The present disclosure pertains to the field of diagnostic testing and, more particularly, to diagnostic testing systems using electronic analyte meters.
Electronic testing systems are commonly used to measure or identify one or more analytes in a sample. Such testing systems can be used to evaluate medical samples for diagnostic purposes and to test various non-medical samples. For example, medical diagnostic meters can provide information regarding the presence, amount, or concentration of various analytes in human or animal body fluids. In addition, diagnostic test meters can be used to monitor analytes or chemical parameters in non-medical samples such as water, soil, sewage, sand, air, or any other suitable sample.
Diagnostic testing systems typically include both a test medium, such as a diagnostic test strip, and a test meter configured for use with the test medium. Suitable test media may include a combination of electrical, chemical, and/or optical components configured to provide a response indicative of the presence or concentration of an analyte to be measured. For example, some glucose test strips include electrochemical components, such as glucose specific enzymes, buffers, and one or more electrodes. The glucose specific enzymes may cause a reaction between glucose in a sample and various chemicals on a test medium, thereby producing an electrical signal that can be measured with the one or more electrodes. The test meter can then convert the electrical signal into a glucose test result. Such enzymes may include glucose dehydrogenase, glucose oxidase, etc.
Diagnostic testing systems have improved significantly in recent years. For example, test meters have become smaller and faster, and the amount of blood or other fluid needed to obtain accurate test results has decreased. However, although these improvements have made testing more convenient for patients, current systems have some drawbacks. For example, current systems and devices for monitoring blood glucose levels in diabetic patients require patients to carry at least three devices: a lancet, a blood glucose meter, and test strips; and the need to carry three separate items can be inconvenient and cumbersome. In addition, carrying more components makes it easier to misplace or lose a component. Further, systems that employ separate lancets often include lancets that can be reused. However, reusing the same lancet is less sanitary than using a new, disposable lancet each time. In addition, repeated use of the same lancet can cause the lancet to become dull over time and cause more pain to the patient upon use.
While current methods and systems facilitate the self monitoring of analyte concentrations in blood or a bodily fluid, there is a need for additional features and improvements, including systems with fewer components and more efficient/advanced methods of manufacturing. The present invention is directed at overcoming one or more shortcomings of the prior art of meters, lancets, and test strips.
The present disclosure provides methods and systems to collect blood from a patient using a lancet integrated with a test strip. In traditional systems, the various components of a blood collection system (i.e., meter, test strip, and lancet) are separate objects. However, the present disclosure provides integrated test strips having an integrated lancet, as well as meters for actuating the lancet integrated within a test strip.
In one aspect of the present disclosure, an analyte test strip system may be composed of a test strip including at least one test strip substrate and an elongate cavity extending through at least one of the substrates. The cavity may be adapted to receive a lancet and the test strip can have an opening through which the lancet may be deployed. The test strip can also comprise a reaction site where the patient's blood can be collected. The test strip may be sealed in a package.
Another aspect of the present disclosure includes producing an analyte test strip system that integrates a test strip with a lancet. The method can include selecting a first test strip substrate material followed by selecting a second test strip substrate material. At least one elongate cavity can be formed in at least one of the first or second test strip substrate materials. A lancet material may be selected and cut into an elongate shape in order to fit into the elongate cavity formed in the at least one substrate material. The lancet may be disposed into the elongate cavity, and the first and second substrate materials may be mated to one another. The test strip with the integrated lancet may be sterilized and then sealed in a package.
The accompanying drawings, which are incorporated in and constitute a part of this specification, provide exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention.
References will now be made in detail to the exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The present disclosure provides a test strip having an integrated lancet. This test strip with integrated lancet can be used to collect a sample of blood from a patient and then, in conjunction with an analyte meter, to measure the analyte content of the collected blood. In some embodiments, the test strip with integrated lancet can be mated with an analyte meter configured to actuate the lancet in order to pierce a patient's skin to collect a blood sample. Further, in some embodiments, the blood may be collected on the same test strip while still mated with the analyte meter in order to detect or measure an analyte in the blood.
The analyte meter 10 can be used to detect or measure the concentration of one or more analytes. The one or more analytes may include a variety of different substances, which may be found in biological samples, such as blood, urine, tear drops, semen, feces, gastric fluid, sweat, cerebrospinal fluid, saliva, vaginal fluids (including suspected amniotic fluid), culture media, and/or any other biologic sample. In some embodiments the biologic sample can include blood and the analyte can include glucose.
