Test sequences using universal testing system

Information

  • Patent Grant
  • 10116397
  • Patent Number
    10,116,397
  • Date Filed
    Friday, June 16, 2017
    7 years ago
  • Date Issued
    Tuesday, October 30, 2018
    6 years ago
  • CPC
  • Field of Search
    • US
    • 455 067110
    • 455 423000
    • 455 067120
    • 455 115100
    • CPC
    • H04B17/30
    • H04B17/0085
  • International Classifications
    • H04B17/00
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
A testing system that provides a separate set of virtualization container probes for each of at least a subset of devices that is under testing can perform Wifi Layer 2 and Wifi Layer 3 tests in a manner that minimizes or avoids wireless interference is disclosed.
Description
TECHNICAL FIELD

The present invention is directed to a system for testing devices.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various embodiments of the invention, reference should be made to the description of embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.



FIG. 1 illustrates a high-level schematic of a test station for testing devices such as wireless devices, according to certain embodiments.



FIG. 2 illustrates requests for Wifi resource locks, according to certain embodiments.



FIG. 3 illustrates the response by the central resource control server to the requests from the slots in the test station, according to certain embodiments.



FIG. 4 illustrates the release of locks on frequency Channels for Wifi tests, according to certain embodiments.



FIG. 5 illustrates the granting of a lock on a frequency Channel to a given slot for performing a Wifi L3 test, according to certain embodiments.



FIG. 6 illustrates the release of a lock on a frequency Channel for a Wifi L3 test, according to certain embodiments.



FIG. 7 illustrates the requests from multiple slots for locks on frequency Channels in order to perform respective Wifi L3 tests, according to certain embodiments.



FIG. 8 illustrates that central resource control server will grant only one lock per frequency Channel for Wifi L3 tests, according to certain embodiments.



FIG. 9 illustrates the release of locks on a frequency Channels after completion of Wifi L3 tests, according to certain embodiments.



FIG. 10 illustrates the grant of a recently released lock on a frequency Channel to the next slot request in the queue, according to certain embodiments.





DETAILED DESCRIPTION

Methods, systems, user interfaces, and other aspects of the invention are described. Reference will be made to certain embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that it is not intended to limit the invention to these particular embodiments alone. On the contrary, the invention is intended to cover alternatives, modifications and equivalents that are within the spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.


Moreover, in the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these particular details. In other instances, methods, procedures, components, and networks that are well known to those of ordinary skill in the art are not described in detail to avoid obscuring aspects of the present invention.


According to certain embodiments, a central resource control server controls resources such as locks on Wifi resources (herein also referred to as “Wifi resource lock”). Non-limiting examples of Wifi resource locks include locks on resources for Wifi L2 (Layer 2) tests, Wifi L3 (Layer 3) tests and DOCSIS (Data Over Cable Service Interface Specification) tests. For example, a Wifi L2 resource lock involves a lock on resources for the Address Resolution Protocol (ARP) test. Another example of a Wifi L2 resource lock involves a lock on resources for a Wifi connecting card test. A non-limiting example of a Wifi L3 resource lock involves a lock on resources for a Wifi speed test. A non-limiting example of a DOCSIS resource lock involves a lock on resources for a DOCSIS speed test. Layer 2 and Layer 3 refer to the layers in the OSI model (Open System Interconnection model). Layer 2 is the data link layer of the OSI model. Layer 3 is the network layer of the OSI model.


According to certain embodiments, a testing system that provides a separate set of interfaces for each device (of a plurality of devices) that is under testing can perform Wifi L2 and Wifi L3 tests in a manner that minimizes or avoids wireless interference.


According to certain embodiments, the testing system minimizes or avoids wireless interference by controlling locks on Wifi frequency channels.


According to certain embodiments, the testing system comprises at least one test station. According to certain embodiments, each test station includes a plurality of physical slots for testing devices. As a non-limiting example, a subset of the plurality of physical slots is associated with a corresponding test server. As a non-limiting example, a test station may have four test servers, each of which is associated with a set of four physical slots of the plurality of physical slots. The embodiments are not restricted to four test servers and four physical slots per test server. The number of test servers and physical slots may vary from implementation to implementation. According to certain embodiments, each test server includes virtualization containers that act as probes for testing devices installed in the physical slots in the test station.


According to certain embodiments, the testing system includes a central resource control server running on at least one test control computer.


According to certain embodiments, each physical slot on the test station is assigned a specific frequency Channel on the Wifi frequency band. For the Wifi 2.4 GHz band, a given physical slot can be assigned any of the frequency Channels 1, 6, 11 (these channels are non-overlapping), according to certain embodiments. For the Wifi 5.0 GHz band, a given physical slot can be assigned any of the frequency Channels 36, 40, 44, 48, 149, 153, 157, 161, according to certain embodiments. Such resources (Wifi frequency Channels) are shared across the test servers and associated slots of the test station.


According to certain embodiments, each slot of the test station is assigned a frequency Channel in a manner to minimize wireless interference between the slots.


According to certain embodiments, only one Wifi L3 test can be performed per Channel in the test station.


According to certain embodiments, the central resource control server determines whether to grant Wifi resources to a given slot on a test station when the given slot requests a Wifi resource. As a non-limiting example, a given slot on the test station may request a lock on frequency Channel for performing a Wifi L2 test or for performing a Wifi L3 test.


