Various information regarding parameters of system components may be useful in analyzing individual component's performance, operating conditions, lifespan, and other various aspects. Some such information includes measureable quantities, such as a current, voltage, power, impedance, vibration, and the like. Analysis of components of a system may provide insight into ways the system may be improved, for example, by repairing or replacing faulty or otherwise non-optimal components. Various test and measurement tools are capable of performing such measurements, and are often used in analyzing such components.
In some examples, additional information may be helpful in analyzing such components. For example, imaging techniques, such as infrared imaging, may provide useful additional information. Infrared imagery of a system or components thereof can provide thermal patterns of the scene, highlighting temperature abnormalities in system components. Such imagery may be useful in diagnosing similar or different issues that may be detected or otherwise analyzed using standard test and measurement tools as discussed above.
In order to take advantage of the benefits of measurements using various test and measurement tools and also infrared imagery, a user set to analyze the system must often carry several pieces of equipment for performing desired analysis. In addition, the user must take care to ensure that any recorded measurement data (e.g., from one or more test and measurement tools) is associated with the appropriate equipment and correlated to other measurement data from other test tools.
Embodiments of the invention are directed to systems and methods for analyzing properties of an object under test. Systems can include a test and measurement tool capable of performing at least one measurement to acquire measurement data representative of at least one parameter of an object under test. System can include an imaging tool capable of detecting radiation from a target scene and producing image data representative of a target scene. The imaging tool can be sensitive to any appropriate range of radiation wavelengths, such as visible light and infrared radiation. In some examples, the imaging tool can one or both of an infrared sensor array for generating infrared image data and a visible light sensor array for generating visible light image data. In some embodiments, the imaging tool can be removably attachable to the test and measurement tool. Alternatively, in some embodiments, the imaging tool may be fixedly attached to the test and measurement tool.
Systems can include a communication link capable of providing communication between the test and measurement tool and the imaging tool. Thus, in some embodiments, the imaging tool can receive measurement data from the test and measurement tool via the communication link. Additionally or alternatively, the test and measurement tool can receive image data from the imaging tool via the communication link. In some embodiments, the system includes a display in communication with one or both of the test and measurement tool and the imaging tool. The display may be integral to any one or more of the imaging tool, the test and measurement tool, or an external device. In some embodiments, the system may communicate one or both of image data and measurement data to the display for presentation to a user. In some examples, the system can include a user interface to provide the user various options for acquiring and/or displaying data. Communication between various system components (e.g., the imaging tool, the test and measurement tool, a display, an external device, etc.) can be wired or wireless communication.
Embodiments of the invention generally relate to a test and measurement system including a test and measurement tool and a removable imaging tool. The test and measurement tool can include the ability to measure or otherwise determine a characteristic of an object under test. Exemplary test and measurement tools can include, but are not limited to, digital multimeters, current measurement tools, power quality tools, vibration tools, portable oscilloscope tools, laser alignment tools, ultrasonic test tools, insulation resistance testers, multi-function electrical test tools, single-function electrical test tools, contact temperature measurement tools, humidity measurement tools, air-flow measurement tools, air temperature measurement tools, air quality and particulate measurement tools.
Various test and measurement tools can be configured to perform one or more primary functions. In some examples, the primary function of a test and measurement tool can include performing a primary measurement. For instance, a primary function of some current measurement tools can include measuring an electrical current. It will be appreciated that a test and measurement tool may have more than one primary function. For example, a digital multimeter (DMM) may include several primary functions, such as measuring current, voltage, and resistance, for example.
In some examples, a test and measurement system can include at least one test and measurement tool and at least one imaging tool configured to acquire image data of a target scene. In various embodiments, the imaging tool may include one or more cameras, sensors, or other optical component capable of receiving electromagnetic radiation and generating electrical signals representative of the received radiation. Portions of the imaging tool may be sensitive to one or more wavelengths or wavelength bands. For example, in some embodiments, the portions of the imaging tool can be capable of detecting any combination of visible light (VL), near infrared (NIR), short-wavelength infrared (SWIR), long-wavelength infrared (LWIR), terahertz (THz), ultraviolet (UV), X-ray, or other wavelengths.
