The present disclosure relates generally to devices for use in a wellbore in a subterranean formation and, more particularly (although not necessarily exclusively), to a testable isolation packer that may be used for testing packer elements in a downhole configuration.
Various devices can be utilized in a well that traverses a hydrocarbon-bearing subterranean formation. In many instances, it may be desirable to divide a subterranean formation into zones and to isolate those zones from one another in order to prevent cross-flow of fluids from the rock formation and other areas into the annulus. It may also be desirable to control sand across multi-zone applications. Packers may be set in the well in order to isolate zones so that the zones may be gravel packed and produced separately. Without such devices, the zone may experience problems such as sand production, erosion, water breakthrough, or other detrimental problems. A packer may be set between zones in order to seal them from one another.
A well packer may be run into the well on a completion string. Once deployed, packer elements support the completion string and other completion equipment, as well as seal the annulus. For example, a packer may be used to support a screen adjacent to a producing formation and to seal the annulus between the outside of the completion string and the inside of the wellbore casing. This blocks movement of fluids through the annulus past the packer. A packer device may be deployed along the completion string in the wellbore by applying a force to an elastomeric element of the packer. The elastomeric element of the packer may be the portion that creates an annular seal between the completion string and the wellbore casing. The packer device may also have a wedge/slip system that may be engaged to help hold the completion string in place.
Isolation packers are typically run into a well with sand screens or perforated tubing separating each packer. In a multi-zone gravel pack completion, the packers and sand screens are run into the well as a completion string. This completion string separates the well into individual zones between each packer.
The conventional installation method for a completion string with multiple isolation packers is to locate the completion string in the well and set all of the isolation packers at one time. However, using this method of installation does not allow each individual packer to be pressure tested. From the surface, there is no way to know that each of the packers has been properly set.
Certain aspects and examples of the present disclosure are directed to a testable isolation packer. Aspects and examples are also directed to methods for verifying that the testable isolation packer has been properly set during installation in a multi-zone well. The testable isolation packer may isolate zones in the well. It is desirable to reliably confirm that the packer elements of the testable isolation packer have been properly sealed against the wellbore casing so that the testable isolation packer can effectively isolate the desired zone.
In some implementations, the testable isolation packer can include upper and lower packer elements, a bypass system, and a testing subassembly. The upper and lower packer elements can seal an annular space between a completion string and a wellbore casing in a well system. The bypass system can include a series of ports for allowing excess fluid to exit the annular space through the packer system during setting of the packer and deployment of the packer elements. The testing subassembly can include a moveable feature that moves from a closed mode to a test mode. In the test mode, pressure can be delivered into the annular space between the packer outside diameter, casing inside diameter, and packer elements. The pressure directed to the annulus space between the packer elements is used to indicate to a well operator whether the packer elements are maintaining a constant pressure therebetween. The pressure remaining relatively constant can indicate that the packer elements have contacted the casing and completely sealed.
These illustrative examples are given to introduce the reader to the general subject matter discussed here and are not intended to limit the scope of the disclosed concepts. The following sections describe various additional aspects and examples with reference to the drawings in which like numerals indicate like elements, and directional descriptions are used to describe the illustrative aspects. The following sections use directional descriptions such as “above,” “below,” “up,” “down,” “upper,” “lower,” “upward,” “downward,” “left,” “right,” “uphole,” “downhole,” etc. in relation to the illustrative aspects as they are depicted in the figures, the upward direction being toward the top of the corresponding figure and the downward direction being toward the bottom of the corresponding figure, the uphole direction being toward the surface of the well and the downhole direction being toward the bottom of the well. Like the illustrative aspects, the numerals and directional descriptions included in the following sections should not be used to limit the present disclosure.
Although more detail of certain features is provided below,
Deployment of upper and lower packer elements 12, 14 can seal an annulus space A1 between an outer portion of the completion string 16 and the wellbore casing 18. This seal can block movement of fluids across the packer elements 12, 14 such that packer elements 12, 14 can seal a desired zone from other parts of the wellbore 18. Any packer element setting system may be used in connection with various features provided by this disclosure. An example of a packer element setting system is described below with reference to
After the packer elements 12, 14 have been fully compressed, fluid from the annulus space A1 between the packer elements 12, 14 can exit via bypass system 62. The bypass system 62 includes cooperation between a lower element port 67 in fluid communication with a chamber space 26, a channel 64, and a release port 66. Fluid may move from space A1 between the upper and lower packer elements 12, 14, through the lower element port 67, and into chamber space 26. It can be undesirable for fluid to remain blocked in chamber 26 because, for example, it may hydraulically lock a moveable element 22 associated with the testing subassembly 68.