According to certain embodiments, the central resource control server determines whether to grant locks (on a given Channel), release locks and block slots from running specific Wifi tests based on certain criteria.


The Wifi frequency band may vary from implementation to implementation.


For ease of explanation, FIG. 1 to FIG. 10 are described with reference to the Wifi 2.4 GHz band. The embodiments are not restricted to the Wifi 2.4 GHz band. Further, FIG. 1 to FIG. 10 are described using example test scenarios comprising sample requests from a sample subset of slots for Wifi resource locks. Such test scenarios are merely examples that help illustrate features of the embodiments. Such examples are to be regarded in an illustrative rather than a restrictive sense. Other examples may include different requests from a different sample subset of slots for Wifi resource locks.



FIG. 1 illustrates a high-level schematic of a test station for testing devices such as wireless devices, according to certain embodiments. FIG. 1 shows a test station 100. According to certain embodiments, test station 100 comprises a central resource control server 102 that runs on a test control computer 104. Test station 100 further comprises a plurality of test servers 106a, 106b, 106c, 106d. Test station 100 comprises a plurality of physical slots. According to certain embodiments, each test sever is associated with four physical slots but the embodiments are not restricted to four slots per test server. For example, test server 106a is associated with physical slots such as Slot 1 (108a), Slot 2 (108b), Slot 3 (108c), Slot 4 (108d). Test server 106b is associated with physical slots such as Slot 5 (110a), Slot 6 (110b), Slot 7 (110c), Slot 8 (110d). Test server 106c is associated with physical slots such as Slot 9 (112a), Slot 10 (112b), Slot 11 (112c), Slot 12 (112d). Test server 106d is associated with physical slots such as Slot 13 (113a), Slot 14 (113b), Slot 15 (113c), Slot 16 (113d). According to certain embodiments, central resource control server 102 controls Wifi resources such as Wifi L2 Channel 1 lock (114), Wifi L3 Channel 1 lock (116), Wifi L2 Channel 6 lock (118), and Wifi L3 Channel 6 lock (120), According to certain embodiments, each physical slot is assigned a Channel. For example, Slot 1 (108a) is assigned Channel 1, Slot 2 (108b) is assigned Channel 6, Slot 3 (108c) is assigned Channel 1, Slot 4 (108d) is assigned Channel 6, Slot 5 (110a) is assigned Channel 6, Slot 6 (110b) is assigned Channel 1, Slot 7 (110c) is assigned Channel 11, Slot 8 (110d) is assigned Channel 6, Slot 9 (112a) is assigned Channel 1, Slot 10 (112b) is assigned Channel 11, Slot 11 (112c) is assigned Channel 1, Slot 12 (112d) is assigned Channel 6, Slot 13 (113a) is assigned Channel 11, Slot 14 (113b) is assigned Channel 6, Slot 15 (113c) is assigned Channel 1, Slot 16 (113d) is assigned Channel 6, according to certain embodiments.


When a given slot has a Wifi device installed in the given slot for testing, the given slot requests for a Wifi resource lock from central resource control server 102 in order to perform a relevant wireless test on the installed device.


According to certain embodiments, central resource control server 102 grants Wifi resource locks in manner that minimizes interference between the various wireless tests that are running in the slots in test station 100.



FIG. 2 illustrates requests for Wifi resource locks, according to certain embodiments. Slot 1 (108a) requests (122) a lock on frequency Channel 1 in order to perform a Wifi L2 test on a device installed in Slot 1 for testing. Slot 2 (108b) requests (124) a lock on frequency Channel 6 in order to perform a Wifi L2 test on a device installed in Slot 2 for testing. Slot 3 (108c) requests (126) a lock on frequency Channel 1 in order to perform a Wifi L2 test on a device installed in Slot 3 for testing. Slot 4 (108d) requests (128) a lock on frequency Channel 6 in order to perform a Wifi L2 test on a device installed in Slot 4 for testing. Slot 5 (110a) requests (132) a lock on frequency Channel 6 in order to perform a Wifi L3 test on a device installed in Slot 5 for testing. Slot 6 (110b) requests (130) a lock on frequency Channel 1 in order to perform a Wifi L2 test on a device installed in Slot 6 for testing. The above requests from the slots for locks on frequency Channels are sent to central resource control server 102.



FIG. 3 illustrates the response by central resource control server 102 to the requests from the slots in the test station, according to certain embodiments. According to certain embodiments, central resource control server 102 grants all the requests for locks for a given frequency Channel with respect to Wifi L2 tests as long as there is no ongoing Wifi L3 test for the given frequency Channel, as illustrated by FIG. 3. FIG. 3 shows that Slot 1 (108a) is granted (122a) a lock (122aa) on frequency Channel 1 by central resource control server 102 in order to perform a Wifi L2 test on a device installed in Slot 1 for testing. Similarly, Slot 2 (108b) is granted (124a) a lock (124aa) on frequency Channel 6 in order to perform a Wifi L2 test on a device installed in Slot 2 for testing. Slot 3 (108c) is granted (126a) a lock (126aa) on frequency Channel 1 in order to perform a Wifi L2 test on a device installed in Slot 3 for testing. Slot 4 (108d) is granted (128a) a lock (128aa) on frequency Channel 6 in order to perform a Wifi L2 test on a device installed in Slot 4 for testing. Slot 6 (110b) is granted (130a) a lock (130aa) on frequency Channel 1 in order to perform a Wifi L2 test on a device installed in Slot 6 for testing.