In some examples, the test and measurement tool 100 can include a communication port 104 for communicating with the imaging tool 110. In various embodiments, communication port 104 can communicate with the imaging tool 110 when the imaging tool 110 is received by the test and measurement tool 100, such as via a physical connection. In some examples, the communication port 104 is capable of wireless communication such that the test and measurement tool 100 may communicate with the imaging tool 110 when the imaging tool 110 is separate from the test and measurement tool 100. Communication port 104 can facilitate any known form of communication between the imaging tool 110 and the test and measurement tool 100, including wired or wireless communication (e.g., radio frequency (RF) communication, infrared (IR) communication, serial communication, Wi-Fi, Zigbee, Bluetooth, etc.). In some embodiments, communication port 104 provides two-way communication between the test and measurement tool 100 and the imaging tool 110.
During exemplary operation of a system such as that in
The test and measurement tool 100 and imaging tool 110 can be in communication to share data, such as via communication port 104. For instance, in some examples, the imaging tool 110 can communicate received image data to the test and measurement tool 100 for display on the test and measurement tool. Additionally or alternatively, the test and measurement tool 100 can communicate the at least one parameter to the imaging tool 110 for display. Communication can be accomplished via, for example, IR communication (e.g., IrDA), Bluetooth communication, or other appropriate wired or wireless data transmission. Resultantly, a combined display of image data and the at least one parameter can be presented at one or both of the test and measurement tool 100 and the imaging tool 110.
In some examples, communication port 104 is positioned proximate a receiving portion 102 of the test and measurement tool 100. In some such embodiments, the imaging tool 110 may be attached to the receiving portion 102 of the test and measurement tool 100 and engage the communication port 104 of the test and measurement tool 100. Thus, the imaging tool 110 may be capable of communicating with the test and measurement tool 100 when received at the receiving portion 102 thereof. In some examples, communication between the imaging tool 110 and the test and measurement tool 100 via communication port 104 may be automatically initiated upon attaching the imaging tool 110 to the receiving portion 102 of the test and measurement tool 100.
Communication port 154 can include, for example, IR communication or any other appropriate known communication. Data can be communicated back and forth between the imaging tool 160 and the test and measurement tool 150. In some instances, image data acquired by the imaging tool 160 can be presented on the display 158 of the test and measurement tool 150 in conjunction with or as an alternative to the at least one parameter measured or detected by the test and measurement tool 150.
Test and measurement tool 150 includes a receiving portion 152 disposed on the front surface for releasably engaging imaging tool 160. In some such examples, imaging tool 160 can be secured to test and measurement tool 150 and communicate image data thereto, for example, via communication port 154. Test and measurement tool 150 can display image data on the display 158. In some examples, the image data stream from the imaging tool 160 to the test and measurement tool 150 can be substantially real-time. Thus, a user may manipulate the combination test and measurement tool 150 and imaging tool 160 in order to observe a live image of a target scene via display 158.
In some embodiments, test and measurement tool 150 or the imaging tool 160 can communicate data to one another or to an external device for display or other storing or processing.
The test and measurement tool may include one or more inputs 220 configured to interface with an object under test for performing a measurement of a parameter thereof. In various examples, the one or more inputs 220 may include any appropriate input for performing a measurement of a parameter of a device under test. The one or more inputs 220 may provide a signal indicative the parameter of the object under test to any combination of electronics 222 and a processor 224 for further processing of the signal. In some examples, the test and measurement tool 200 includes a memory 226 for storing information indicative of one or more parameters of a device under test.
In some embodiments, test and measurement tool 200 may include an interface 228 for interacting with a user. In some examples, interface may include one or more controls for receiving user inputs. Controls may include, for example, buttons, switches, knobs, touch screens, etc. In some embodiments, a user may initiate a measurement or other test and measurement tool 200 function using controls. Additionally or alternatively, the interface may include a display for communicating information to a user. For example, the display may present a user with selectable options, such as various functions selectable by the user via controls. Additionally or alternatively, the display may be configured to present the results of one or more measurements performed by the test and measurement tool for observation by a user.
In some examples, interface 228 may provide an interface with additional equipment. For example, in some embodiments, interface 228 can provide a communication interface between the test and measurement tool 200 and an imaging tool (e.g., 110) or an external device (e.g., smartphone, tablet, etc.). In various embodiments, interface 228 can be used to export received measurement data, such as from inputs 220, or a processed result, for example, from processor 224.
