A1
20010038832 Bonavida et al. Nov 2001 A1
20010053772 Bonavida et al. Dec 2001 A1
20020028851 Bianchi et al. Mar 2002 A1
20020049157 Wu et al. Apr 2002 A1
20020061879 Garvey et al. May 2002 A1
20020068365 Kuhrts Jun 2002 A1
20020090401 Tucker et al. Jul 2002 A1
20020115586 Enikolopov Aug 2002 A1
20020132234 Moskowitz Sep 2002 A1
20020136763 Demopoulos et al. Sep 2002 A1
20020138051 Hole et al. Sep 2002 A1
20020143007 Garvey et al. Oct 2002 A1
20020143062 Lopez-Berestein et al. Oct 2002 A1
20020155174 Benjamin et al. Oct 2002 A1
20020161042 Gorfine Oct 2002 A1
20030027844 Soldato Feb 2003 A1
20030039697 Zhao et al. Feb 2003 A1
20030050305 Tejada Mar 2003 A1
20030072783 Stamler et al. Apr 2003 A1
20030093143 Zhao et al. May 2003 A1
20030134779 Diarra et al. Jul 2003 A1
20030170674 Moskowitz Sep 2003 A1
20030203915 Fang et al. Oct 2003 A1
20030205234 Bardach et al. Nov 2003 A1
20040009238 Miller et al. Jan 2004 A1
20040013747 Tucker et al. Jan 2004 A1
20040033480 Wong Feb 2004 A1
20040037836 Stamler et al. Feb 2004 A1
20040037897 Benjamin et al. Feb 2004 A1
20040043068 Tedeschi et al. Mar 2004 A1
20040076582 Dimatteo et al. Apr 2004 A1
20040082659 Cooke et al. Apr 2004 A1
20040105898 Benjamin et al. Jun 2004 A1
20040110691 Stamler Jun 2004 A1
20040131703 Bach et al. Jul 2004 A1
20040143010 Esteve-Soler et al. Jul 2004 A1
20040147598 Haj-Yehia Jul 2004 A1
20040157936 Burnett et al. Aug 2004 A1
20040228889 Cals-Grierson Nov 2004 A1
20040254419 Wang et al. Dec 2004 A1
20040265244 Rosen Dec 2004 A1
20050036949 Tucker et al. Feb 2005 A1
20050037093 Benjamin Feb 2005 A1
20050054714 Munoz et al. Mar 2005 A1
20050065161 Garvey et al. Mar 2005 A1
20050069595 Chen et al. Mar 2005 A1
20050074506 Natan et al. Apr 2005 A1
20050079132 Wang et al. Apr 2005 A1
20050080021 Tucker et al. Apr 2005 A1
20050080024 Tucker et al. Apr 2005 A1
20050131064 Gaston et al. Jun 2005 A1
20050142217 Adams et al. Jun 2005 A1
20050142218 Tucker et al. Jun 2005 A1
20050152891 Toone et al. Jul 2005 A1
20050165452 Sigg et al. Jul 2005 A1
20050171006 Bunting et al. Aug 2005 A1
20050171199 Murrell Aug 2005 A1
20050187222 Garvey et al. Aug 2005 A1
20050220838 Zhao et al. Oct 2005 A1
20050249818 Sawan et al. Nov 2005 A1
20050265958 West et al. Dec 2005 A1
20050281867 Kahn et al. Dec 2005 A1
20060008529 Meyerhoff et al. Jan 2006 A1
20060009431 Earl et al. Jan 2006 A1
20060035854 Goldstein et al. Feb 2006 A1
20060039950 Zhou et al. Feb 2006 A1
20060058363 Wang et al. Mar 2006 A1
20060067909 West et al. Mar 2006 A1
20060095120 Hermann May 2006 A1
20060100159 Stamler et al. May 2006 A1
20060142183 Diarra et al. Jun 2006 A1
20060147553 Miller et al. Jul 2006 A1
20060147904 Wong Jul 2006 A1
20060159726 Shell Jul 2006 A1
20060172018 Fine et al. Aug 2006 A1
20060198831 Stamler et al. Sep 2006 A1
20060211601 Stamler et al. Sep 2006 A1
20060269620 Morris et al. Nov 2006 A1
20060286158 Calvert Murrell et al. Dec 2006 A1
20060286159 Calvert Murrell et al. Dec 2006 A1
20070003538 Madhyastha Jan 2007 A1
20070014686 Arnold et al. Jan 2007 A1
20070014733 O'Donnell et al. Jan 2007 A1
20070014828 Fitzhugh et al. Jan 2007 A1
20070037821 Garvey et al. Feb 2007 A1
20070048344 Yahiaoui et al. Mar 2007 A1
20070053952 Chen et al. Mar 2007 A1
20070053955 Larson et al. Mar 2007 A1
20070053966 Ang et al. Mar 2007 A1
20070059351 Murrell et al. Mar 2007 A1
20070086954 Miller Apr 2007 A1
20070087025 Fitzhugh et al. Apr 2007 A1
20070088345 Larson et al. Apr 2007 A1
20070089739 Fine et al. Apr 2007 A1
20070116785 Miller May 2007 A1
20070129690 Rosenblatt et al. Jun 2007 A1
20070148136 Whitlock Jun 2007 A1
20070154570 Miller et al. Jul 2007 A1
20070166227 Liu et al. Jul 2007 A1
20070172469 Clark Jul 2007 A1
20070191377 Worcel Aug 2007 A1
20070196327 Kalivretenos et al. Aug 2007 A1
20070197543 Esteve-Soler et al. Aug 2007 A1
20070202155 Ang et al. Aug 2007 A1
20070203242 Calton Aug 2007 A1
20070207179 Andersen et al. Sep 2007 A1
20070219208 Kalyanaraman et al. Sep 2007 A1
20070225250 Brown Sep 2007 A1
20070239107 Lundberg et al. Oct 2007 A1
20070243262 Hurley et al. Oct 2007 A1
20070248676 Stamler et al. Oct 2007 A1
20070264225 Cheng et al. Nov 2007 A1
20070270348 Kahn et al. Nov 2007 A1
20070275100 Miller Nov 2007 A1
20080025972 Daaka et al. Jan 2008 A1
20080039521 Yasuda et al. Feb 2008 A1
20080045909 Fossel Feb 2008 A1
20080069848 Peters Mar 2008 A1
20080069863 Peters Mar 2008 A1
20080069905 Peters Mar 2008 A1
20080071206 Peters Mar 2008 A1
20080089956 Da et al. Apr 2008 A1
20080139450 Madhyastha et al. Jun 2008 A1
20080145449 Stamler Jun 2008 A1
20080171021 Bach et al. Jul 2008 A1
20080171351 Smith Jul 2008 A1