The bypass system 62 can allow fluid to exit chamber 26 through release port 66. Fluid can flow through a release port 66, downhole of the lower packer element 14, into the annulus space A2 and exit the system. This releases any hydraulic lock that may have otherwise prevented travel of moveable element 22.
Movement of the moveable element 22 can allow activation of the testing subassembly 68 of the testable isolation packer 10. The testing subassembly 68 in a test mode can open a flow path 72 (shown in
In the test mode, opening of a flow path 72 allows pressure applied through a port to be directed to a location in the annulus space Al, between the upper and lower packer elements 12, 14. If the pressure level holds at a relatively constant level, this indicates to the operator that the packer elements have created an appropriate seal against the wellbore casing 18.
Movement of a moveable element 22 with respect to an inner mandrel 78 controls the state of the flow path 72. The inner mandrel 78 has an inner port 76. The moveable element has an outer port 74 and a sealing element 80. The sealing element 80 is positioned between the two ports 74, 76 when the moveable element 22 is in the position shown in
Movement of the moveable element 22 causes the sealing element 80 and the outer port 74 (both located on the moveable element 22 in
Many of the components described herein are secured to other elements via shear mechanisms. These shear mechanisms can maintain the components in secured relation until a pressure or other force is delivered to shear the shear mechanism. The shear mechanisms are configured to shear at different forces in order to ensure that the proper setting steps described are completed in order. As described in more detail below, pressure delivered through the inner mandrel, acting on a piston and a moveable element, causes the shear mechanisms to go from shear to shear in a certain order. This allows the setting process to follow the following steps: begin compression of the upper packer element, set the slip system, begin compression of the lower packer element, then simultaneously close the bypass system and open the testing subassembly. The order of the shearing of the shearing mechanisms described is generally intended to guide the order in which various elements deploy or are separated from one another.
Each of these figures and the related shears and component movements will be detailed below, but the following summary is provided for perspective. The upper packer element 12, lower packer element 14, and the slip system 34 are shown in their undeployed positions in
In order to begin the packer element and slip setting process, application of tubing pressure through port 200 acts on a set of o-rings 202a and 202b. As depicted in
A release ring 21 is a split ring that sits in a groove 210 on the mandrel and prevents the housing 24 from moving upwards toward the upper packer element 12 until the piston 20 shears the first shear mechanism 36 and releases the release ring 21. The pressure and the shearing of the first shear mechanism 36 allows the piston 20 to move slightly in order to uncover release ring 21. Piston 20 uncovers release ring 21 which abuts a housing ring 23 that covers lugs 206. The housing ring 23 abuts shoulder 211 on housing 24. When the piston 20 uncovers the release ring 21, the release ring 21 expands out of the piston groove 210 and allows the housing ring 23 and housing 24 to travel upwards (towards element 12). Once the first shear mechanism 36 is sheared, the piston 20 is allowed to travel away from the moveable element 22, as indicated by arrow 40 on
Meanwhile, the moveable element 22 is restrained from movement by lugs 206 installed in windows in moveable element 22 and engaged in the groove 210 on the mandrel. The housing ring 23 covers the lugs 206 and prevents movement of moveable element 22.
As shown in
The tubing pressure applied through the port 200 of the inner mandrel 78, acting of the piston 20, and mandrel 22 causes the system to go from shear to shear. Each of the described shears applies more and more compression to the upper element 12, which begins the setting process of the upper element 12. As shown in
As the piston 20 and housing 24 move away from the moveable element 22 in the direction of arrow 40, a space 42 is created between the housing 24 and a testing subassembly 68 as the piston compresses the upper element 12. This space 42 is illustrated by
Relative movement of the housing 24 with respect to the moveable element 22 causes a body lock ring 44 to ratchet across a mating profile on the moveable element 22. The mating profile is generally undetectable in the figures, but it can be provided as machined grooves or threads in the element 22. This movement is depicted in
The applied pressure between piston 20 and piston 22 continues to push the movable element 22 downward. This applied force is transferred through the moveable element 22 in order to shear the third shear mechanism 46, shown in
Shearing of the third shear mechanism 46 allows setting of the slip system 34, as shown in
The shearing action of the third shear mechanism 46 releases a first wedge 48 with respect to a lower mandrel 56. A second body lock ring 58 is positioned between the first wedge 48 and the lower mandrel 56. Movement of the first wedge 48 with respect to the lower mandrel 56 causes the second body lock ring 58 to ratchet over a profile cut on top of lower mandrel 56. (This profile may be similar to the profile described for the cooperation between moveable element 22 and body lock ring 44.) The applied force from the movable element 22 forces the first wedge 48 and the second body lock ring 58 nearer to the second wedge 50. The engagement of the body lock ring to the profile prevents movement of the first wedge 48 back its original position. First wedge 48 forces deployment of slips 32, as shown in
After the required force is applied to the slip system 34, the applied force shears the fourth shear mechanism 52. More specifically, the applied force is again transferred through the moveable element 22, down through fifth shear mechanism 70 in the shear housing 71, through the lower packer element mandrel 57, down through lower packer element mandrel 57, which shears the fourth shear mechanism 52. As previously discussed, because the shear elements are set to shear at different shear strengths, the applied pressure on the fifth shear mechanism 70 does not cause it to shear yet.