The optics 340 can include optics for focusing, deflecting, and/or reflecting electromagnetic radiation from a target object onto the sensor array 342. In some examples, the sensor array 342 may include an infrared sensor array sensitive to infrared radiation. An imaging tool including such an infrared sensor array may be used to make non-contact temperature measurements.
In such embodiments, the infrared sensor array 342 can include one or more thermal detectors such as microbolometers or thermopiles, or could be composed of photon detectors such as photodiodes or phototransistors, or other thermal or photon detection device. In some examples, an infrared sensor array may include a single detector, for instance, for determining a spot temperature within a target scene. Alternatively, an infrared sensor array may comprise a plurality of such detectors for acquiring one or both of a spot temperature (e.g., via an average value of sensor array sensors) and a two-dimensional infrared image.
One of skill in the art will recognize that various sensor arrays (e.g. photon sensor arrays) can be used, and can be used in combination with one or more infrared sensor arrays. In some examples, the sensor array is fixed within the imaging tool 310 to provide a more durable device having fewer moving and moveable parts. In various examples, the size and positioning of the detector depends on the characteristics of the optical system (e.g., the relationship between optics 340 and sensor array 342). In some embodiments, the detector is generally circular having a diameter of 0.5 mm to 3 mm. However detectors of any size and shape should be considered within the scope of the invention. The detector produces a signal as a function of the radiation or other scene data imaged thereupon. These signals can be processed by known methods to indicate a temperature or other metric indicated via the received radiation.
A person of skill in the art will recognize that many materials and materials technologies may be suitable for use in an infrared sensor array. In some examples, the infrared sensor array 342 responds to infrared radiation ranging from approximately 0.7 microns to approximately 30 microns and can have a peak sensitivity within this range. The electronics 344 receive the output signals from the sensor array 342 and pass them to the processor 346 for analysis.
When an infrared sensor assembly is used, the processor 346 can be used to run infrared thermometer applications including, but not limited to, deciding if the target object sufficiently fills the field of view, and averaging output signals for a period of time to reduce the impact of noisy measurements on the accuracy of the measured temperature. In the case of alternative sensor arrays (e.g., sensitive to one or more of visible light, ultraviolet light, X-rays, etc.), the processor 346 may be used to run corresponding imaging applications.
Memory 348 can include but is not limited to, RAM, ROM, and any combination of volatile and non-volatile memory. A power supply 352 can include, but is not limited to, a battery, a parasitic energy system (e.g., an inductive system), and components for directly receiving AC power. The power supply 352 can provide power to the sensor array 342, electronics 344, processor 346, memory 348, and/or input/output devices 350. An input/output device 350 can include, but is not limited to, triggers to start and stop the image capture, visual displays, speakers, and communication devices that operate through wired or wireless communications.
For instance, in some examples, the input/output device 350 of the imaging tool 310 can include a display capable of displaying an image produced from data conveyed or captured by one or more sensor arrays 342. In some examples, the display can be further configured to show other data, for instance, data from the test and measurement tool (e.g., via communication port 104) or other external sources.
In some examples, the imaging tool includes more than one sensor array. For instance, a first sensor array may be sensitive to a first band of wavelengths (e.g., infrared radiation) while a second sensor array may be sensitive to a second band of wavelengths (e.g., visible light radiation).
Beam splitter 458 can comprise any of a variety of beam splitters known in the art. For example, the beam splitter may be configured to reflect IR radiation and transmit visible light radiation, or vice versa, in order to direct wavelengths in the appropriate band to its corresponding sensor array. Similarly, sensor arrays 442, 443 may include arrays sensitive to a variety of wavelengths. Such arrays may be sensitive to similar, overlapping, or dissimilar wavelengths or wavelength ranges.
As described, the imaging tool can include one or more optical components (e.g., one or more sensor arrays) capable of generating image data of a particular range or ranges of wavelengths. In some examples, the two or more such optical components are configured to generate image data representative of at least partially overlapping target scenes. For instance, as shown in
In some examples, the imaging tool can include one or more wireless radio components for communication with the test and measurement tool, additional test tools, an external device, or any combination thereof. In some embodiments, one or both of the test and measurement tool (e.g., 100) and the imaging tool (e.g., 110) can include one or more wireless radio components for communicating a measured at least one parameter (e.g., from the test and measurement tool), image data (e.g., from the imaging tool), or both to an external device. External devices may include a computer, a smart device (e.g., smartphone, tablet, mini-tablet, smart watch, etc.), PCs, monitors, recording devices, heads-up displays, projected displays, or small displays in glasses, or personal protective equipment such as face shields, helmets, or bump caps. In some examples, external device may refer to a central server. Information may be communicated to the central server, for example, over a Wi-Fi or other internet connection. The external device may be used for any combination of displaying, saving to memory, and processing one or both of the at least one parameter and the image data.