20080175881 Ippoliti et al. Jul 2008 A1
20080182797 Nudler et al. Jul 2008 A1
20080193385 Maibach Aug 2008 A1
20080193566 Miller et al. Aug 2008 A1
20080207491 Diarra et al. Aug 2008 A1
20080207713 Wang et al. Aug 2008 A1
20080214646 Knaus et al. Sep 2008 A1
20080226751 Tucker et al. Sep 2008 A1
20080241208 Shanley et al. Oct 2008 A1
20080275093 Garvey et al. Nov 2008 A1
20080280984 Fossel Nov 2008 A1
20080286321 Reneker et al. Nov 2008 A1
20080287861 Stenzler et al. Nov 2008 A1
20080311163 Peters Dec 2008 A1
20080317626 Arnold et al. Dec 2008 A1
20080317679 Tamarkin et al. Dec 2008 A1
20090004298 Gaston et al. Jan 2009 A1
20090010989 Peters Jan 2009 A1
20090018091 Ellis et al. Jan 2009 A1
20090028966 Chen et al. Jan 2009 A1
20090036491 Tucker et al. Feb 2009 A1
20090042819 Ellis et al. Feb 2009 A1
20090048219 Garvey Feb 2009 A1
20090069449 Smith et al. Mar 2009 A1
20090081279 Jezek et al. Mar 2009 A1
20090088411 Renzi et al. Apr 2009 A1
20090093510 Clementi et al. Apr 2009 A1
20090098187 Peters et al. Apr 2009 A1
20090108777 Hyde et al. Apr 2009 A1
20090110612 Hyde et al. Apr 2009 A1
20090110712 Hyde et al. Apr 2009 A1
20090110933 Hyde et al. Apr 2009 A1
20090110958 Hyde et al. Apr 2009 A1
20090112055 Hyde et al. Apr 2009 A1
20090112193 Hyde et al. Apr 2009 A1
20090112197 Hyde et al. Apr 2009 A1
20090118819 Merz et al. May 2009 A1
20090123528 Fossel May 2009 A1
20090131342 Ellis May 2009 A1
20090136410 Smith May 2009 A1
20090137683 Yasuda et al. May 2009 A1
20090143417 Smith et al. Jun 2009 A1
20090148482 Peters Jun 2009 A1
20090186859 Velázquez et al. Jul 2009 A1
20090191284 Conoci et al. Jul 2009 A1
20090196930 Surber et al. Aug 2009 A1
20090197964 Summar et al. Aug 2009 A1
20090203653 Garvey Aug 2009 A1
20090214618 Schoenfisch et al. Aug 2009 A1
20090214624 Smith et al. Aug 2009 A1
20090214674 Barraud et al. Aug 2009 A1
20090215838 Garvey et al. Aug 2009 A1
20090221536 Fossel Sep 2009 A1
20090222088 Chen et al. Sep 2009 A1
20090226504 Peters Sep 2009 A1
20090232863 Cheng et al. Sep 2009 A1
20090232868 Chen et al. Sep 2009 A1
20090255536 Av-Gay et al. Oct 2009 A1
20090263416 Dawson et al. Oct 2009 A1
20090264398 Bauer Oct 2009 A1
20090270509 Arnold et al. Oct 2009 A1
20090287072 Meyerhoff et al. Nov 2009 A1
20090297634 Friedman et al. Dec 2009 A1
20090304815 Cossu et al. Dec 2009 A1
20090317885 Mascharak Dec 2009 A1
20100003338 Hubbell et al. Jan 2010 A1
20100015253 Benjamin Jan 2010 A1
20100016790 Peters Jan 2010 A1
20100021506 Jones Jan 2010 A1
20100040703 Miller et al. Feb 2010 A1
20100062055 Herrmann et al. Mar 2010 A1
20100076162 Ameer et al. Mar 2010 A1
20100086530 Martinov Apr 2010 A1
20100087370 Jain et al. Apr 2010 A1
20100099729 Almirante et al. Apr 2010 A1
20100112033 Ganzarolli de Oliveira et al. May 2010 A1
20100112095 Morris et al. May 2010 A1
20100129474 Benjamin et al. May 2010 A1
20100152683 Lindgren et al. Jun 2010 A1
20100159119 Chen et al. Jun 2010 A1
20100166603 Opie Jul 2010 A1
20100178319 Lindgren et al. Jul 2010 A1
20100184992 Toone et al. Jul 2010 A1
20100196517 Fossel Aug 2010 A1
20100197702 Hellberg et al. Aug 2010 A1
20100197802 Jezek et al. Aug 2010 A1
20100209469 Bezwada Aug 2010 A1
20100221308 Madhyastha et al. Sep 2010 A1
20100233304 Pan Sep 2010 A1
20100239512 Morris et al. Sep 2010 A1
20100247611 Balkus, Jr. et al. Sep 2010 A1
20100247680 Szabo Sep 2010 A1
20100255062 Kalivretenos et al. Oct 2010 A1
20100256755 Chen et al. Oct 2010 A1
20100261930 Honda et al. Oct 2010 A1
20100262238 Chen et al. Oct 2010 A1
20100268149 Av-Gay et al. Oct 2010 A1
20100276284 Meyerhoff et al. Nov 2010 A1
20100280122 Fossel Nov 2010 A1
20100285100 Balkus, Jr. et al. Nov 2010 A1
20100303891 Lee et al. Dec 2010 A1
20100311780 Farber Dec 2010 A1
20100323036 Fine Dec 2010 A1
20100324107 Dos Santos et al. Dec 2010 A1
20100331542 Smith Dec 2010 A1
20100331968 Morris et al. Dec 2010 A1
20110008815 Stamler et al. Jan 2011 A1
20110033437 Smith et al. Feb 2011 A1
20110046182 Gilmer et al. Feb 2011 A1
20110059036 Arnold et al. Mar 2011 A1
20110059189 Cisneros Mar 2011 A1
20110065783 O'Donnell et al. Mar 2011 A1
20110070318 Jezek et al. Mar 2011 A1
20110071168 Chopp et al. Mar 2011 A1
20110076313 Av-Gay et al. Mar 2011 A1
20110104240 Jones et al. May 2011 A1
20110106000 Jones et al. May 2011 A1
Foreign Referenced Citations (320)
Number Date Country
0 805 678 Oct 2003 EP
0 746 327 Apr 2004 EP
0 724 436 Jul 2004 EP
1 411 908 May 2005 EP
1 163 528 Nov 2005 EP
1 681 068 Jul 2006 EP
1 690 532 Aug 2006 EP
1 690 554 Aug 2006 EP
1 690 557 Aug 2006 EP
1 690 558 Aug 2006 EP
1 700 611 Sep 2006 EP
1 704 876 Sep 2006 EP
1 704 877 Sep 2006 EP
1 704 879 Sep 2006 EP
