Test member

Information

  • Patent Grant
  • 6833110
  • Patent Number
    6,833,110
  • Date Filed
    Thursday, July 19, 2001
    23 years ago
  • Date Issued
    Tuesday, December 21, 2004
    20 years ago
Abstract
A test member suitable for use in a test device for testing of analyte concentration in a fluid to be applied thereto comprises a base member (2) having a working area (4) to which the fluid is to be applied, containing a reagent which is reactive to the said analyte to produce an electrical signal or a color change, and a non-working area (8) adjacent to the working area (4). The total thickness of the test member in at least a portion of the non-working area (8) is at least as great as the total thickness of the test member in the working area (4).
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a test member for measuring the concentration of an analyte in a fluid sample, notably to a test strip for analysing blood glucose or other analytes in bodily fluids.




2. Background of the Invention




Diabetics regularly need to test samples of their blood to determine the level of blood glucose. The results of such tests may be used to determine levels of medication needed to treat the diabetes at the time. In one known type of system, disposable sensors are used to test the blood. The sensors typically take the form of test strips which are provided with a reagent material that will react with blood glucose to produce an electrical signal. Conductive tracks on the test strip relay the electrical signal to a meter which displays the result. After a sample of blood has been applied to the test strip and the measurement has been taken, the test strip is disposed of. In order to couple the conductive tracks on a test strip with the meter, the test strip needs to be inserted into a sensor holder prior to the start of testing. The sensor holder has corresponding electrodes which are brought into electrical contact with the conductive tracks of the test strip. Alternatively, the reagent in the test strip may undergo a visible color change, the magnitude of which is used to determine the analyte concentration in the applied fluid.




It is known to provide a stack of disposable circular test elements in a cylindrical housing, the stack being urged towards a test station by a spring to form a liquid-proof seal, for example as described in WO 94/10558.




A problem with providing disposable test members in a stack is that the working area to which the fluid sample will be applied can become scuffed, particularly when a compressive force is applied to the stack by a spring.




It is an object of the present invention to provide an improved test member suitable for use in test devices that employ test members in a stack.




SUMMARY OF THE INVENTION




According to an aspect of the present invention there is provided a test member suitable for use in a test device for testing of analyte concentration in a fluid to be applied thereto, the test member comprising a base member having a working area to which the fluid is to be applied, containing a reagent which is reactive to the said analyte to produce an electrical signal or a color change, and a non-working area adjacent to the working area, wherein the total thickness of the test member in at least a portion of the non-working area is at least as great as the total thickness of the test member in the working area.




By making the non-working area at least as thick as the working area, scuffing or abrasion of the working area in a stack can be reduced. Moreover, if a compressive load is applied to a stack of the test members, this may be spread out over a greater area, thereby reducing the possibility of compressive damage to the working area.




In a preferred embodiment, at least a part of the non-working area is of greater total thickness than the thickness of the working area. This further reduces the likelihood of damage to the working area by scuffing or abrasion when in a stack. The difference in thickness is preferably from 1 to 20 μm, notably from 5 to 10 μm.




The test member may be of any desired shape for a particular application; however, typically the test member will be an elongate test strip. For convenience hereinafter, the invention will be described with reference to such a test strip. However, it is to be understood that the invention is not limited to this embodiment.




In one embodiment, the reagent is reactive to the analyte to produce a visible color change. Alternatively, the reagent may react with the analyte to produce an electrical signal which is measured and displayed by a meter. In this embodiment, the working area has electrodes which are electrically connected to electrode tracks in the non-working area, and at least part of the tracks are exposed for connection to electrodes of a meter. The invention will be described hereinafter with reference to this embodiment.




To build up the working area, a plurality of layers are sequentially applied to the base layer, for example by screen printing, typically with curing or drying steps between the application steps. The layers which are printed typically comprise electrode patterns, a reagent layer, and a mesh layer (for spreading out an applied fluid). As a result of the application of these layers, the working area of a conventional electrochemical test strip is typically about 100 μm thicker than the non-working area, which contains the electrode tracks and, typically, a dielectric layer. A stack of 100 test strips will therefore be about 10 mm thicker in the working area than in the non-working area. In a test strip in accordance with the present invention, at least a part of the non-working area may be made thicker by any suitable means. Suitable means include, for example: a printed relief ink; an applied pad or tape; embossing of the base layer or an intermediate layer; or an extension of the mesh layer from the working area.











DESCRIPTION OF THE DRAWINGS




The invention will now be further described, by way of example, with reference to the following drawings in which:





FIG. 1

is a top plan view of a test strip in accordance with the present invention; and





FIG. 2

is a sectional view along the line A—A of FIG.


1


.