Imaging tool 510 is positioned proximate object 512 such that object 512 is in the field of view 582 of imaging tool 510. Imaging tool 510 can be configured to generate image data representative of the object 512. In an exemplary embodiment, imaging tool 510 includes an infrared sensor array and is configured to generate infrared image data representative of the heat pattern of object 512.
As shown, imaging tool 510 can communicate with test and measurement tool 500 via communication link 584. Communication link 584 may include one- or two-way communication between imaging tool 510 and test and measurement tool 500. In some examples, imaging tool 510 may communicate image data to test and measurement tool 500 via communication link 584. Additionally or alternatively, test and measurement tool 500 can communicate measurement data to the imaging tool 510 via communication link 584. One or both of test and measurement tool 500 and imaging tool 510 can be configured to display one or both of the measurement data and the image data associated with object 512.
As shown in the illustrated embodiment, an external device 514 can communicate with one or both of imaging tool 510 and test and measurement tool. In some embodiments, external device 514 can be capable of processing and/or displaying one or both of image data from the imaging tool 510 and measurement data from test and measurement tool 500. In some examples, the external device 514 can be capable of acquiring image data from imaging tool 510 via wired or wireless communication link 588 and measurement data from test and measurement tool 500 via wired or wireless communication link 586.
The external device 514 can combine measurement data and image data for presentation on a display 516. In some examples, display 516 is built-in to the external device 514, such as a smartphone, tablet, laptop computer, etc. In other examples, the display 516 may be built-in to one of the imaging tool 510 and the test and measurement tool 500. For example, in some embodiments, image data from the imaging tool 510 is communicated to test and measurement 500 via communication link 584. In some such examples, the test and measurement tool 500 can combine the image data with measurement data for presentation on a display 516 either built-in to or otherwise in communication with the test and measurement tool 500. Similarly, measurement data may be communicated from the test and measurement tool 500 to the imaging tool 510 via communication link 584. The imaging tool 510 can combine the measurement data with acquired image data for presentation on display 516, which may be built-in to or otherwise in communication with imaging tool 510.
In some examples, the imaging tool 510 can include a fastener for temporary or permanent affixing to a location. Exemplary fasteners can include, for example, a magnet or a strap. Accordingly, in some examples, the imaging tool 510 can be affixed proximate a piece of equipment under test or to be tested (e.g., object 512) in order to acquire image data regarding the equipment from the imaging tool. The imaging tool can be configured to function independently, in conjunction with, or physically connected to the test and measurement tool 500. In some examples, the imaging tool 510 also can function in conjunction with, or controlled by another external device 514.
In general, systems such as shown in
In some embodiments, various system components may be used to control or otherwise interact with other components. For instance, in some embodiments, a user may interact with the imaging tool (e.g., 110) via test and measurement tool (e.g., 100). In some such examples, a user may control properties of the imaging tool, initiate an image capture, initiate data communication, view acquired image data, or perform other functions available on the imaging tool. Similarly, in some embodiments, a user may interact with a test and measurement tool via an imaging tool. For example, a user may similarly, via an imaging tool, control properties of the test and measurement tool, initiate a measurement, initiate data communication, view acquired measurement data, and the like.
In some examples, some or all of available control features (e.g., the ability to perform a function on one device using another) may be performed via a wireless communication. In some examples, certain functions may only be performed when the imaging tool and the test and measurement tool are physically coupled. For example, in some embodiments, performing various functions of the imaging tool via the test and measurement tool (or vice versa) may be available only when the imaging tool is received at the receiving portion (e.g., 102) of the test and measurement tool. In some such embodiments, certain communication options are made available via a physical connection to a communication port (e.g., 104). In an exemplary embodiment, with reference to
Additionally or alternatively, external devices, such as a smartphone, tablet, PC, or the like may be used to similarly control or otherwise perform a function using one or both of the test and measurement tool and imaging tool. For example, the external device may initiate a measurement of a parameter of an object via the test and measurement tool and/or capturing of image data from the imaging tool (e.g., via communication link 586 or 588 of
In embodiments in which one or both of measurement data and image data are communicated to other devices, data processing may occur in any variety of locations. In some embodiments, measurement data communicated from the test and measurement tool may be processed by a different device, such as imaging tool or an external device. For example, unprocessed measurement data may be filtered, amplified, or otherwise processed into a desired signal by a separate device.