1 707 224 Oct 2006 EP
1 728 438 Dec 2006 EP
1 731 176 Dec 2006 EP
1 757 278 Feb 2007 EP
1 764 119 Mar 2007 EP
1 790 335 May 2007 EP
1 861 130 Sep 2008 EP
1 343 547 Apr 2009 EP
1 871 433 Apr 2009 EP
1 161 248 May 2009 EP
1 846 058 Jul 2009 EP
2 233 437 Sep 2010 EP
WO 9507691 Mar 1995 WO
WO 9510267 Apr 1995 WO
WO 9512394 May 1995 WO
WO 9519767 Jul 1995 WO
WO 9522335 Aug 1995 WO
WO 9532715 Dec 1995 WO
WO 9608966 Mar 1996 WO
WO 9613164 May 1996 WO
WO 9614844 May 1996 WO
WO 9615781 May 1996 WO
WO 9615797 May 1996 WO
WO 9627386 Sep 1996 WO
WO 9632118 Oct 1996 WO
WO 9632136 Oct 1996 WO
WO 9633757 Oct 1996 WO
WO 9635416 Nov 1996 WO
WO 9716983 May 1997 WO
WO 9731654 Sep 1997 WO
WO 9734014 Sep 1997 WO
WO 9747254 Dec 1997 WO
WO 9805689 Feb 1998 WO
WO 9806389 Feb 1998 WO
WO 9808482 Mar 1998 WO
WO 9808482 Mar 1998 WO
WO 9808496 Mar 1998 WO
WO 9813358 Apr 1998 WO
WO 9819996 May 1998 WO
WO 9820015 May 1998 WO
WO 9822090 May 1998 WO
WO 9829101 Jul 1998 WO
WO 9842661 Oct 1998 WO
WO 9900070 Jan 1999 WO
WO 9901427 Jan 1999 WO
WO 9918949 Apr 1999 WO
WO 9922729 May 1999 WO
WO 9933823 Jul 1999 WO
WO 9937616 Jul 1999 WO
WO 9944595 Sep 1999 WO
WO 9944595 Sep 1999 WO
WO 9951221 Oct 1999 WO
WO 9967210 Dec 1999 WO
WO 9967296 Dec 1999 WO
WO 0003640 Jan 2000 WO
WO 0006151 Feb 2000 WO
WO 0030658 Jun 2000 WO
WO 0033877 Jun 2000 WO
WO 0056333 Sep 2000 WO
WO 0059304 Oct 2000 WO
WO 0076318 Dec 2000 WO
WO 0112067 Feb 2001 WO
WO 0115738 Mar 2001 WO
WO 0115738 Mar 2001 WO
WO 0126702 Apr 2001 WO
WO 0126702 Apr 2001 WO
WO 0145732 Jun 2001 WO
WO 0145732 Jun 2001 WO
WO 0170199 Sep 2001 WO
WO 0185227 Nov 2001 WO
WO 0185227 Nov 2001 WO
WO 0189572 Nov 2001 WO
WO 0217880 Mar 2002 WO
WO 0217880 Mar 2002 WO
WO 0217881 Mar 2002 WO
WO 0217881 Mar 2002 WO
WO 0220026 Mar 2002 WO
WO 0220026 Mar 2002 WO
WO 0232418 Apr 2002 WO
WO 0234705 May 2002 WO
WO 0243786 Jun 2002 WO
WO 0243786 Jun 2002 WO
WO 0247675 Jun 2002 WO
WO 02051353 Jul 2002 WO
WO 02051353 Jul 2002 WO
WO 02056864 Jul 2002 WO
WO 02056864 Jul 2002 WO
WO 02056874 Jul 2002 WO
WO 02056904 Jul 2002 WO
WO 02070496 Sep 2002 WO
WO 02076395 Oct 2002 WO
WO 02076395 Oct 2002 WO
WO 03004097 Jan 2003 WO
WO 03006427 Jan 2003 WO
WO 03015605 Feb 2003 WO
WO 03015605 Feb 2003 WO
WO 03017989 Mar 2003 WO
WO 03026717 Apr 2003 WO
WO 03030659 Apr 2003 WO
WO 03041713 May 2003 WO
WO 03047636 Jun 2003 WO
WO 03047636 Jun 2003 WO
WO 03080039 Oct 2003 WO
WO 03092763 Nov 2003 WO
WO 03095398 Nov 2003 WO
WO 03095398 Nov 2003 WO
WO 2004009066 Jan 2004 WO
WO 2004009253 Jan 2004 WO
WO 2004011421 Feb 2004 WO
WO 2004012874 Feb 2004 WO
WO 2004037798 May 2004 WO
WO 2004039313 May 2004 WO
WO 2004039313 May 2004 WO
WO 2004060283 Jul 2004 WO
WO 2004064767 Aug 2004 WO
WO 2004064767 Aug 2004 WO
WO 2004087212 Oct 2004 WO
WO 2004098538 Nov 2004 WO
WO 2004098538 Nov 2004 WO
WO 2005003032 Jan 2005 WO
WO 2005011575 Feb 2005 WO
WO 2005011575 Feb 2005 WO
WO 2005030118 Apr 2005 WO
WO 2005030118 Apr 2005 WO
WO 2005030135 Apr 2005 WO
WO 2005030135 Apr 2005 WO
WO 2005030147 Apr 2005 WO
WO 2005030147 Apr 2005 WO
WO 2005034860 Apr 2005 WO
WO 2005034860 Apr 2005 WO
WO 2005039664 May 2005 WO
WO 2005039664 May 2005 WO
WO 2005067986 Jul 2005 WO
WO 2005070006 Aug 2005 WO
WO 2005070006 Aug 2005 WO
WO 2005070008 Aug 2005 WO
WO 2005070008 Aug 2005 WO
WO 2005070874 Aug 2005 WO
WO 2005070883 Aug 2005 WO
WO 2005072819 Aug 2005 WO
WO 2005077962 Aug 2005 WO
WO 2005077962 Aug 2005 WO
WO 2005081752 Sep 2005 WO
WO 2005081752 Sep 2005 WO
WO 2005081964 Sep 2005 WO
WO 2005094913 Oct 2005 WO
WO 2005102282 Nov 2005 WO
WO 2005107384 Nov 2005 WO
WO 2005107384 Nov 2005 WO
WO 2005112954 Dec 2005 WO
WO 2005115440 Dec 2005 WO
WO 2005115440 Dec 2005 WO
WO 2005120493 Dec 2005 WO
WO 2006023693 Mar 2006 WO
WO 2006023693 Mar 2006 WO
WO 2006037105 Apr 2006 WO
WO 2006037105 Apr 2006 WO
WO 2006041855 Apr 2006 WO
WO 2006041855 Apr 2006 WO
WO 2006045639 May 2006 WO
WO 2006055542 May 2006 WO
WO 2006055542 May 2006 WO
WO 2006058318 Jun 2006 WO
WO 2006064056 Jun 2006 WO
WO 2006066362 Jun 2006 WO
WO 2006084909 Aug 2006 WO
WO 2006084910 Aug 2006 WO
WO 2006084911 Aug 2006 WO
WO 2006084912 Aug 2006 WO
WO 2006084913 Aug 2006 WO
WO 2006084914 Aug 2006 WO
WO 2006095193 Sep 2006 WO
WO 2006095193 Sep 2006 WO
WO 2006096572 Sep 2006 WO
WO 2006097348 Sep 2006 WO
WO 2006099058 Sep 2006 WO
WO 2006099058 Sep 2006 WO
WO 2006100154 Sep 2006 WO
WO 2006100155 Sep 2006 WO
WO 2006100156 Sep 2006 WO
WO 2006122960 Nov 2006 WO
WO 2006122961 Nov 2006 WO
WO 2006125016 Nov 2006 WO
WO 2006125262 Nov 2006 WO
WO 2006127591 Nov 2006 WO
WO 2006127591 Nov 2006 WO
WO 2006128121 Nov 2006 WO
WO 2006128742 Dec 2006 WO
WO 2006128742 Dec 2006 WO
WO 2006128743 Dec 2006 WO
WO 2006130982 Dec 2006 WO
