Testing of a transient voltage protection device

Information

  • Patent Grant
  • 9411016
  • Patent Number
    9,411,016
  • Date Filed
    Friday, December 16, 2011
    13 years ago
  • Date Issued
    Tuesday, August 9, 2016
    8 years ago
Abstract
A method of testing a voltage protection device in a circuit is provided. The circuit comprises a source and load and a detector is provided in parallel with the protection device. The method comprises opening a switching device provided in the circuit. The method further comprises detecting a property of a voltage spike caused by the rate of change of current in the circuit inductance produced by the opening of the switching device to determine the condition of the protection device.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates to testing of voltage protection devices, in particular, during the in-service life of a product.


2. Description of the Prior Art


Transient voltage protection devices are relied upon to protect sensitive electronic circuits from lightning strikes, faults and other transients which could cause damage to the circuits. Any faults in the protection devices themselves can have serious safety implications, particularly on aerospace products.


Conventionally, transient voltage protection devices are only thoroughly tested by the device manufacturer. They may not generally be re-tested, even when they are assembled into a printed circuit board (PCB). Consequently, this could allow some types of faults to remain undetected leaving the circuits unprotected.


BRIEF SUMMARY OF THE INVENTION

According to an embodiment of the present invention, a method of testing a voltage protection device in a circuit is provided. The circuit comprises a source and load and a detector is provided in parallel with the protection device. The method comprises opening a switching device provided in the circuit. The method further comprises detecting a property of a voltage spike caused by the rate of change of current in the circuit inductance produced by the opening of the switching device to determine the condition of the protection device.


According to another embodiment of the present invention, a protection device tester for testing a protection device in a circuit is provided. The circuit comprises a source and load. The protection device tester comprises a detector provided in parallel to the protection device and configured to detect a property of the voltage spike produced by opening a switching device provided in the circuit. The protection device tester further comprises a controller configured to determine the condition of the protection device based on the detected property of the voltage spike produced by the opening of the switching device.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 shows a circuit provided with a protection device tester in accordance with an embodiment of the present invention;



FIG. 2 shows voltage spikes at point T produced by the closing and opening of a switching device in the circuit of FIG. 1;



FIG. 3 is an example of a voltage protection detection device for a circuit with a DC current;



FIGS. 4a and 4b show two examples of voltage protection devices for a circuit with an AC current;



FIG. 5 is an example of a peak voltage detector which may be used in accordance with an embodiment of the present invention;



FIG. 6 illustrates an embodiment of the present invention the present invention;



FIG. 7 shows a modified version of the circuit shown in FIG. 1 provided with a short circuit arranged to be applied across an output of the circuit;



FIG. 8 shows a modified version of the circuit shown in FIG. 6 provided with a short circuit arranged to be applied across an output of the circuit; and



FIG. 9 shows a switching device and protection device provided, as a single component block.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates an example of a voltage protection device tester provided in a circuit. The circuit 10 has a voltage source 20, a load 30 and a switching means 40 provided therebetween. The circuit 10 may, for example, be provided on an aircraft such that the voltage source 20 may be provided by an engine generator and the load 30 may be a component on the aircraft, such as to actuate a component of the aircraft such as a flap or the under carriage or a component within the aircraft such as instrumentation or in-flight entertainment. The switching means 40 may be an individual switch, a plurality of switches or a power switching circuit for example, such as a solid state power controller. A solid state power controller may, for example, comprise one or more parallel connected semiconductor devices. The switching circuit 40 is used to connect the power source 20 to the load 30. The voltage source 20 and its associated cabling or wiring will have an inherent inductance 21. Likewise, the load 30 and its associated cabling and wiring will have an inherent inductance 31.


A protection device 50, in this example a transient voltage protection device, is provided across the voltage source 20. A detector 60 is provided in parallel with the protection device 50 for detecting a property of the voltage spike produced by opening the switching device 40. The detector 60 which may be provided, as hardware or software detects a property such as peak voltage, duration, slope, etc. of the voltage spike which is used to determine a condition of the protection device 50 such as whether it is working satisfactorily. The detected property may also be used to determine whether there is any non-ideal or potential problems developing in the protection device 50 or a part of the circuit 10.