Similarly, in some embodiments, imaging tool may communicate unprocessed image data to a test and measurement tool or external device. The test and measurement tool or external device can be capable of performing any appropriate image processing techniques for generating an image from the image data. For example, image data may be filtered, amplified, blended, or processed via other known image processing techniques.
In various embodiments, the image data can include multiple sets of image data (e.g., IR and VL image data) that can be combined, manipulated, and presented, for example as described in U.S. Pat. No. 7,535,002, entitled “CAMERA WITH VISIBLE LIGHT AND INFRARED BLENDING,” which is assigned to the assignee of the instant application, and which is hereby incorporated by reference in its entirety. Additionally or alternatively, additional data, such as data acquired by the test and measurement tool (e.g., data acquired performing a primary measurement) or other communicating device, can be combined with image data (e.g., IR image data, VL image data, or a combination thereof) such as described in U.S. Patent Publication No. US20140278259, corresponding to U.S. patent application Ser. No. 14/214,600, filed Mar. 14, 2014, and entitled “CAPTURE AND ASSOCIATION OF MEASUREMENT DATA,” which is assigned to the assignee of the instant application, and which is hereby incorporated by reference in its entirety.
As described, one or both of image data and measurement data may be communicated to a variety of system components, such as imaging tool, test and measurement tool, and an external device. One or both of image data and measurement data may be processed or stored in memory at any of a variety of such locations. In some examples, image data and measurement data may be associated with one another. For example, measurement data may be indicative of at least one parameter of an object under test and image data may include data representative of an object under test during or otherwise near the time of acquiring the measurement data. Thus, the image data is representative of the object under test while in substantially the same condition reflected in the measurement data.
In some examples, associated image and measurement data can be processed to generate a display comprising both the image data and the measurement data for presentation to a user such as is shown in
In still further embodiments, known information regarding the object under test may be used to supplement measurement data. For instance, if the resistance values of the conductors of
In the illustrated embodiment, image data presented on the display includes infrared image data representative of the thermal pattern across the scene. In the illustrated example, the display 600 includes temperature information 612 representative of the temperature of a selected spot 614 on the display. In some examples, a user may adjust the location of spot 614 for displaying a temperature of an area of interest. The display 600 includes a temperature scale 616 that associates colors within a palettized IR image to corresponding temperature values. Any appropriate palettization scheme may be used, such as grayscale, red-blue, ironbow, amber, and others. The temperature scale 616 may be used to provide an indication to a viewer of the temperature of various points in the scene without requiring the placing of spot 614 over each point.
In some embodiments, other data 618 can be included in the display. Such data can include supplementary information for the image data (e.g., an emissivity value) or the measurement data. Other information that can be displayed include battery life information 620 or information data received from one or more other devices (e.g., test and measurement tools, imaging tools, etc.) or a network such as the internet. In various examples, such data can include information from specifications, FAQs, operating instructions, and the like.
In various embodiments, one or both of the location or content of displayed data is predetermined based on which devices are in communication. For instance, in one example, any acquired data (e.g., at least one parameter from the test and measurement tool, image data from the imaging tool, etc.) can be displayed on the test and measurement tool by default. In another example, any acquired data is automatically displayed on an external device if one is in communication with one or both of the test and measurement tool or the imaging tool. In some embodiments, a user can define what information is displayed on which devices. In some such embodiments, the user can make a selection via a user interface on any of the test and measurement tool, the imaging tool, or an external device regarding the type and location of displayed data using any of the available devices in communication with the system (e.g., test and measurement tool, imaging tool, external device, etc.).
Various embodiments have been described. Such examples are non-limiting, and do not define or limit the scope of the invention in any way. Rather, these and other examples are within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/051,903, filed Sep. 17, 2014, the content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62051903 | Sep 2014 | US |