WO 2007003028 Jan 2007 WO
WO 2007005910 Jan 2007 WO
WO 2007005910 Jan 2007 WO
WO 2007012165 Feb 2007 WO
WO 2007016677 Feb 2007 WO
WO 2007016677 Feb 2007 WO
WO 2007023005 Mar 2007 WO
WO 2007024501 Mar 2007 WO
WO 2007024501 Mar 2007 WO
WO 2007027859 Mar 2007 WO
WO 2007028657 Mar 2007 WO
WO 2007030266 Mar 2007 WO
WO 2007030266 Mar 2007 WO
WO 2007050379 May 2007 WO
WO 2007050379 May 2007 WO
WO 2007053292 May 2007 WO
WO 2007053578 May 2007 WO
WO 2007053578 May 2007 WO
WO 2007054373 May 2007 WO
WO 2007057763 May 2007 WO
WO 2007057763 May 2007 WO
WO 2007059311 May 2007 WO
WO 2007059311 May 2007 WO
WO 2007064895 Jun 2007 WO
WO 2007064895 Jun 2007 WO
WO 2007067477 Jun 2007 WO
WO 2007084533 Jul 2007 WO
WO 2007084533 Jul 2007 WO
WO 2007086884 Aug 2007 WO
WO 2007086884 Aug 2007 WO
WO 2007088050 Aug 2007 WO
WO 2007088050 Aug 2007 WO
WO 2007088123 Aug 2007 WO
WO 2007088123 Aug 2007 WO
WO 2007092284 Aug 2007 WO
WO 2007092284 Aug 2007 WO
WO 2007100910 Sep 2007 WO
WO 2007100910 Sep 2007 WO
WO 2007103190 Sep 2007 WO
WO 2007103190 Sep 2007 WO
WO 2007127725 Nov 2007 WO
WO 2007127725 Nov 2007 WO
WO 2007133922 Nov 2007 WO
WO 2007133922 Nov 2007 WO
WO 2007143185 Dec 2007 WO
WO 2007143185 Dec 2007 WO
WO 2007149437 Dec 2007 WO
WO 2007149520 Dec 2007 WO
WO 2007149520 Dec 2007 WO
WO 2008005313 Jan 2008 WO
WO 2008005313 Jan 2008 WO
WO 2008013633 Jan 2008 WO
WO 2008013633 Jan 2008 WO
WO 2008020218 Feb 2008 WO
WO 2008027203 Mar 2008 WO
WO 2008027203 Mar 2008 WO
WO 2008062160 May 2008 WO
WO 2008071242 Jun 2008 WO
WO 2008088507 Jul 2008 WO
WO 2008088507 Jul 2008 WO
WO 2008095841 Aug 2008 WO
WO 2008095841 Aug 2008 WO
WO 2008098192 Aug 2008 WO
WO 2008098192 Aug 2008 WO
WO 2008100591 Aug 2008 WO
WO 2008100591 Aug 2008 WO
WO 2008112391 Sep 2008 WO
WO 2008112391 Sep 2008 WO
WO 2008116497 Oct 2008 WO
WO 2008116925 Oct 2008 WO
WO 2008130567 Oct 2008 WO
WO 2008141416 Nov 2008 WO
WO 2008150505 Dec 2008 WO
WO 2008157393 Dec 2008 WO
WO 2009014616 Jan 2009 WO
WO 2009014829 Jan 2009 WO
WO 2009014829 Jan 2009 WO
WO 2009019498 Feb 2009 WO
WO 2009019498 Feb 2009 WO
WO 2009019499 Feb 2009 WO
WO 2009026680 Mar 2009 WO
WO 2009036571 Mar 2009 WO
WO 2009049208 Apr 2009 WO
WO 2009064861 May 2009 WO
WO 2009064861 May 2009 WO
WO 2009073643 Jun 2009 WO
WO 2009073643 Jun 2009 WO
WO 2009073940 Jun 2009 WO
WO 2009073940 Jun 2009 WO
WO 2009080795 Jul 2009 WO
WO 2009086470 Jul 2009 WO
WO 2009086470 Jul 2009 WO
WO 2009088433 Jul 2009 WO
WO 2009098113 Aug 2009 WO
WO 2009117182 Sep 2009 WO
WO 2009117182 Sep 2009 WO
WO 2009117183 Sep 2009 WO
WO 2009124379 Oct 2009 WO
WO 2009131931 Oct 2009 WO
WO 2009155689 Dec 2009 WO
WO 2009155690 Dec 2009 WO
WO 2010002450 Jan 2010 WO
WO 2010002450 Jan 2010 WO
WO 2010033242 Mar 2010 WO
WO 2010033242 Mar 2010 WO
WO 2010045465 Apr 2010 WO
WO 2010048724 May 2010 WO
WO 2010080213 Jul 2010 WO
WO 2010080213 Jul 2010 WO
WO 2010096320 Aug 2010 WO
WO 2010096320 Aug 2010 WO
WO 2010114669 Oct 2010 WO
WO 2010120414 Oct 2010 WO
WO 2010151505 Dec 2010 WO
WO 2012118819 Sep 2012 WO
Non-Patent Literature Citations (188)
Entry
Amadeu et al., “Nitric Oxide Donor Improves Healing if Applied on Inflammatory and Proliferative Disease” Journal of Surgical Research 149: 84-93 (2008).
Ashutosh, K. et al., “Use of nitric oxide inhalationin chronic obstructive pulmonary disease” Thorax 55:109-113 (2000).
Azizzadeh, B. et al., “Nitric Oxide Improve Cisplatin Cytotoxicity in Head and Neck Squamous Cell Carcinoma” Laryngoscope 111:1896-1900 (2001).
Barst, R.J. et al., “Clinical perspectives with long-term pulsed inhaled nitric oxide for the treatment of pulmonary arterial hypertension” Pulmonary Circulation 2(2):139-147 (2012).
Barraud, N., et al., “Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa” Journal of Bacteriology 188(21):7344-7353 (2006).
Benz S. et al., “Effect of Nitric Oxide in Ischemia/Reperfusion of the Pancreas” Journal of Surgical Research 106(1):46-53, (2002).
Bian K. et al., “Vascular System: Role of Nitric Oxide in Cardiovascular Diseases” The Journal of Clinical Hypertension 10(4):304-310 (2008).
Bloch K.D. et al. “Inhaled NO as a therapeutic agent” Cardiovascular Research 75:339-348 (2007).
Bohl Masters et al., “Effects of nitric oxide releasing vinyl poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice” Wound Repair and Regeneration 10(5): 286-294 (2002).
Bonavida B. et al., “Novel therapeutic applications of nitric oxide donors in cancer: Roles in chemo- and immunosensitization to apoptosis and inhibition of metastases” Nitric Oxide (19) 2:152-157 (2008).
Bonavida B. et al., “Therapeutic potential of nitric oxide in cancer” Drug Resistance Updates 9(3):157-73 (2006).