However, Slot 5 (110a) is not granted (132a) a lock (blocked 132aa) on frequency Channel 6 in order to perform a Wifi L3 test on a device installed in Slot 5 for testing. Slot 5 (110a) is not granted (132a) a lock on frequency Channel 6 because a Wifi L3 test can only be run in a given Channel if there are no other tests running in the same Channel at a given time. In this example, Slot 5 (110a) cannot be granted (132a) a lock on frequency Channel 6 for a Wifi L3 test because Slot 2 (108b), and Slot 4 (108d) have already been granted locks on frequency Channel 6 for performing their respective Wifi L2 tests. Thus, Slot 5 (110a) needs to request a lock on frequency Channel 6 to perform a Wifi L3 test at a later time, according to certain embodiments. According to certain other embodiments, Slot 5 (110a) can keep its request for the lock pending in a request queue. Central resource control server 102 will grant locks based on the next request in the queue as long the lock grant does not cause more than one Wifi L3 test to be run per frequency Channel.



FIG. 4 illustrates the release of locks on frequency Channels for Wifi tests, according to certain embodiments. FIG. 4 shows that once a given slot completes its respective Wifi test, the given slot releases its lock on the frequency Channel that it was granted to perform the Wifi test or the given slot sends information to central resource control server 100 that the given lock can be released. FIG. 4 shows that Slot 1 (108a) releases (122b) its lock on frequency Channel 1 because it has completed (122bb) the Wifi L2 test on a device installed in Slot 1 for testing. Slot 2 (108b) releases (124b) its lock on frequency Channel 6 because it has completed (124bb) the Wifi L2 test on a device installed in Slot 2 for testing. Slot 3 (108c) releases (126b) its lock on frequency Channel 1 because it has completed (126bb) the Wifi L2 test on a device installed in Slot 3 for testing. Slot 4 (108d) releases (128b) its lock on frequency Channel 6 because it has completed (128bb) the Wifi L2 test on a device installed in Slot 4 for testing. Slot 6 (110b) releases (130b) its lock on frequency Channel 1 because it has completed (130bb) the Wifi L2 test on a device installed in Slot 6 for testing. Each of such slots sends information on test completion to central resource control server 102, according to certain embodiments.


The request from Slot 5 (110a) for a lock on frequency Channel 6 was previously blocked (132aa). However, Slot 5 (110a) can again request (132) for a lock on Channel 6 to perform a Wifi L3 test now that the other locks on Channel 6 are released, according to certain embodiments.



FIG. 5 illustrates the granting of a lock on a frequency Channel to a given slot for performing a Wifi L3 test, according to certain embodiments. FIG. 5 shows that central resource control server 102 grants (132b) the request from Slot 5 (110a) for a lock (132bb) on Channel 6 to perform a Wifi L3 test now that the other locks on Channel 6 are released, according to certain embodiments.



FIG. 6 illustrates the release of a lock on a frequency Channel for a Wifi L3 test, according to certain embodiments. FIG. 6 shows that once Slot 5 (110a) has successfully completed (132cc) its Wifi L3 test using its lock on frequency Channel 6, Slot 5 (110a) releases (132c) its lock on frequency Channel 6 and sends information on test completion to central resource control server 102. Now, central resource control server 102 is free to grant multiple locks on a given Channel for Wifi L2 tests or a single lock for a Wifi L3 test per channel (since Wifi L3 test must run alone per Channel) in response to requests for locks from slots on test station 100.



FIG. 7 illustrates the requests from multiple slots for locks on Channels in order to perform respective Wifi L3 tests, according to certain embodiments. FIG. 7 shows that after performing one or more Wifi L2 tests successfully (a slot may need to perform more than one Wifi L2 test, for example), a given slot can proceed to perform a Wifi L3 test, if desired.


In FIG. 7, Slot 1 (108a) requests (136) a lock on frequency Channel 1 in order to perform a Wifi L3 test on a device installed in Slot 1 for testing. Slot 2 (108b) requests (138) a lock on frequency Channel 6 in order to perform a Wifi L3 test on a device installed in Slot 2 for testing. Slot 3 (108c) requests (140) a lock on frequency Channel 1 in order to perform a Wifi L3 test on a device installed in Slot 3 for testing. Slot 4 (108d) requests (142) a lock on frequency Channel 6 in order to perform a Wifi L3 test on a device installed in Slot 4 for testing. Slot 6 (110b) requests (144) a lock on frequency Channel 1 in order to perform a Wifi L3 test on a device installed in Slot 6 for testing. The above requests from the slots for locks on frequency Channels are sent to central resource control server 102. According to certain embodiments, central resource control server 102 will grant only one lock per frequency Channel for Wifi L3 tests in order to ensure minimum wireless interference per frequency Channel when several Wifi tests are run at the same time using various frequency Channels, as described further herein with reference to FIG.8.