Shearing of the fourth shear mechanism 52 releases the lower packer element mandrel 57 from a lower packer element retainer 54. This release is shown in the transition between
There is now a partial set of both of the upper and lower packer elements 12, 14, meaning that the elements 12, 14 are expanded and contact the casing, but they are not fully sealed against the casing, but they are preventing fluid from flowing past the packer elements 12, 14. The slip system 34 is now set, such that various components of the testable packer 10 that push against the slip system 34 are locked into place and can no longer move.
The expansion of the upper and lower packer elements 12, 14 forms annulus space A1, as shown in
As depicted in
The lower element port 67 is provided in the lower packer element mandrel 57. The lower element port 67 remains open until the moveable element 22 is released to block port 67, which is caused by the fifth shear mechanism 70 (as shown in
Pressure applied from the tubing continues to act on the movable element 22. The force is raised to shear the fifth shear mechanism 70. This allows the moveable element 22 to travel into the chamber space 26. Fluid in chamber space 26 exits through the bypass system channel 64 and out through the release port 66. This final shear and the consequent travel of the moveable element 22 is what activates the test mode of the testing subassembly 68.
The pressure from this shear and the travel of the moveable element 22 cause two primary events. First, it forces fluid out of the chamber 26 and closes the lower element port 67, which closes the bypass system 62. Second, it moves the testing subassembly 68 into the test mode position.
Referring to the closing of the bypass system 62, travel of moveable element 22 closes the bypass system 62 by forcing fluid out of the chamber 26 and closing the lower element port 67. The shearing of the fifth shear mechanism 70 allows moveable element 22 to travel in the direction of arrow 96. As shown in
Pressure from the fifth shear is sufficient to fully compress and set the upper and lower packer elements 12, 14. The elements 12, 14 should be fully expanded with sufficient compression that fluid cannot pass from above the upper packer element 12, nor from below the lower packer element 14. The packer elements 12, 14 are now in a position to be tested to ensure that the desired compression has been maintained and is holding.
The second event that occurs via shear of the fifth shear mechanism 70 and movement of the moveable element 22 is activation of the test mode of the testing subassembly 68. The test mode can involve movement of the moveable element 22 in order to open fluid communication between an inner port and an outer port so that pressure may be delivered from inside the completion string to the annulus space between the set packer elements. The test mode may be activated so that pressure may be delivered into the annuls space A1 to confirm whether the packer elements 12, 14 have been set properly and are maintaining the desired seal. The testing process generally includes activation of testing subassembly 68.
As discussed, moveable element 22 has an outer port 74 and a sealing element 80. Any of the sealing elements 80, 81a, 81b described herein may be an o-ring or any other sealing mechanism. The moveable element 22 moves with respect to an inner mandrel 78. Inner mandrel 78 features an inner port 76. Movement of the moveable element 22 causes the outer port 74 and the sealing element 80 to travel downhole with respect to the inner port 76.
In this mode, fluid communication provided between ports 74, 76 allows pressure delivered to the completion string 16 to be directed to the annulus space between the set packer elements. Flow path 72 extends from inside the completion string 16 to the annulus space between the packer elements 12, 14.
The flow path 72 of the testing subassembly 68 may be operative once the upper and lower packer elements 12, 14 have been set. It is generally undesirable to conduct pressure testing between the packer elements before they have set fully. For example, attempted methods for testing isolation packers have used rupture discs that rupture at the end of the setting of the isolation packer. One problem with rupture discs is that the rupture/burst disc will burst at a set pressure. This means that a disc may burst even if the lower packer element has not yet set. It is desirable to provide a system that allows testing of the isolation packers only after the packers have been completely deployed and sealed. Additionally, current testing systems may permit pressure to be trapped between two packer elements during the setting process. Trapping pressure can increase pressure between the elements and cause them to prematurely activate the rupture disc.