Boykin J.V. et al., “HBO mediates increased nitric oxide production associated with wound healing”, Wound Repair and Regeneration 12(2) (2004).
Boykin Jr. J.V., “Wound Nitric Oxide Bioactivity: A Promising Diagnostic Indicator for Diabetic Foot Ulcer Management”, Journal of Wound, Ostomy & Continence Nursing 37(1):25-32 (2010).
Bruch-Gerharz D. et al., “Nitric Oxide in Human Skin: Current Status and Future Prospects”, Journal of Investigative Dermatology 110:1-7 (1998).
Cals-Grierson M.M. et al., “Nitric oxide function in the skin”, Nitric Oxide 10(4):179-193 (2004).
Carlsson S. et al., “Intravesical Nitric Oxide Delivery for Prevention of Catheter-Associated Urinary Tract Infections” Antimicrobial Agents and Chemotherapy 49(6):2352 (2005).
Coban, A., et al., “The Effect of Nitric Oxide Combined with Fluoroquinolones against Salmonellaenterica Serovar Typhimurium in Vitro,” Mem Inst Oswaldo Cruz, Rio de Janeiro, 98(3):419-423 (2003).
De Groote M.A. et al., “NO Inhibitions: Antimicrobial Properties of Nitric Oxide”, Clinical Infectious Diseases 21 (Supplement 2):S162-S165 (1995).
Fang F., “Mechanisms of Nitric Oxide-related Antimicrobial Activity” Journal of Clinical Investigation 99(12):2818-2825 (1997).
Frederiksen L.J. et al., “Chemosensitization of Cancer In vitro and In vivo by Nitric Oxide Signaling” Clinical Cancer Research 13:2199-2206 (2007).
Frost et al., “Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles” Journal of Biomedical Research, Part A, 72A:409-419 (2005).
Ghaffari A. et al., “Potential application of gaseous nitric oxide as a topical antimicrobial agent” Nitric Oxide 14(1):21-29 (2006).
Gupta, R., et al., “Bioactive materials for biomedical applications using sol-gel technology,” Biomedical Materials 3:1-15 (2008).
Herman A.G. et al., “Therapeutic potential of nitric oxide donors in the prevention and treatment of atherosclerosis” European Heart Journal 26:1945-1955 (2005).
Hetrick E.M. et al., “Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles” ACS Nano 2(2):235-246 (2008).
Hetrick et al., “Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles”, Biomaterials 30:2782-2789 (2009).
Hirst D. et al., “Targeting nitric oxide for cancer therapy”, Journal of Pharmacy and Pharmacology 59:3-13 (2007).
Howlin R. et al., “Nitric oxide-mediated dispersal and enhanced antibiotic sensitivity in Pseudomonas aeruginosa biofilms from the cystic fibrosis lung”, Archives of Disease In Childhood 96:A45 (2011).
Hrabie et al., “Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives,” Chemical Reviews 102:1135-1154 (2002).
Huerta S. et al., “Nitric oxide donors: Novel cancer therapeutics (Review)”, International Journal of Oncology 33:909-927 (2008).
International Search Report and Written Opinion Corresponding to International Application No. PCT/US2012/26972; Date of Mailing: Feb. 28, 2012; 11 Pages.
International Search Report and Written Opinion Corresponding to International Application No. PCT/US2012/26960; Date of Mailing: Feb. 28, 2012; 18 Pages.
Iwakir, N. et al., Synthesis of Amphiphillic polysiloxanes and their properties for formation of nano-aggregates, Colloid and Polymer Science 287:577-582 (2009).
Johnson T. A. et al., “Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers”, Nitric Oxide, 2009, 7 Pages.
Jones M.L. et al., “Antimicrobial properties of nitric oxide and its application in antimicrobial formulations and medical devices”, Applied Microbiology and Biotechnology 88:401-407 (2010).
Kiziltepe T. et al., “JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells”, Blood 110:709-718 (2007).
Lamas S. et al., “Nitric oxide signaling comes of age: 20 years and thriving”, Cardiovascular Research 75:207-209 (2007).
Liu X. et al., “Nitric Oxide Inhalation Improves Microvascular Flow and Decreases Infarction Size After Myocardial Ischemia and Reperfusion”, Journal of the American College of Cardiology, vol. 50, No. 8 (2007).
Luo J. et al., “Nitric oxide: a newly discovered function on wound healing”, Acta Pharmacologica Sinica 26(3):259-264 (2005).
McElhaney-Feser, G., et al., “Synergy of Nitric Oxide and Azoles against Candida Species In Vitro,” Antimicrobial Agents and Chemotherapy 42(9):2342-2346 (1998).
Mcgrowder D. et al., “Therapeutic Uses of Nitric Oxide-donating Drugs in the Treatment of Cardiovascular Diseases” International Journal of Pharmacology 2(4): 366-373 (2006).
Napoli C. et al., “Nitric oxide and atherosclerosis: An update”, Nitric Oxide 15(4):265-279 (2006).
Phillips L. et al., “Nitric Oxide Mechanism of Protection in Ischemia and Reperfusion Injury”, Journal of Investigative Surgery 22:46-55 (2009).
Riccio et al., “Nitric oxide-releasing S-nitrosothiol-modified xerogels” Biomaterials 30:4494-4502 (2009).
Robson, MC, “Wound Infection. A Failure of Wound Healing Caused by an Imbalance of Bacteria,” Surgical Clinics of North America 77(3): 637-50 (1997).
Rothrock A.R. et al., “Synthesis of Nitric Oxide-Releasing Gold Nanoparticles”, Journal of American Chemical Society 127:9362-9363 (2005).
Saaral, NY, “The Equilibrium Between Endothelin-1/Nitric Oxide in Acne Vulgaris,” Istanbul Tip Fakultesi Dergisi Cilt, 2008, 71(4).
Saavedra J.E. et al., “Esterase-Sensitive Nitric Oxide Donors of the Diazeniumdiolate Family: In Vitro Antileukemic Activity” Journal of Medicinal Chemistry 43:261-269 (2000).
Schäffer M.R. et al., “Diabetes-impaired healing and reduced wound nitric oxide synthesis: A possible pathophysiologic correlation”, Surgery 121(5):513-519 (1997).
Schairer D.O. et al., “The potential of nitric oxide releasing therapies as antimicrobial agents” Virulence 3(3):271-279 (2012).
Schulz R. et al., “Nitric oxide in myocardial ischemia/reperfusion injury”, Cardiovascular Research 61:402-413 (2004).
Schwentker A. et al., “Nitric oxide and wound repair: role of cytokines?” Nitric Oxide 7(1):1-10 (2002).
Shin et al. “Synthesis of Nitric Oxide-Releasing Silica Nanoparticles” Journal of American Chemical Society 129(15):4612-4619 (2007).
Shin et al. “Supporting Information: Synthesis of Nitric Oxide-Releasing Silica Nanoparticles” Journal of American Chemical Society 129(15):S1-S4 (2007).
Simeone A.M. et al., “N-(4-Hydroxyphenyl) retinamide and nitric oxide pro-drugs exhibit apoptotic and anti-invasive effects against bone metastatic breast cancer cells” Carcinogenesis 27(3):568-577 (2006).