FIG. 8 illustrates that the central resource control server will grant only one lock per frequency Channel for Wifi L3 tests, according to certain embodiments. FIG. 8 shows that central resource control server 102 grants (136a), to Slot 1 (108a), a lock (136aa) on frequency Channel 1 so that Slot 1 (108a) can perform a Wifi L3 test on a device installed in Slot 1 for testing. FIG. 8 also shows that central resource control server 102 grants (142a), to Slot 4 (108d), a lock (142aa) on frequency Channel 6 so that Slot 4 (108d) can perform a Wifi L3 test on a device installed in Slot 4 for testing. Since only one Wifi L3 test can be run per frequency Channel and central resource control server 102 has already granted one lock on Channel 1 and one lock on Channel 6 for Wifi L3 tests, central resource control server 102 rejects (138a, 140a, 144a) the respective requests of Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b). Thus, such requested locks are blocked (138aa, 140aa, 144aa). According to certain embodiments, central resource control server 102 grants requests for locks on frequency Channels on a first-come-first-served basis. According to certain other embodiments, central resource control server 102 grants requests for locks on frequency Channels based on business rules. Since Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b) were denied locks for their respective Wifi L3 tests, Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b) need to request again for locks for their respective Wifi L3 tests from central resource control server 102 at a later time as described with reference to FIG. 9 herein.



FIG. 9 illustrates the release of locks on a frequency Channels after completion of Wifi L3 tests, according to certain embodiments. FIG. 9 shows that once Slot 1 (108a) has successfully completed (136bb) its Wifi L3 test using its lock on frequency Channel 1, Slot 1 (108a) releases (136b) its lock on frequency Channel 1 and sends information on test completion to central resource control server 102. Similarly, when Slot 4 (108c) has successfully completed (142bb) its Wifi L3 test using its lock on frequency Channel 6, Slot 4 (108d) releases (142b) its lock on frequency Channel 6 and sends information on test completion to central resource control server 102. Now, central resource control server 102 can grant locks on Channel 1 and Channel 6 respectively for Wifi L3 tests to slots that request such locks. Also, since no Wifi L3 tests are running, central resource control server 102 can grant multiple locks on the frequency Channels for Wifi L2 tests (if needed) in response to requests for locks from slots on test station 100. Since Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b) were previously denied locks for their respective Wifi L3 tests, Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b) can now request (138, 140, 144) for locks for their respective Wifi L3 tests from central resource control server 102, according to certain embodiments.



FIG. 10 illustrates the grant of a recently released lock on a frequency Channel to the next slot request in the queue, according to certain embodiments. Continuing with the above example of FIG. 8 and FIG. 9. As explained with reference to FIG. 8, when Slot 1 (108a) and Slot 4 (108d) release their respective locks on frequency Channel 1 and Channel 6 respectively, central resource control server 102 can grant L3 locks to the next request for an L3 lock per frequency Channel. As previously described with reference to FIG. 8, the requests for L3 locks from Slot 2 (108b), Slot 3 (108c) and Slot 6 (110b) were denied. Assume that the request for an L3 lock on Channel 1 from Slot 6 (110b) precedes the request for an L3 lock on Channel 1 from Slot 3 (108c). Thus, central resource control server 102 grants (144b) Slot 6 (110b) a lock (144bb) on Channel 1 for its Wifi L3 test while denying (140a) the request from Slot 3 (108c) for an L3 lock (blocked 140aa) on Channel 1. Further, central resource control server 102 grants (138b) to Slot 2 (110b) a lock (138bb) on Channel 6 for its Wifi L3 test since there is no other pending L3 lock or pending L2 lock on Channel 6, according to certain embodiments.