The switching device 40 may, as explained above, comprise a solid state power controller (SSPC) which may comprise one or a plurality of connected semiconductor devices. If it comprises a plurality of parallel connected semiconductor devices, then they may be operated individually or in any combination to obtain a voltage spike.



FIG. 2 illustrates voltage spikes at point T in FIG. 1 produced by closing and opening the switching device 40 illustrated in FIG. 1. As can be seen, when the switching device 40 is closed or turned “on” at about 250 μs, the current through the switching device 40 quickly rises to that provided by the source 20, in this example approximately 100 Amps. As can also be seen in FIG. 2, as the current through the switching device 40 increases, a first negative spike 101 is seen by the detector 60. When the switching device 40 is opened or turned “off”, in this example at just before 500 μs, a positive voltage spike 102 is seen by the detector 60.


The voltage protection device 50 does not conduct when the switching device 40 is closed or turned “on”. It only conducts when the switching device 40 is opened or turned “off”. For a DC circuit, the positive side of voltage protection device 50 is at point T so it conducts when the switching device 40 is opened or turned “off” which generates the positive voltage spike 102.


If the switching device 40 comprises a plurality of switches, then the switches may be operated individually or in any combination to obtain a voltage spike.



FIG. 3 illustrates an example of a voltage protection device 50 which may be used in an embodiment of the present invention. In this example, the voltage protection device 50 comprises a transorb which is similar to a Zener diode which may be suitable for a DC supply 20.



FIG. 4a illustrates a voltage protection device 50 which comprises a bidirectional transorb which is similar to two reverse connected Zener diodes. This may be used in the circuit of FIG. 1 with an AC supply 20. An alternative AC voltage protection device which performs the same function is a Metal Oxide Varistor as shown in FIG. 4b.


Although the detector 60 may detect any desired property of the voltage spike to determine the condition of the protection device, it has been found that detecting the peak voltage of the spike provides a reliable indication of the condition of the protection device 50 and is also able to be measured precisely and repeatedly. The peak voltage of the voltage spike may be measured in any suitable way, such as using software or hardware. FIG. 5 illustrates a suitable hardware peak spike voltage detector which may be used in an embodiment of the present invention. The peak voltage detector has a charging resistor 110 connected in series with a diode 111 and a capacitor 112 which is charged by the voltage spike. The charge on the capacitor 112 is measured at the point P providing an indication of the peak voltage of the spike. The charged capacitor 112 is then discharged through the resistor 113 which is generally much larger than the charging resistor 110.


A suitable controller, 70, such as a microprocessor which may, for example, be provided within the detector arrangement 60 shown in FIG. 1 or within other controlling electronics associated with the circuit 10 may be used to determine a condition of the protection device 50 based on the detected property of the voltage spike. For example, when measuring the peak voltage detected, a controller may use a look-up table or an algorithm to determine whether the detected peak voltage is within an expected predetermined range such that the voltage protection device 50 may be considered to be working satisfactorily or whether the detected peak voltage is outside a predetermined expected range indicating that the voltage protection device is working unsatisfactorily or has a fault. Whether the measured property is below or above the predetermined range or a predetermined value may indicate the nature of the fault. For example, if a measured peak voltage is below a predetermined value or range this may indicate a partial short circuit in the voltage protection device 50. Conversely if a measured peak voltage is above a predetermined value or predetermined range this may indicate a high impedance or an open circuit in the voltage protection device 50. Furthermore, how much a measured property is above or below an expected predetermined value or range may also indicate how serious a fault is.


In the example voltage spike 102 shown in FIG. 2, the peak of the spike 102 is about 90V. Different circuits and applications will have different determined ranges to indicate satisfactory operation. For example, if a detected voltage peak is above 100 V or below 70 V, this may be indicative of a fault. If a peak voltage is above or below the expected value, in this case 90 V, this may be indicative of non-ideal operation of the circuit or a component even if it is within the expected range and so may suggest further investigation.