Siriussawakul A. et al. “Role of nitric oxide in hepatic ischemia-reperfusion injury”, World Journal of Gastroenterology 16(48): 6079-6086 (2010).
Shi, HP, et al., “The role of iNOS in wound healing” Surgery, vol. 130(2):225-229 (2001).
Stasko, N., et al., “Dendrimers as a Scaffold for Nitric Oxide Release,” J. Am. Chem. Soc., 2006, vol. 128, pp. 8265-8271.
Stevens E.V. et al., “Nitric Oxide-Releasing Silica Nanoparticle Inhibition of Ovarian Cancer Cell Growth”, Molecular Pharmaceutics 7(3):775-785 (2010).
Summersgill, J., et al., “Killing of Legionella pneumophila by nitric oxide in γ-interferon-activated macrophages,” Journal of Leukocyte Biology 52:625-629 (1992).
Tang, X., et al., “Synthesis of Beta-Lactamase Activated Nitric Oxide Donors,” Biorgania & Medicinal Chemistry Letters 13:1687-1690 (2003).
Sato et al. “Dynamic Aspect of Reactive Oxygen and Nitric Oxide in Oral Cavity”, J. Clin. Biochem. Nutr. 42:8-13 (2008).
Slowing et al. “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers” Advanced Drug Delivery Reviews 60:1278-1288 (2008).
Terpolilli N.A. et al., “Inhalation of Nitric Oxide Prevents Ischemic Brain Damage in Experimental Stroke by Selective Dilatation of Collateral Arterioles” Circulation Research 110:727-738 (2012).
Thomas D.D. et al., “Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide”, Proceedings of the National Academy of Sciences 101(24):8894-8899 (2004).
Weller R. “Nitric oxide donors and the skin: useful therapeutic agents?” Clinical Science 105:533-535 (2003).
Wink D.A. et al., “The multifaceted roles of nitric oxide in cancer”, Carcinogenesis 19(5):711-721 (1998).
Witte M.B. et al., “Nitric oxide enhances experimental wound healing in diabetes”, British Journal of Surgery 89:1594-1601 (2002).
Witte M.B. et al., “Role of nitric oxide in wound repair”, The American Journal of Surgery 183(4):406-412 (2002).
Yetik-Anacak G. et al., “Nitric oxide and the endothelium: History and impact on cardiovascular disease”, Vascular Pharmacology 45(5):268-276 (2006).
Zhang H. et al., “Nitric Oxide-Releasing Fumed Silica Particles: Synthesis, Characterization, and Biomedical Application”, Journal of the American Chemical Society 125:5015-5024 (2003).
Zhu, D., et al., “Corrosion protection of metals by water-based silane mixtures of bis-[trimethosysilylpropyl]amine and vinyltriacetoxysilane,” Progress in Organic Coatings 49:42-53 (2004).
Zhu H. et al., “Effects of Nitric Oxide on Skin Burn Wound Healing”, Journal of Burn Care & Research 29(5):804-814 (2008).
Zhu H. et al., “Nitric Oxide Accelerates the Recovery from Burn Wounds”, World Journal of Surgery 31: 624-631 (2007).
European Search Report Corresponding to European Patent Application No. 09820905.9; Dated: Feb. 14, 2013; 7 Pages.
Living Water Acid-Alkaline Balance http://www.livingwaterhealthsolutions.com/Articles/alkalize.php Accessed online Nov. 3, 2011.
Salivary pH Testing https://allicincenter.com/pdf/ph—testinq.pdf Accessed online Nov. 3, 2011.
Al-Sa'Doni et al., “S-Nitrosothiols as Nitric Oxide-Donors: Chemistry, Biology and Possible Future Therapeutic Applications”, Current Medicinal Chemistry, 2004, 11: 2679-2690.
Al-Sa'Doni et al., “Current Status and Future Possibilities of Nitric Oxide-Donor Drugs: Focus on S-Nitrosothiols”, Mini-Reviews in Medicinal Chemistry, 2005, 5: 247-254.
Albert, Klaus, “NMR investigations of stationary phases”, Journal of Separation Science, 2003, 26: 215-224.
Bainbrigge et al., “The thermal stability of S-nitrosothiols: experimental studies andab initio calculations on model compounds”, Journal of the Chemical Society, Perkin Transactions, 1997, 2: 351-353.
Bartberger et al., “Theory, Spectroscopy, and Crystallographic Analysis of S-Nitrosothiols: Conformational Distribution Dictates Spectroscopic Behavior”, Journal of the American Chemical Society, 2000, 122: 5889-5890.
Bogush et al., “Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction”, Journal of Non-Crystalline Solids, 1988, 104: 95-106.
Branda et al., “The effect of mixing alkoxides on the Stober particles size”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299: 252-255.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 3, “Hydrolysis and Condensation II: Silicates”, pp. 97-234, 1990.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 4, “Particulate Sols and Gels”, pp. 235-302, 1990.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 8, “Drying”, pp. 453-514, 1990.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 9, “Structural Evolution During Consolidation”, pp. 515-616, 1990.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 10, “Surface Chemistry and Chemical Modification”, pp. 617-674, 1990.
Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Chapter 13, “Film Formation”, pp. 787-838, 1990.
Brunner et al., “In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility”, Environmental Science and Technology, 2006, 40: 4374-4381.
Butler et al., “Chemistry, Analysis, and Biological Roles of S-Nitrosothiols”, Analytical Biochemistry, 1997, 249: 1-9.
Cassidy et al., “Drug delivery strategies for photodynamic antimicrobial chemotherapy: From benchtop to clinical practice”, Journal Photochemistry and Photobiology B: Biology, 2009, 95(2): 71-80. (Abstract Only).
Charville et al., “Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release”, Biomaterials, 2008, 29(30): 4039-4044.
Coneski et al., “Degradable Nitric Oxide-Releasing Biomaterials via Post-Polymerization Functionalization of Cross-Linked Polyesters”, Biomacromolecules, 2010, 11: 3208-3215.
Coneski et al., “Synthesis of nitric oxide-releasing polyurethanes with S-nitrosothiol-containing hard and soft segments”, Polymer Chemistry, 2011, 2: 906-913.
Cooke, John, “NO and angiogenesis”, Atherosclerosis Supplements, 2003, 4: 53-60.
Crichton et al., “Old Iron, Young Copper: from Mars to Venus”, BioMetals, 2001, 14: 99-112.
De Souza et al., “Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: Implications for the treatment of cutaneous leishmaniasis”, Nitric Oxide, 2006, 15: 209-216.
Deupree et al., “Morphological analysis of the antimicrobial action of nitric oxide on Gram-negative pathogens using atomic force microscopy”, Acta Biomaterialia, 2009, 5:1405-1415.
Dicks et al., “Identification of Cu+ as the effective reagent in nitric oxide formation from S-nitrosothiols (RSNO)”, Journal of the Chemical Society, 1996, 2: 481-487.
Dobmeier et al., “Nitric Oxide-Releasing Xerogel-Based Fiber-Optic pH Sensors”, Analytical Chemistry, 2006, 78: 7461-7466.