In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A testing system for testing a plurality of devices, the testing system comprising: a plurality of test station slots, wherein: each test station slot of the plurality of test station slots is configured to receive and connect to a corresponding wireless device of a plurality of wireless devices to be tested; andeach test station slot of the plurality of test station slots is configured to use a shared wireless frequency channel for performing one or more wireless tests on each test station slot's corresponding installed wireless device to be tested; andat least one resource control server, wherein: the at least one resource control server is configured to lock the shared wireless frequency channel;a respective test station slot of the plurality of test station slots sends a request to the at least one resource control server for a lock on the respective test station slot's shared wireless frequency channel when the respective test station slot needs to perform a wireless test on the respective test station slot's corresponding installed wireless device to be tested; andthe at least one resource control server is configured to grant the request for the lock on the respective test station slot's shared wireless frequency channel based on a predetermined set of criteria.
  • 2. The testing system of claim 1, wherein the predetermined set of criteria comprises: granting a lock on a shared wireless frequency channel for performing Layer 2 wireless tests only if all previously granted locks on the shared wireless frequency channel for performing Layer 3 wireless tests are released.
  • 3. The testing system of claim 1, wherein the predetermined set of criteria comprises: granting a lock on a share wireless frequency channel for performing Layer 3 wireless tests only if all previously granted locks on the shared wireless frequency channel for performing any wireless tests are released.
  • 4. The testing system of claim 1, wherein the predetermined set of criteria comprises: granting a lock on a shared wireless frequency channel for performing wireless tests based on a first-come-first-served basis.
  • 5. The testing system of claim 1, wherein the predetermined set of criteria comprises: granting a lock on a shared wireless frequency channel for performing wireless tests based on business rules.
  • 6. The testing system of claim 1, further comprises a test control computer that is associated with the at least one resource control server.
  • 7. A system comprising: a plurality of test station slots, each test station slot of the plurality of test station slots configured to host a wireless device and assignable to a shared frequency channel to test the wireless device; anda resource control server configured to allocate wireless resource locks to the plurality of test station slots,wherein at least one test station slot of the plurality of test station slots is configured to request from the resource control server a wireless resource lock on the shared frequency channel assigned to the test station slot,wherein the resource control server is configured to determine an availability of the assigned shared frequency channel and provide a response based on the availability, andwherein the resource control server is further configured to grant the request for the lock on the respective test station slot's shared wireless frequency channel based on a predetermined set of criteria.
  • 8. The system of claim 7, wherein the resource control server is configured to provide the response by granting the requested wireless resource lock if the assigned shared frequency channel is available, and the at least one test station slot of the plurality of test station slots is configured to respond to the granted wireless resource lock by performing a test on the wireless device.
  • 9. The system of claim 7, wherein the resource control server is configured to provide the response by denying the requested wireless resource lock if the assigned shared frequency channel is not available, and the at least one test station slot of the plurality of test station slots is configured to respond to the denied wireless resource lock by deferring a test on the wireless device.
  • 10. The system of claim 7, wherein the request from the at least one test station slot of the plurality of test station slots includes information about a type of test to be performed and the availability of the shared frequency channel is determined responsive to the type of testing to be performed.
  • 11. The system of claim 10, wherein the type of test to be performed comprises an OSI Layer 2 test or an OSI Layer 3 test.
  • 12. The system of claim 10, wherein the type of test to be performed comprises a DOCSIS speed test.
  • 13. The system of claim 7, wherein the availability of the requested shared frequency channel is determined responsive to requests received from other test station slots of the plurality of test station slots.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/987,538, filed Jan. 4, 2016, the disclosure of which is hereby incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 14/866,720 entitled “Core Testing Machine,” filed Sep. 25, 2015, and to U.S. patent application Ser. No. 14/866,752 entitled “Universal Device Testing Interface,” filed Sep. 25, 2015, and to U.S. patent application Ser. No. 14/866,630 entitled “Universal Device Testing System,” filed Sep. 25, 2015, and to U.S. patent application Ser. No. 14/866,780 entitled “Set Top Boxes Under Test,” filed Sep. 25, 2015, and to U.S. patent application Ser. No. 14/948,143 entitled “Cable Modems/eMTAs Under Test,” filed Nov. 20, 2015, and to U.S. patent application Ser. No. 14/929,180 entitled “Hardware Architecture for Universal Testing System: Cable Modem Test,” filed Oct. 30, 2015, and to U.S. patent application Ser. No. 14/929,220 entitled “Hardware Architecture for Universal Testing System: Wireless Router Test,” filed Oct. 30, 2015, and to U.S. patent application Ser. No. 14/948,925 entitled “Wireless Routers Under Test,” filed Nov. 23, 2015, each of which are hereby incorporated by reference in its entirety.