As discussed, in order to ensure that the testing subassembly 68 is only in test mode once the upper and lower packer elements 12, 14 have been set, the order of the shearing of the shearing mechanisms is configured so that they shear at different forces helps ensure that the proper setting steps are completed in order. In other words, the first shear mechanism 36 has a lower shear strength than the second shear mechanism 38. The second shear mechanism 38 has a lower shear strength than the fourth shear mechanism 46. The fourth shear mechanism 46 has a lower shear strength than the fifth shear mechanism 70.
In the specific aspects described, the moveable element 22 does not begin to open the testing subassembly until the fifth shear mechanism 70 has sheared and the packer elements have been compressed and sealed. Additional sealing elements 81a, 81b seal any potential fluid communication with the bypass system 62. Thus, a closed pressure system is now maintained in the area A1 between the upper and lower packer elements 12, 14 due to the fluid flow 72 allowed between the ports 74, 76.
The pressure testing process used for determining that the upper and lower packer elements 12, 14 have been properly compressed, sealed and set may now take place. An exemplary method 800 for setting the packer and conducting the testing steps is shown in the flowchart of
The method 800 can involve running a testable isolation packer system into a wellbore casing on a completion string, as depicted in block 810. Multiple testable isolation packers may be positioned along a single completion string and run into the well at the same time.
The method 800 can also involve starting to set an upper packer element between the wellbore casing and the completion string, as depicted in block 820. The method 800 can also involve allowing bypass of fluid volume from an annulus space between the upper packer element and a lower packer element to a location downhole of the lower packer element through a bypass system, as depicted in block 830.
The method 800 can further involve anchoring a slip system, as depicted in block 840. The slip system is provided to secure the completion string in place in the wellbore. The method 800 can further involved starting to set a lower packer element between the wellbore casing and the completion string, as depicted in block 850. The upper and lower packer elements are provided to fluidly seal an annulus space between the packer elements. The expansion of the upper and lower packer elements displaces a volume of fluid during the setting process while the elements are being compressed and deployed. This volume of fluid is allowed to exit via the bypass system of block 830.
Once the displaced fluid has exited, the method 800 can also involve shearing a shear mechanism to cause a moveable element to close the bypass system, and opens a testing subassembly, as depicted in block 860. Opening of the testing subassembly creates a flow path from a space inside the completion string tubing to a space in the annulus space between the upper and lower packer elements.
Once this flow path is created, the method 800 can also involve pressurizing the completion string such that pressure is directed to the annulus space between the deployed upper and lower packer elements, as depicted in block 870. This creates a pressure test.
The method 800 can then involve determining results of the pressure test by determining whether: (1) pressure is maintained to indicate a proper packer element setting or (2) whether the pressure is not maintained to indicate an improper packer element setting, as depicted in block 880.
An operator may deliver pressure to the completion string 16 from the surface. In the test mode, pressure can travel into the inner port 76 and through the outer port 64 to the space A1 between the set packer elements 12, 14. Once a certain pressure is reached, the operator would expect the pressure to equalize, flat line, or otherwise remain generally constant. This indicates to the operator that the packer elements 12, 14 have been set properly. This is generally because the testing subassembly 68 forces the pressure into the annulus space A1.
Properly expanded and compressed packer elements 12, 14 should not allow the pressure to escape uphole or downhole past either of the packer elements 12, 14. However, if the pressure drops, bleeds, tapers, or is otherwise not generally constant, this indicates to the operator that the packer elements 12, 14 have not been set properly. The feature of providing a testing subassembly 68 can be particularly useful in multi-zone completions, where multiple packer elements are set all at once and there is no other way for the operator to know if all of the packer elements have set properly. Once all of the packer elements on the completion string have been set, an operator may pressure up individual sections in order to test specific set elements.
Referring back to
The packer is retrieved by pulling tension on mandrel 94 and mandrel 303 as shown in
The foregoing description, including illustrated aspects and examples, has been presented only for the purpose of illustration and description and is not intended to be exhaustive or to limiting to the precise forms disclosed. Numerous modifications, adaptations, and uses thereof will be apparent to those skilled in the art without departing from the scope of this disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/12715 | 1/23/2014 | WO | 00 |