Etchenique et al., “Photodelivery of Nitric Oxide from a Nitrosothiol-Derivatized Surface”, Journal of the American Chemical Society, 2000, 122: 3967-3968.
Foster et al., “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Applied Microbiology Biotechnology, 2011, 90(6): 1847-1868.
Frost et al., “Controlled Photoinitiated Release of Nitric Oxide from Polymer Films Containing S-Nitroso-N-acetyl-DLpenicillamine Derivatized Fumed Silica Filler”, Journal of the American Chemical Society, 2004, 126: 1348-1349.
Frost et al., “Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices”, Biomaterials, 2005, 26(14): 1685-1695.
Garcia et al., “S-Nitroso-N-Acetylcysteine (SNAC) Prevents Myocardial Alterations in Hypercholesterolemic LDL Receptor Knockout Mice by Antiinflammatory Action”, Journal of Cardiovascular Pharmacology and Therapeutics, 2008, 51: 78-85.
Gaslain et al., “One-step preparation of thiol-modified mesoporous silica spheres with various functionalization levels and different pore structures”, Journal of Sol-Gel Science and Technology, 2009, 49: 112-124.
Grossi et al., “A Kinetic Study of S-Nitrosothiol Decomposition”, Chemistry—A European Journal, 2002, 8(2): 380-387.
Hatton et al., “Past, Present, and Future of Periodic Mesoporous Organosilicas—The PMOs”, Accounts of Chemical Research, 2005, 38: 305-312.
Hetrick et al., “Reducing implant-related infections; active release strategies”, Chemical Society Reviews, 2006, 35: 780-789.
Hetrick et al., “Reduced foreign body response at nitric oxide-releasing subcutaneous implants”, Biomaterials, 2007, 28(31): 4571-4580.
Hetrick et al., “Antibacterial nitric oxide-releasing xerogels: Cell viability and parallel plate flow cell adhesion studies”, Biomaterials, 2007, 28(11): 1948-1956.
Hogg, Neil, “Biological Chemistry and Clinical Potential of S-Nitrosothiols”, Free Radical Biology & Medicine, 2000, 28(10): 1478-1486.
Huang et al., “Synthesis of uniform, spherical sub-100 nm silica particles using a conceptual modification of the classic LaMer model”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360: 175-183.
International Preliminary Report on Patentability corresponding to International Application No. PCT/US2012/026960; mailed Mar. 13, 2014; 6 pages.
International Preliminary Report on Patentability corresponding to International Application No. PCT/US2012/026972; mailed Mar. 13, 2014; 6 pages.
Johnston et al., “Porous functionalised silica particles: a potential platform for biomolecular screening”, Chemical Communications, 2005, p. 848-850.
Johnston et al., “A Mechanism for Forming Large Fluorescent Organo-Silica Particles: Potential Supports for Combinatorial Synthesis”, Chemistry of Materials, 2006, 18: 6163-6169.
Katayama et al., “Design and Evaluation of S-Nitrosylated Human Serum Albumin as a Novel Anticancer Drug”, The Journal of Pharmacology and Experimental Therapeutics, 2008, 325(1): 69-76.
Katsumi et al., “Physicochemical, Tissue Distribution, and Vasodilation Characteristics of Nitrosated Serum Albumin: Delivery of Nitric Oxide In Vivo”, Journal of Pharmaceutical Sciences, 2004, 93(9): 2343-2352.
Katsumi et al., “Development of Polyethylene Glycol-Conjugated Poly-S-Nitrosated Serum Albumin, a Novel S-Nitrosothiol for Prolonged Delivery of Nitric Oxide in the Blood Circulation in Vivo”, The Journal of Pharmacology and Experimental Therapeutics, 2005, 314(3): 1117-1124.
Kim et al., “Effect of electrolyte additives on sol-precipitated nano silica particles”, Ceramics International, 2004, 30: 171-175.
Kim et al., “Size Control of Silica Nanoparticles and Their Surface Treatment for Fabrication of Dental Nanocomposites”, Biomacromolecules, 2007, 8: 215-222.
Langford et al., “Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty”, The Lancet, 1994, 344: 1458-1460.
Laszlo et al., “Attenuation by nitrosothiol NO donors of acute intestinal microvascular dysfunction in the rat”, British Journal of Pharmacology, 1995, 115: 498-502.
Lee et al., “Preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol-Gel Reaction in Aqueous Solution”, Langmuir, 2007, 23(22): 10875-10878.
Lin et al., “Structural and Morphological Control of Cationic Surfectant-Templated Mesoporous Silica”, Accounts of Chemical Research, 2002, 35: 927-935.
Lin et al., “Preparation of functionalized tertiary thiols and nitrosothiols”, Tetrahedron, 2006, 62(35): 8410-8418.
Marxer et al., “Preparation of Nitric Oxide (NO)-Releasing Sol-Gels for Biomaterial Application”, Chemistry of Materials, 2003, 15: 4193-4199.
Marxer et al., “Sol-gel derived nitric oxide-releasing oxygen sensors”, Analyst, 2005, 130: 206-212.
Meng et al., “Preparation of Highly Monodisperse Hybrid Silica Nanospheres Using a One-Step Emulsion Reaction in Aqueous Solution”, Langmuir, 2009, 25(14): 7879-7883.
Miller et al., “Functionalized Organosilica Microspheres via a Novel Emulsion-Based Route”, Langmuir, 2005, 21: 9733-9740.
Mocellin et al., “Nitric Oxide, a Double Edged Sword in Cancer Biology: Searching for Therapeutic Opportunities”, Medicinal Research Reviews, 2007, 27: 317-352.
Mosquera et al., “New route for producing crack-free xerogels: Obtaining uniform pore size”, Journal of Non-Crystalline Solids, 2008, 354: 645-650.
Mowery et al., “Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release”, Biomaterials, 2000, 21(1): 9-21.
Nablo et al., “Sol-Gel Derived Nitric-Oxide Releasing Materials that Reduce Bacterial Adhesion”, Journal of the American Chemical Society, 2001, 123: 9712-9713.
Nablo et al., “Antibacterial properties of nitric oxide-releasing sol-gels”, Journal of Biomedical Materials Research Part A, 2003, 67A: 1276-1283.
Nablo et al., “Poly(vinyl chloride)-Coated Sol-Gels for Studying the Effects of Nitric Oxide Release on Bacterial Adhesion”, Biomacromolecules, 2004, 5: 2034-2041.
Nablo et al., “Inhibition of implant-associated infections via nitric oxide release”, Biomaterials, 2005, 26(34): 6984-6990.
Nablo et al., “Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants”, Biomaterials, 2005, 26: 917-924.
Nakamura et al., “Synthesis and Characterization of Organosilica Nanoparticles Prepared from 3-Mercaptopropyltrimethoxysilane as the Single Silica Source”, The Journal of Physical Chemistry C, 2007, 111: 18892-18898.
Nakamura et al., “One-Pot Synthesis and Characterization of Three Kinds of Thiol-Organosilica Nanoparticles”, Langmuir, 2008, 24: 5099-5108.