As noted,
The test strip 16 may comprise a mechanism for adjusting the depth of penetration of the lancet 18. This may prevent the lancet 18 from piercing a patient's skin too deeply, and allow deeper penetration for patient's with thicker skin or less blood circulation. This mechanism includes a knob configured to adjust to an arm to physically stop the lancet from protruding past a certain distance. The mechanism can alternatively include a stopper adjustable by a sliding mechanism.
The lancet 18 in the test strip 16 can be made of a biocompatible plastic or a biocompatible metal. The biocompatible plastic can include a number of suitable types of polymeric materials including, but not limited to, thermosets, elastomers, or other polymeric materials. Further, suitable biocompatible metals can include, for example, stainless steel, titanium, etc. In addition, the lancet 18 can also be formed from various composite materials.
The lancet 18 may be manufactured using a number of suitable production processes. For example, the lancet can be fabricated using known metal processing techniques, such as casting or forging, or for the case of polymeric materials, any suitable polymer processing system can be used, including, for example, injection molding.
As noted previously, the lancet 18 can have a sharp, pointed end 41 that can be used to pierce a patient's skin in order to collect blood. The test strip end 43 that will be engaged with the analyte meter can include a hole 40 for the lancet's mating end 42. The lancet's mating end 42 will be configured to engage the actuation mechanism 21 in the analyte meter 10.
In some embodiments, the test strip 16 can include a membrane 37 that covers and fluidly seals the opening 20. The membrane 37 may help secure the lancet 18 in the cavity 17 until the lancet 18 is needed for use. Further, the membrane 37 can prevent the lancet from becoming contaminated during storage. The membrane 37 can include a variety of suitable materials. For example, the membrane 37 can include any suitable polymer or composite material that can be pierced by the lancet 18 when the lancet 18 is actuated by the actuation mechanism 21. The covering 37 may be impermeable or semipermeable to gas or liquid. For example, suitable materials include polymer thin films, polyethylene, latex, etc.
The reaction test site 22 may have a shape and size configured to hold certain substances needed to react with an analyte to be tested. For example, the reaction test site 22 may include a well configured to secure a certain sample volume. In addition, the reaction test site 22 may include various configurations that can facilitate sample acquisition, proper sample placement, or needed fluid flow.
In addition, the test strip 16 can include one or more electrodes 27. These electrodes 27 can be configured to engage corresponding electrodes on an analyte test meter to form an electrical connection with the test meter 10, thereby allowing a reaction that occurs at the test site 22 to be correlated with a blood analyte concentration.
It should be noted that although the test strip 16 is shown as a rectangularly shaped strip, the test strip 16 can include a variety of suitable shapes and sizes as long as the test strip 16 can include an elongate cavity 17 and lancet 18. For example, the test strip 16 can be in the form of ribbons, tabs, discs, or any other suitable form. Further, as noted above, the test strip 16 can also be configured for use with a variety of suitable testing modalities, including electrochemical tests, photochemical tests, electrochemiluminescent tests, and/or any other suitable testing modality.
The test strip substrates 24, 26 can be produced from a variety of suitable material types. For example, in some embodiments, the test strip substrates 24, 26 can include suitable plastics, metals, ceramic, and/or composite materials. Substrates 24, 26 may be selected based on a variety of factors, including for example, cost, processing, feasibility of sterilization, mechanical properties, and effects on enzymes, mediators, or other chemicals needed to produce a suitable reaction. Further, suitable substrates can include a single layer material or multi-layered material.
In some embodiments, the analyte test meter 10 of the present disclosure can include an actuation mechanism 21 configured to advance the lancet 18 through the opening 20 in the test strip 16 in order to pierce a patient's skin.
Further, although as shown, the actuation mechanism 21 is a spring-driven actuation mechanism, any suitable actuation mechanism can be used. For example, as shown, actuation mechanism 21 may alternatively or additionally include a motor 15, such as an electric motor that may control movement of the spring 19 or directly engage the lancet 18. Further, other suitable actuation mechanisms can include a solenoid or other linear actuator, which may advance and retract suitable materials having certain magnetic properties.
The disclosed test strip 16 with the integrated lancet 18 can be produced using a number of suitable fabrication processes. For example,
Next, as shown at Step 32, a cavity 17 may be formed in one or more substrates 24, 26. The cavity 17 can be formed using a number of suitable production processes. For example, the cavity 17 can be etched using a laser or water-jet cutter. The cavity 17 can also be formed using a chemical that chemically reacts with at least one of the test strip substrates 24, 26 to remove a selected portion of the substrate, thereby forming a cavity in the substrate. In addition, the cavity 17 can also be formed by using a saw or another cutting tool to cut out a cavity from at least one of the test strip substrates 24, 26. Any suitable method may be selected as long as the cavity has a size and shape configured to hold the lancet 17 and allow the lancet to be moved in and out of the opening 20 to pierce a patient's skin.