DETAILED DESCRIPTION




The exemplified test strip comprises a planar base member


2


, in this example of poly(butylene terephthalate) (PBT) (Valox®) FR1 from GE Plastics). The strip is 30 mm×5.5 mm, and 0.5 mm thick A working area


4


of conventional construction, comprising a plurally of electrode


5


, a reagent layer


3


in intimate contact with the electrodes, and a mesh layer


1


for spreading out a drop of fluid to be received on the working area. Electrode tacks


12


, for example of carbon, in the non-working area


8


of the test strip are connected to the electrodes in the working area


4


in known manner. also in known manner, a die electric layer


6


is printed around the working area


4


so as to overlie a portion of the electrode tracks


12


, leaving just the ends of the tracks exposed for connection to corresponding electrodes on a meter. The layers are applied to the base member as inks, by screen printing. Each ink layer is about 10 to 20 μm thick, and the mesh is about 59 to 67 μm thick. The working area


4


has a total thickness which is about 100 μm thicker than the non-working area


8


up to the dielectric layer


6


.




To increase the thickness of parts of the non-working area, a high relief ink


10


has been printed in four strips. The high relief ink has a dried thickness such that the total thickness of the non-working area to which the high relief ink


10


has been applied is slightly greater than the total thickness of the test strip in the working area


4


. Thus, when a stack of such test strips is formed, and a compressive load is applied to the stack by a spring, the working area


4


will not bear all the compressive load. If the test strips are used in a device which requires one strip to be slid out before being used to test analyte concentration in a fluid, scuffing of the test area will be reduced compared to a conventional test strip in which the working area stands proud of the non-working area.




Although the invention has been illustrated with reference to the use of a high relief ink printed in strips, it will be understood that it is not limited to this embodiment. The ink could be printed as a continuous block, and it could entirely surround the working area if desired. Instead of, or in addition to, the high relief ink, other means could also be provided to increase the thickness of the non-working area, for example: an applied pad or tape; embossing of the base layer or an intermediate layer; or an extension of the mesh layer from the working area into the non-working area.



Claims
  • 1. A test member for producing an electrical signal in response to the concentration of analyte in a fluid applied thereto, the teat member comprising;adjacent working and non-working areas that together define a top surface of the test member and together define an opposite bottom surface of the test member, the working area being adapted and configured to engage a fluid applied thereto and having a total thickness between an uppermost portion of the top surface of the test member in the working area and a lowermost portion of the bottom surface in the working area, the working area comprising a reagent and a plurality of electrodes, the non-working area having a total thickness between an uppermost portion of the top surface of the test member in the non-working area and a lowermost portion of the bottom surface of the test member, the non-working area comprising a plurality of electrode tracks and a dielectric layer, the plurality of electrode tracks being electrically connected to the electrodes of the working area of the test member, the dielectric layer overlaying a first portion of the electrode tracks, a second portion of the electrode tracks being exposed, the total thickness of the non-working area being greater than the total thickness of the working area such list, when the test member is sandwiched in a vertical stack of identical test members, the working area of the test member will not engage an identical test member positioned immediately thereabove.
  • 2. A test member in accordance with claim 1 wherein the total thickness of the non-working area is between 1 and 20 μm greater than the total thickness of the working area.
  • 3. A test member in accordance with claim 2 wherein the total thickness of the non-working area is between 5 and 10 μm greater than the total thickness of the working area.
  • 4. A test member in accordance with claim 1 wherein the non-working area of the test member comprises an ink layer that contributes to the total thickness of the non-working area.
  • 5. A test member in accordance with claim 1 wherein the test member is shaped as an elongate strip.
  • 6. A test member in accordance with claim 1 the reagent is configured and adapted to react with glucose in blood.
  • 7. A test member in accordance with claim 1 wherein the lowermost portion of the bottom surface of the test member is the lowermost portion of the bottom surface in the working area.
Priority Claims (1)
Number Date Country Kind
0017738 Jul 2000 GB
Parent Case Info

This application claims the benefit of provisional application No. 60/220,527, filed Jul. 24, 2000.

US Referenced Citations (16)
Number Name Date Kind
4999582 Parks et al. Mar 1991 A
5192415 Yoshioka et al. Mar 1993 A
5288636 Pollmann et al. Feb 1994 A
5354447 Uenoyama et al. Oct 1994 A
5395504 Saurer et al. Mar 1995 A
5695947 Guo et al. Dec 1997 A
5885429 Friese et al. Mar 1999 A
6071251 Cunningham et al. Jun 2000 A
6174420 Hodges et al. Jan 2001 B1
6258229 Winarta et al. Jul 2001 B1
6299757 Feldman et al. Oct 2001 B1
6377894 Deweese et al. Apr 2002 B1
6488827 Shartle Dec 2002 B1
6540891 Stewart et al. Apr 2003 B1
6565738 Henning et al. May 2003 B1
20020099308 Bojan et al. Jul 2002 A1
Foreign Referenced Citations (6)
Number Date Country
0 159 727 Oct 1985 EP
0 474 145 Mar 1992 EP
0 547 709 Jun 1993 EP
0 785 433 Jul 1997 EP
2 328 023 Feb 1999 GB
WO 9913101 Mar 1999 WO
Provisional Applications (1)
Number Date Country
60/220527 Jul 2000 US