Noimark et al., “The role of surfaces in catheter-associated infections”, Chemical Society Reviews, 2009, 38: 3435-3448.
O'Halloran et al., “Metallochaperones, an Intracellular Shuttle Service for Metal Ions”, The Journal of Biological Chemistry, 2000, 275(33): 25057-25060.
Osterholtz et al., “Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review”, Journal of Adhesion Science and Technology, 1992, 6: 127-149.
Page et al., “Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections”, Journal Materials Chemistry—The Royal Society of Chemistry, 2009, 19: 3819-3831.
Park et al., “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197: 7-17.
Pavlos et al., “Photosensitive precursors to nitric oxide”, Current Topics in Medicinal Chemistry, 2005, 5: 635-645.
Polizzi et al., “Water-Soluble Nitric Oxide-Releasing Gold Nanoparticles”,Langmuir, 2007, 23: 4938-4943.
Privett et al., “Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation”, Biofouling, 2010, 26(8): 973-983.
Radomski et al., “S-nitroso-glutathione inhibits platelet activation in vitro and in vivo”, British Journal of Pharmacology, 1992, 107: 745-749.
Rahman et al., “An optimized sol-gel synthesis of stable primary equivalent silica particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294: 102-110.
Ramsay et al., “Systemic effects of S-nitroso-glutathione in the human following intravenous infusion”, British Journal of Clinical Pharmacology, 1995, 40: 101-102.
Rao et al., “Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor”, Journal Colloid Interface Science, 2006, 300: 279-285.
Reynolds et al., “Nitric Oxide-Releasing Hydrophobic Polymers: Preparation, Characterization, and Potential Biomedical Applications”, Free Radical Biology & Medicine, 2004, 37(7): 926-936.
Riccio et al., “Stöber Synthesis of Nitric Oxide-Releasing S-Nitrosothiol-Modified Silica Particles”, Chemistry of Materials, 2011, 23: 1727-1735.
Richardson et al., “Potential therapeutic uses for S-nitrosothiols”, Clinical Science, 2002, 102: 99-105.
Rojas et al., “Polyurethane coating release bioactive antibodies to reduce bacterial adhesion”, Journal of Controlled Release, 2000, 63: 175-189.
Sakka et al., “Formation of sheets and coating films from alkoxide solutions”, Journal Non-Crystalline Solids, 1984, 63(1-2): 223-235.
Scherer, George, “Effect of Shrinkage on the Modulus of Silica Gel”, Journal of Non-Crystalline Solids, 1989, 109: 183-190.
Schmidt, H., “Organically Modified Silicates by the Sol-Gel Process”, Materials Research Society Symposia Proceedings, 1984, 32: 327-335.
Schmidt et al., “Principles of hydrolysis and condensation of alkoxysilanes”, Journal Non-Crystalline Solids, 1984, 63(1-2): 1-11.
Seabra et al., “Polynitrosated Polyesters: Preparation, Characterization, and Potential Use for Topical Nitric Oxide Release”, Biomacromolecules, 2005, 6: 2512-2520.
Seabra et al., “Nitric oxide-releasing vehicles for biomedical applications”, Journal of Materials Chemistry, 2009, 20: 1624-1637.
Seabra et al., “Antibacterial Nitric Oxide-Releasing Polyester for the Coating of Blood-Contacting Artificial Materials”, Artificial Organs, 2010, 34(7): E204-E214.
Shin et al., “Inorganic/Organic Hybrid Silica Nanoparticles as a Nitric Oxide Delivery Scaffold”, Chemistry of Materials, 2008, 20: 239-249.
Sinha et al., “UV-induced DNA damage and repair: a review”, Photochemical & Photobiological Sciences, 2002, 1: 225-236.
Sortino et al., “Light-controlled nitric oxide delivering molecular assemblies”, Chemical Society Reviews, 2010, 39: 2903-2913.
Stasko et al., “S-Nitrosothiol-Modified Dendrimers as Nitric Oxide Delivery Vehicles”, Biomacromolecules, 2008, 9(3): 834-841.
Stein et al., “Hybrid Inorganic-Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age”, Advanced Materials, 2000, 12(19): 1403-1419.
Stober et al., “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range”, Journal of Colloid and Interface Science, 1968, 26: 62-69.
Tan et al., “Study of the Effects of Progressive Changes in Alkoxysilane Structure on Sol-Gel Reactivity”, The Journal of Physical Chemistry B, 2006, 110: 22353-22364.
Valko et al., “Metals, Toxicity and Oxidative Stress”, Current Medicinal Chemistry, 2005, 12: 1161-1208.
Van Helden et al., “Preparation and Characterization of Spherical Monodisperse Silica Dispersions in Nonaqueous Solvents”, Journal of Colloid and Interface Science, 1981, 81(2): 354-368.
Varu et al., “Basic Science Review: Nitric Oxide—Releasing Prosthetic Materials”, Vascular & Endovasc Surgery, 2009, 43:121-131.
Vogel et al., “Fluorescent organosilica micro- and nanoparticles with controllable size”, Journal of Colloid and Interface Science, 2007, 310: 144-150.
Walcarius et al., “Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co-Condensation Route”, Chemistry of Materials, 2003, 15: 4181-4192.
Walshe et al., “Wilson's disease: the importance of measuring serum caeruloplasmin non-immunologically”, Annals of Clinical Biochemistry, 2003, 40: 115-121.
Wang et al., “Nitric Oxide Donors: Chemical Activites and Biological Applications”, Chemical Reviews, 2002, 102: 1091-1134.
Williams et al., “The Chemistry of S-Nitrosothials”, Accounts of Chemical Research, 1999, 32: 869-876.
Williams et al., “A chemist's view of the nitric oxide story”, Organic & Biomolecular Chemistry, 2003, 1: 441-449.
Yoo et al., “Influence of Reaction Parameters on Size and Shape of Silica Nanoparticles”, Journal of Nanoscience and Nanotechnology, 2006, 6: 3343-3346.
Barbe et al., “Silica Particles: A Novel Drug-Delivery System”, Advanced Materials, 2004, 16(21): 1959-1965.
Dobmeier et al., “Antibacterial Properties of Nitric Oxide-Releasing Sol-Gel Microarrays”, Biomacromolecules, 2004, 5: 2493-2495.
Farias-Eisner et al., “The Chemistry and Tumoricidal Activity of Nitric Oxide/Hydrogen Peroxide and the Implications to Cell Resistance/Susceptibility”, The Journal of Biological Chemistry, 1996, 271(11): 6144-6151.
Pulfer et al., “Incorporation of nitric oxide-releasing crosslinked polyethyleneimine microspheres into vascular grafts”, Journal of Biomedical Materials Research, 1997, 37(2): 182-189.
Shin et al., “Nitric Oxide-Releasing Sol-Gel Particle/Polyurethane Glucose Biosensors”, Analytical Chemistry, 2004, 76: 4543-4549.
Related Publications (1)
Number Date Country
20140017121 A1 Jan 2014 US
Provisional Applications (2)
Number Date Country
61565694 Dec 2011 US
61447368 Feb 2011 US
Continuations (1)
Number Date Country
Parent PCT/US2012/026972 Feb 2012 US
Child 13975995 US