US Referenced Citations (147)
Number Name Date Kind
5005197 Parsons et al. Apr 1991 A
5897609 Choi et al. Apr 1999 A
5917808 Koshbab Jun 1999 A
6088582 Canora et al. Jul 2000 A
6308496 Lee Oct 2001 B1
6367032 Kasahara Apr 2002 B1
6662135 Burns Dec 2003 B1
6671160 Hayden Dec 2003 B2
6826512 Dara-Abrams et al. Nov 2004 B2
6859043 Ewing Feb 2005 B2
7254755 de Obaldia Aug 2007 B2
7664317 Sowerby Feb 2010 B1
7809517 Zuckerman Oct 2010 B1
8121028 Schlesener Feb 2012 B1
8209732 Le Jun 2012 B2
8229344 Petersen Jul 2012 B1
8324909 Oakes Dec 2012 B2
8418000 Salame Apr 2013 B1
8418219 Parsons Apr 2013 B1
8515015 Maffre Aug 2013 B2
8689071 Valakh Apr 2014 B2
8806400 Bhawmik Aug 2014 B1
9013307 Hussain Apr 2015 B2
9270983 Hare, Jr. Feb 2016 B1
9316714 Rada Apr 2016 B2
9319908 Nickel Apr 2016 B2
9372228 Nickel Jun 2016 B2
9402601 Berger Aug 2016 B1
9490920 Parte Nov 2016 B2
9491454 Kumar Nov 2016 B1
9571211 Partee Feb 2017 B2
9810735 Kumar et al. Nov 2017 B2
9838295 Kumar et al. Dec 2017 B2
9900113 Kumar et al. Feb 2018 B2
9900116 Kumar Feb 2018 B2
9960989 Kumar et al. May 2018 B2
9992084 Kumar et al. Jun 2018 B2
20020070725 Hilliges Jun 2002 A1
20020077786 Vogel et al. Jun 2002 A1
20030005380 Nguyen Jan 2003 A1
20030184035 Yu Oct 2003 A1
20040010584 Peterson Jan 2004 A1
20040016708 Rafferty Jan 2004 A1
20040160226 Ewing Aug 2004 A1
20040189281 Le et al. Sep 2004 A1
20040203726 Wei Oct 2004 A1
20050041642 Robinson Feb 2005 A1
20050053008 Griesing Mar 2005 A1
20050102488 Bullis May 2005 A1
20050193294 Hildebrant Sep 2005 A1
20050286466 Tagg Dec 2005 A1
20060015785 Chun Jan 2006 A1
20060271322 Haggerty Nov 2006 A1
20070097659 Behrens May 2007 A1
20070220380 Ohanyan Sep 2007 A1
20080026748 Alexander et al. Jan 2008 A1
20080117907 Hein May 2008 A1
20080144293 Aksamit Jun 2008 A1
20080159737 Noble et al. Jul 2008 A1
20080168520 Vanderhoff Jul 2008 A1
20080274712 Rofougaran Nov 2008 A1
20080315898 Cannon Dec 2008 A1
20090059933 Huang Mar 2009 A1
20090089854 Le Apr 2009 A1
20090213738 Volpe et al. Aug 2009 A1
20090282446 Breed Nov 2009 A1
20090282455 Bell et al. Nov 2009 A1
20090289020 Wurmhoringer Nov 2009 A1
20100132000 Straub May 2010 A1
20100138823 Thornley Jun 2010 A1
20100246416 Sinha Sep 2010 A1
20110001833 Grinkemeyer Jan 2011 A1
20110006794 Sellathamby Jan 2011 A1
20110012632 Merrow Jan 2011 A1
20110035676 Tischer Feb 2011 A1
20110072306 Racey Mar 2011 A1
20110090075 Armitage et al. Apr 2011 A1
20110099424 Rivera Trevino Apr 2011 A1
20110107074 Chan et al. May 2011 A1
20110116419 Cholas May 2011 A1
20110222549 Connelly Sep 2011 A1
20110267782 Petrick Nov 2011 A1
20110306306 Reed Dec 2011 A1
20120140081 Clements Jan 2012 A1
20120122406 Gregg et al. May 2012 A1
20120163227 Kannan Jun 2012 A1
20120198084 Keskitalo Aug 2012 A1
20120198442 Kashyap Aug 2012 A1
20120213259 Renken et al. Aug 2012 A1
20120220240 Rothschild Aug 2012 A1
20120275784 Soto Nov 2012 A1
20120278826 Jones Nov 2012 A1
20130033279 Sozanski Feb 2013 A1
20130049794 Humphrey Feb 2013 A1
20130076217 Thompson Mar 2013 A1
20130093447 Nickel Apr 2013 A1
20130104158 Partee Apr 2013 A1
20130160064 Van Rozen Jun 2013 A1
20130167123 Dura Jun 2013 A1
20130257468 Mlinarsky Oct 2013 A1
20130305091 Stan et al. Nov 2013 A1
20140047322 Kim Feb 2014 A1
20140091874 Cook et al. Apr 2014 A1
20140115580 Kellerman Apr 2014 A1
20140123200 Park May 2014 A1
20140126387 Gintis May 2014 A1
20140156819 Cavgalar Jun 2014 A1
20140187172 Partee Jul 2014 A1
20140187173 Partee Jul 2014 A1
20140207404 Fritzsche Jul 2014 A1
20140256373 Hernandez Sep 2014 A1
20140266930 Huynh Sep 2014 A1
20140269386 Chu Sep 2014 A1
20140269871 Huynh Sep 2014 A1
20140282783 Totten Sep 2014 A1
20140370821 Guterman Dec 2014 A1
20150024720 Efrati Jan 2015 A1
20150093987 Ouyang Apr 2015 A1
20150109941 Zhang Apr 2015 A1
20150151669 Meisner Jun 2015 A1
20150180743 Jana et al. Jun 2015 A1
20150226716 Nelson Aug 2015 A1
20150237010 Roskind Aug 2015 A1
20150253357 Olgaard Sep 2015 A1
20150288589 Radford et al. Oct 2015 A1
20150369851 Even Dec 2015 A1
20160080241 Rocha De Maria Mar 2016 A1
20160102951 Cole Apr 2016 A1
20160191364 Ajitomi Jun 2016 A1
20160381818 Mills Dec 2016 A1
20170048519 Friel Feb 2017 A1
20170089981 Kumar Mar 2017 A1
20170093682 Kumar Mar 2017 A1
20170093683 Kumar Mar 2017 A1
20170126536 Kumar May 2017 A1
20170126537 Kumar May 2017 A1
20170126539 Tiwari May 2017 A1
20170149635 Kumar May 2017 A1
20170149645 Kumar May 2017 A1
20170195071 Kumar Jul 2017 A1
20170250762 Kumar et al. Aug 2017 A1
20170288993 Kumar et al. Oct 2017 A1
20170289012 Tiwari et al. Oct 2017 A1
20170302994 Kumar Oct 2017 A1
20180024193 Kumar et al. Jan 2018 A1
20180076908 Kumar et al. Mar 2018 A1
20180077046 Kumar et al. Mar 2018 A1