Next, as shown at Step 33, the lancet 18 is placed into the cavity 17. As shown at Step 36, the first and second substrates 24, 26 may then be attached to one another, as described above, forming a test strip 16. As noted, test strip substrates 24, 26 may be mated to each other such that cavity 17 is substantially hermetically sealed between them. Further, in some embodiments, the cavity 17 may be hermetically sealed, for instance with a membrane 37, as shown at Step 34.
Additionally, the lancet 18 and/or substrates 24, 26 can be sterilized. The lancet 18 may be sterilized before the test strip 16 is completed, or alternatively, the lancet 18 may be sterilized before sealing the opening 20 or before placement within the cavity 17, as long as the final product will be suitably sanitary for patient use. The lancet may be sterilized after being disposed in first or second substrate material along with the one first or second substrate. Further, in some embodiments, the entire test strip 16, including both test strip substrates 24, 26 may be sterilized in one step after the first and second substrates 24, 26 are attached to one another. In this case, the sterilization process may be performed before application of selected enzymes or mediators, or using a process that will not damage the enzymes or mediators. The lancet may be sterilized using a number of different sterilization techniques including, for example, autoclaving, radiation, ethylene oxide, and ethyl alcohol.
After sterilization, the test strip 16 including the integrated lancet 18 may be sealed in a package 58, as shown at Step 38. Package 58 may be any suitable container or enclosure for test strip 16, such as, for example, a pouch (as depicted in
In some embodiments, package 58 containing test strip 16 may be hermetically sealed to prevent entry of fluids and gases. Accordingly, in some embodiments, test strip 16 may be made and/or sealed in package 58 within a sterile and/or controlled environment, such as, for example a dry room. Package 58 may maintain sterility of test strip 16, preventing exposure of test strip 16 to contaminants (e.g., fungi, bacteria, viruses, spore forms, etc.). Additionally, in some embodiments, package 58 may act as a moisture barrier, isolating test strip 16 from ambient humidity. Exposure to water vapor could cause damage to or alter the properties of one or more of the substances or chemicals disposed in test site 22 that are configured to react with one or more analytes. To further limit or eliminate moisture, in some embodiments, package 58 may include a desiccant 60. Suitable desiccants may include silica gel, calcium sulfate, calcium chloride, montmorillonite clay, and molecular sieves. Furthermore, in some embodiments, desiccant 60 may be disposed on a surface within package 58 prior to placement of test strip 16 within package 58. In some embodiments, desiccant 60 may be positioned on a surface within package 58 such that desiccant 60 will be adjacent to test site 22 when test strip 16 is sealed in package 58. This may enhance the effectiveness of desiccant 60 for limiting the moisture exposure of the chemicals disposed in test site 22.
In some embodiments, one test strip 16, including the integrated lancet 18, may be individually sealed into package 58. In this manner, test strip 16 may remain sealed in package 58 until a person opens package 58 in order to use test strip 16 for analyte measurement. This may help ensure both the sterility of test strip 16 and integrity of the chemicals disposed in test site 22 until test strip 16 is actually used. In other embodiments, more than one test strip 16 may be sealed into a single package 58.
The test strip of the present disclosure is straightforward to use. First, a person will engage the test strip 16 with the meter interface 14 to secure the strip in place and form a connection between the electrical components and the test strip lancet and meter actuation system. Next, the user will place his or her skin proximate the test strip opening 20 and actuate the lancet using the meter to pierce the skin and obtain a sample of blood. The blood will be collected on the sample reaction site 22, and the analyte meter 10 will then analyze the blood for analyte concentration and display the results on the display unit 12.
A feature of the present test strip with integrated lancet is the consolidation of the testing components into a single disposable test strip device 16. The consolidated test strip and meter with actuation system provide a more convenient and user friendly system with fewer components. Having a lancet 18 incorporated into a test strip 16 ensures that a patient will use a single lancet 18 only once before disposing it. This method allows the patient to use a sterile lancet 18 every time he or she needs to obtain a sample of blood. Using a lancet 18 only once will also lessen the pain the patient might feel as he or she will use a new, sharp lancet each time rather than re-using the same lancet that might have become dull over time.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation-in-part of co-pending U.S. application Ser. No. 11/711,621, filed Feb. 28, 2007, and a continuation-in-part of co-pending U.S. application Ser. No. 11/181,778, filed Jul. 15, 2005. The content of both applications is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11711621 | Feb 2007 | US |
Child | 12567201 | US | |
Parent | 11181778 | Jul 2005 | US |
Child | 11711621 | US |