1. Field of the Invention
The present invention relates to a test strip and a test instrument using the same, particularly to a test strip with identification openings and a test instrument using the same.
2. Description of the Related Art
With the development of bio-test technologies, many tests can be undertaken in a clinic or even by a patient at home. Those tests, such as biochemical tests, immunological tests, gene tests, etc., are originally performed by specialists, like physicians, medical technologists or researchers, in special sites, like hospitals or laboratories, with precision equipments. Such a technology is called POCT (Point of Care Test). Common biochemical POCT tests include tests of glucose, cholesterol, uric acid, etc. Common immunological POCT tests include tests of pregnancy, drugs, tumor markers, glycated hemoglobin, enterovirus gene, etc. POCT technologies and their derivatives can apply not only to medical and biochemical fields but also to veterinary, agricultural, industrial and environment-protection fields.
POCT can provide fast and convenient tests. POCT can only provide qualitative tests before, but it has been able to perform quantitative tests now. In accuracy, POCT has been improved from an error rate of 20% to 15% or even below 10%. Various POCT test instruments have been developed, such as glucose meters, cholesterol meters, drug testers, enterovirus testers, etc.
In principle, a sample is dripped on a test area or suction area of a POCT test strip; then, the tested object reacts with a reagent in the test area or suction area; the reaction causes a change of an optical or electrical property; and the test instrument detects and calculates the change to obtain the concentration of the tested object.
Refer to
Refer to
Refer to
For obtaining correct test results, related analysis parameters have to be calibrated in the abovementioned quantitative test instruments according to the characteristics of the adopted test strip and reagent. In some cases, even the production data, quality control data, expiry date, etc., are required to input into the test instrument.
The analysis parameters are generally input into the memory of the test instrument via a keying method. However, such a method is too complicated and impractical for a POCT user, who is not necessarily familiar with such a method.
Two U.S. Pat. No. 5,053,119 and U.S. Pat. No. 5,366,609 utilize an EEPROM (Electrically Erasable Programmable Read Only Memory), which is also called a code card, to input analysis parameters into the memory of a test instrument, and calibration is thus simplified. However, some users may still forget to insert the attached code card into the test instrument when they use a new batch of test strips or reagent. For POCT users, such a scheme cannot guarantee correct test results yet.
In a U.S. Pat. No. 6,814,844, the batch number and expiry date in the bar-code form are printed on test strips and input into a test instrument via a bar-code reader. The analysis parameter of the test strips are printed on a blank test strip in the form of bar code, and the parameter-containing test strip functions as a parameter-setting test strip. Before using a new batch of test strips, the attached parameter-setting test strip is inserted into a test instrument to set the analysis parameters. The conventional technology is distinct from the abovementioned U.S. Pat. No. 5,053,119 and U.S. Pat. No. 5,366,609. However, a parameter-setting procedure is still needed, and a user may still forget to calibrate the test instrument.
To reduce the probability of forgetting to calibrate the instrument, many schemes have been proposed, and the products thereof have been sold in the marketplace. For example,
An analyzer with a bar-code scanning function: The bar-code is printed on the surface of the test strips or the package of the reagent. The analyzer can automatically read the bar-code, and the parameters are thus automatically set. Although the scheme can effectively solve the abovementioned problem, the device has a bulky size and a higher price.
A disposable analyzer: The analyzer has built-in parameters of the test strips or reagent. When the test strips or reagent are used up, the analyzer is also abandoned. Such a scheme can free users from setting parameters. However, it wastes resources, causes an environmental problem and has a high price.
An analyzer with a unique set of parameters: Such a scheme also free users from setting parameters but has a greater error range and a higher production defective fraction.
From those discussed above, it is known that calibration-free is an important and necessary feature of a POCT analyzer. Although many products to solve the problem have been proposed and sold in the marketplace, all of them still have room to improve. Accordingly, the present invention proposes a test strip with identification openings and a test instrument using the same to overcome the conventional problems.
One objective of the present invention is to provide a test strip with identification openings and a test instrument using the same, wherein a test strip incorporates an identification area having identification openings, and a test instrument has a detector able to read digital identification data contained in the test strip, whereby the analysis parameters, expiry date, batch number, etc. of the test strip are automatically transmitted to the test instrument, and the test instrument is then automatically calibrated. Thus, the present invention can effectively prevent a user from forgetting to calibrate a POCT analyzer.
To achieve the abovementioned objective, the present invention forms identification openings on an identification area of a test strip according to the characteristics of the test strip, and the identification openings will create related digital identification signals. The present invention also proposes a test instrument to cooperate with the test strip. After receiving the digital identification signals, the test instrument can determine the parameter-setting data and product data of the test strip. Thereby, the test instrument can fast and correctly set the analysis parameters of a test strip.
Another embodiment of the present invention comprises an identification area formed on a casing of a test strip according to the characteristics of the test strip, and the identification area has at least one identification opening to create a digital identification signal.
Below, the embodiments are described in detail in cooperation with the attached drawings to make easily understood the objectives, technical contents, characteristics and accomplishments of the present invention.
The present invention proposes a test strip with identification openings and a test instrument using the same, which applies to various POCT analysis devices, such as blood glucose meters, cholesterol meters, and immunological analyzers. The test strip of the present invention is characterized in having a test area and an identification area. The test area is an optical test area, an electrochemical test area, or a color reaction/colorimetric area. The identification area has identification openings, including identification notches and identification holes, and the test instrument can obtain the digital identification signals from a detector, which is corresponding to the type of identification openings.
The test strip of the present invention includes five embodiments. Among them, a first embodiment and a third embodiment involve an optical test area, and the identification area thereof has identification notches or identification holes; a second embodiment and a fourth embodiment involve an electrochemical test area coupled to two separated electrodes, which transfer to the test instrument the current variation generated by the electrochemical reaction in the test area, and the identification area thereof also has identification notches or identification holes; a fifth embodiment involves a color reaction/colorimetric area, and the identification area thereof has identification holes, wherein the substrate is packaged inside a casing, but the identification area is arranged on the casing.
Refer to
Refer to
Refer to
Refer to
Refer to
Furthermore, in the abovementioned four test strip embodiments, the substrate is arranged inside a casing (not shown), and the casing has at least two windows to expose the test area and the identification area on the substrate. In the abovementioned four test strip embodiments, the test strips of the present invention are applied to a test instrument having a detector of an electronic crosspoint connector or an optoelectronic connector. The detector can generate a digital identification signal according to the combination of the notched and unnotched positions or the holed and unholed positions on the identification area.
Refer to
Any of the abovementioned embodiments can cooperates with resistor elements to provide more sets of identification signals to satisfy the requirements of different customers, different test instruments and different test strips. To speak in detail, a resistance identification area (not shown in the drawings) may be formed on the test strip of the present invention, wherein the resistance identification area has a resistor element coupled to an electrode area to generate an analog identification signal. If the test area of the test strip is the abovementioned electrochemical test area, the electrode area has a working electrode and a counter electrode, and the working electrode and the counter electrode are coupled to the electrochemical test area and the resistor element. If the test area of the test strip is the abovementioned optical test area or color reaction/colorimetric area, the electrode area has a ground electrode and a power signal cable, and the ground electrode and the power signal cable is coupled the resistor element. Thereby, the combination of the identification openings and the resistance identification area of the test strip can provide more identification signals.
The embodiments described above are to demonstrate the technical contents and characteristics of the present invention to enable the persons skilled in the art to understand, make, and use the present invention. However, it is not intended to limit the scope of the present invention. Therefore, any equivalent modification or variation according to the spirit of the present invention is to be also included within the scope of the present invention.