Foreign Referenced Citations (7)
Number Date Country
202261360 May 2012 CN
2001013604 Feb 2001 WO
2013169728 Nov 2013 WO
2014035462 Mar 2014 WO
2014065843 May 2014 WO
2017053961 Mar 2017 WO
2017074872 May 2017 WO
Non-Patent Literature Citations (69)
Entry
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 15/642,915, filed Jul. 6, 2017, dated Nov. 1, 2017, 42 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/866,630, filed Sep. 25, 2015, dated Dec. 20, 2017, 19 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/866,752, filed Sep. 25, 2015, dated Nov. 7, 2017, 26 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Oct. 18, 2017, 1 pg.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/948,925, filed Nov. 23, 2015, dated Nov. 16, 2017, 1 pg.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/948,143, filed Nov. 20, 2015, dated Dec. 28, 2017, 39 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Dec. 4, 2017, 20 pgs.
Kumar, Samant; Corrected Notice of Allowance for U.S. Appl. No. 15/057,085, filed Feb. 29, 2016, dated Oct. 31, 2017, 6 pgs.
Tiwari, Rajeev; Non-Final Office Action for U.S. Appl. No. 15/348,920, filed Nov. 10, 2016, dated Nov. 20, 2017, 53 pgs.
Tiwari, Rajeev; Non-Final Office Action for U.S. Appl. No. 15/642,967, filed Jun. 16, 2017, dated Nov. 7, 2017, 52 pgs.
Kumar, Samant; Final Office Action for U.S. Appl. No. 15/642,915, filed Jul. 6, 2017, dated Apr. 5, 2018, 18 pgs.
Kumar, Samant; Supplemental Notice of Allowance for U.S. Appl. No. 14/866,630, filed Sep. 25, 2015, dated Jan. 31, 2018, 9 pgs.
Kumar, Samant; Supplemental Notice of Allowance for U.S. Appl. No. 14/866,630, filed Sep. 25, 2015, dated Mar. 30, 2018, 6 pgs.
Kumar, Samant; Certificate of Correction for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Feb. 13, 2018, 1 pg.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/948,143, filed Nov. 20, 2015, dated Jan. 25, 2018, 13 pgs.
Kumar, Samant; Corrected Notice of Allowance for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Jan. 10, 2018, 8 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Jan. 31, 2018, 1 pg.
Kumar, Samant; Response to Amendment under Rule 312 for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Jan. 17, 2018, 2 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 15/057,085, filed Feb. 29, 2016, dated Jan. 31, 2018, 1 pg.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/948,925, filed Nov. 23, 2015, dated Sep. 20, 2017, 15 pgs.
Kumar, Samant; Supplemental Notice of Allowance for U.S. Appl. No. 14/948,925, filed Nov. 23, 2015, dated Oct. 5, 2017, 2 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 15/057,085, filed Feb. 29, 2016, dated Sep. 29, 2017, 28 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/866,780, filed Sep. 25, 2015, dated Oct. 19, 2016, 1 pg.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/866,780, filed Sep. 25, 2015, dated Jul. 19, 2016, 8 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Jan. 23, 2017, 17 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Jun. 29, 2017, 26 pgs.
Kumar, Samant; Ex-Parte Quayle Office Action for U.S. Appl. No. 14/948,925, filed Nov. 23, 2015, dated Jun. 20, 2017, 29 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Mar. 23, 2017, 12 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 15/057,085, filed Feb. 29, 2016, dated Apr. 7, 2017, 15 pgs.
Kumar, Samant; International Search Report and Written Opinion for PCT/US16/53768, filed Sep. 26, 2016, dated Feb. 3, 2017, 17 pgs.
Kumar, Samant; International Search Report and Written Opinion for PCT/US2016/058507, filed Oct. 24, 2016, dated Jan. 3, 2017, 12 pgs.
Nordman, Bruce, “Testing Products with Network Connectivity,” Jun. 21, 2011 [retrieved online at http://citeseerx.is1. psu.edu/viewdoc/download?doi=10.1.1.695.772&rep=rep1&type=pdf on Feb. 6, 2017], 20 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/866,630, filed Sep. 25, 2015, dated Aug. 9, 2017, 24 pgs.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Aug. 28, 2017, 11 pgs.
Kumar, Samant; Response to Rule 312 Communication for U.S. Appl. No. 14/866,720, filed Sep. 25, 2015, dated Jul. 26, 2017, 2 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/987,538, filed Jan. 4, 2016, dated Jul. 21, 2017, 18 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/929,180, filed Oct. 30, 2015, dated Aug. 22, 2017, 32 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 14/929,220, filed Oct. 30, 2015, dated Aug. 24, 2017, 31 pgs.
Businesswire; Article entitled: “GENBAND and CTDI Settle Legal Dispute”, located at <http://www.businesswire.com/news/home/20140321005528/en/GENBAND-CTDI-Settle-Legal-Dispute>, Mar. 21, 2014, 1 pg.
CED Magazine; Article entitled: “Cable Connects in Atlanta”, located at <https://www.cedmagazine.com/article/2006/04/cable-connects-atlanta>, Apr. 30, 2006, 21 pgs.
Consumer Electronics Net; Article entitled: “Teleplan Enhances Test Solution Portfolio with Titan”, located at <http://www.consumerelectronicsnet.com/article/Teleplan-Enhances-Test-Solution-Portfolio-With-Titan-4673561>, published on Nov. 1, 2016, 3 pgs.
Digital Producer; Article entitled: “S3 Group Unveils Exclusive Partnership in North America With First US StormTest(TM) Decision Line Customer”, located at <http://www.digitalproducer.com/article/S3-Group-Unveils-Exclusive-Partnership-in-North-America-With-First-US-StormTest(TM)-Decision-Line-Customer--1668213>, Sep. 8, 2011, 3 pgs.
Electronic Design; Article entitled: “Testing of MPEG-2 Set-Top Boxes Must be Fast, Thorough”, located at <http://www.electronicdesign.com/print/839>, published Nov. 18, 2001, 9 pgs.
Euromedia; Article entitled: “Automated TV Client testing: Swisscom partners with S3 Group to deliver the ultimate IPTV experience”, located at <http://advanced-television.com/wp-content/uploads/2012/10/s3.pdf>, earliest known pub. date—May 30, 2013, 2 pgs.
Exact Ventures; Report entitled: North American Telecommunications Equipment Repair Market, located at http://www.fortsol.com/wp-content/uploads/2016/08/Exact-Ventures-NA-Repair-Market-Report.pdf>, earliest known publication date Aug. 1, 2016, 12 pgs.
Promptlink Communications; Article entitled: “Promptlink Communications Officially Launches Sep-Top Box Testing Platform”, located at <https://www.promptlink.com/company/assets/media/2014-05-20.pdf>, published on May 20, 2014, 2 pgs.
Promptlink; Article entitled: “Cable Modem Test Platform”, located at <https://www.promptlink.com/products/cmtp.html>, earliest known publication date Aug. 11, 2016, 10 pgs.
Promptlink; Article entitled: “Set-Top Box Test Platform”, located at <http://promptlink.com/products/stbtp.html>, earliest known publication date Aug. 11, 2016, 7 pgs.
S3 Group; Document entitled: “White Paper: The Importance of Automated Testing in Set-Top Box Integration”, earliest known publication date Jun. 17, 2014, 11 pgs.
Teleplan; Article entitled: “Screening & Testing”, located at <https://www.teleplan.com/innovative-services/screening-testing/>, earliest known publication date Mar. 21, 2015, 7 pgs.
TVTechnology; Article entitled: “S3 Group's StormTest”, located at <http://www.tvtechnology.com/expertise/0003/s3-groups-stormtest/256690>, published May 1, 2012, 2 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/866,630, filed Sep. 25, 2015, dated Apr. 11, 2018, 1 pg.
Kumar, Samant; Notice of Allowance for U.S. Appl. No. 14/866,752, filed Sep. 25, 2015, dated May 17, 2018, 16 pgs.
Kumar, Samant; Issue Notification for U.S. Appl. No. 14/948,143, filed Nov. 20, 2015, dated May 16, 2018, 1 pg.
Kumar, Samant; Supplemental Notice of Allowance for U.S. Appl. No. 14/948,143, Nov. 20, 2015, dated May 7, 2018, 7 pgs.
Kumar, Samant; Final Office Action for U.S. Appl. No. 14/929,180, filed Oct. 30, 2015, dated May 8, 2018, 35 pgs.
Kumar, Samant; Final Office Action for U.S. Appl. No. 14/929,220, filed Oct. 30, 2015, dated May 10, 2018, 38 pgs.
Tiwari, Rajeev; Final Office Action for U.S. Appl. No. 15/348,920, filed Nov. 10, 2016, dated Apr. 30, 2018, 34 pgs.
Tiwari, Rajeev; Final Office Action for U.S. Appl. No. 15/624,967, filed Jun. 16, 2017, dated May 8, 2018, 40 pgs.
Kumar, Samant; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/053768, Sep. 26, 2016, dated Apr. 5, 2018, 13 pgs.
Kumar, Samant; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/058507, filed Oct. 24, 2016, dated May 11, 2018, 12 pgs.
Kumar, Samant; Advisory Action for U.S. Appl. No. 15/642,915, filed Jul. 6, 2017, dated Jul. 23, 2018, 18 pgs.
Kumar, Samant; Corrected Notice of Allowability for U.S. Appl. No. 14/866,752, filed Sep. 25, 2015, dated Jul. 10, 2018, 5 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 15/624,950, filed Jun. 16, 2017, dated Jul. 9, 2018, 50 pgs.
Kumar, Samant; Advisory Action for U.S. Appl. No. 14/929,180, filed Oct. 30, 2015, dated Jul. 27, 2018, 9 pgs.
Kumar, Samant; Advisory Action for U.S. Appl. No. 14/929,220, filed Oct. 30, 2015, dated Jul. 27, 2018, 8 pgs.
Kumar, Samant; Non-Final Office Action for U.S. Appl. No. 15/818,803, filed Nov. 21, 2017, dated Jul. 25, 2018, 46 pgs.
Tiwari, Rajeev; Advisory Action for U.S. Appl. No. 15/348,920, filed Nov. 10, 2016, dated Jul. 17, 2018, 8 pgs.
Tiwari, Rajeev; Advisory Action for U.S. Appl. No. 15/624,967, filed Jun. 16, 2017, dated Jul. 17, 2018, 7 pgs.
Related Publications (1)
Number Date Country
20170288791 A1 Oct 2017 US
Continuations (1)
Number Date Country
Parent 14987538 Jan 2016 US
Child 15624961 US