The embodiment of the present invention described above with reference to FIG. 1 generally has some inductance 21 in the input power supply 20 and its associated cabling or wiring. If this inherent inductance 21 is too small to produce a voltage spike with measurable properties, then a suitable inductor may be provided in the cabling or wiring associated with the source 20.



FIG. 6 illustrates a second example of a circuit illustrating an embodiment of the present invention. This example differs from the circuit of FIG. 1 by the voltage protection device 50 being provided between the source 20 and the output load 30. As in the example of FIG. 1, the switching device 40 may be a single switch or a plurality of switches. If the switching device 40 is a plurality of switches, the plurality of switches may be provided in parallel and may, for example, be a plurality of parallel connected semiconductor devices, such as a solid state power controller (SSPC) used to connect the source 20 to the load 30. As in the example of FIG. 1, the transient voltage protection device 50 has a detector 60 connected across it in parallel. As before, the protection device may be tested by measuring a property of the voltage spike produced by the opening of the switching device 40 or by opening and closing the parallel connected semiconductor devices individually or in any combination to determine the condition of the protection device 50.


As in the examples shown in FIG. 1, if there is insufficient inherent inductance in the circuit to provide a large enough voltage spike to make the protection device conduct, then an inductor may be added accordingly.


An advantage of embodiments of the present invention is that the voltage spikes produced are larger than those that occur at normal load currents and therefore provide clearly measurable values which may be used to determine the condition of the protection device, in particular whether or not it has a fault or is likely to develop a fault.


The size of the positive voltage spike 102 which is detected to determine the condition of the protection device 50 is dependent upon the inductance L in the circuit and the rate of change of current dI/dt when the switching device 40 is opened. The size of the voltage spike V upon opening the switching device 40 is given by the following equation

V=L×dI/dt


The inherent inductance in the circuit and typical rate of change of current upon opening the switch have been generally found to be suitable to produce a voltage spike of sufficient size for clear and repeatable measurements. However, if required, larger voltage spikes may be produced when required by either or both of including an additional inductor L in the circuit or providing a higher current I.


As illustrated in FIG. 7, which corresponds to FIG. 1 with the inclusion of a short-circuiting switch 120 to the output, a higher current, typically 5 to 10 times its normal current is provided when the switching device 40 is closed after previously closing the short-circuiting switch 120, thus inducing a considerably larger voltage spike to test the protection device, even if the circuit inductance L is quite low. A considerable advantage of the use of the output short circuit 120 is that a current much higher than the normal load current can be used for the test without applying a significant voltage to the output load.



FIG. 8 shows a circuit equivalent to that of FIG. 6 also provided with a short circuit pull-down 120 on the output.


Although the examples described above show the switching device 40 and protection device 50 as separate components, they could be combined into a single component block. For example, as shown in FIG. 9, the switching device 40 may include one or more transistors 41, such as one or more field effect transistors or MOSFETs. The protection function may be provided by two small, low cost zener diodes 51, 52 connected between the gate (G) and drain (D) of the or each transistor 41. These zener diodes force the transistor 41 to conduct heavily when an excess voltage is applied between the drain and source thus preventing this voltage from exceeding the breakdown voltage of the transistor. By appropriate choice of zener diodes, this configuration provides effective self-protection against excess voltage across the or each transistor 41 in the same way as with the protection devices 50 illustrated above, whilst still being able to be tested as in the above examples with a detector 60 connected around it to the drain (D) and source (S). The transistor 41 is turned on or off by an appropriate signal applied to the gate (G) of the transistor 41.


An advantage of embodiments of the present invention is that the voltage spike produced by the opening of a switch is generally larger and more well defined than when normal load currents are switched. Consequently, a sufficiently large voltage spike to test a voltage protection device can be generated even in circuits with relatively low inductances. If necessary, additional inductance may be provided in the circuit or a short circuit may be applied across an output of the circuit to increase the rate of change of current in the circuit inductance when the switching device is opened and so produce a large enough voltage spike to make the protection device conduct.


Whilst examples have been described in detail above, many variations may be made to these examples without departing from the present invention. For example, the switching device 10 may be an individual switch or a plurality of switches. If used with a plurality of switches, these may be provided in parallel and each switch may be a solid state device such that the switching device 40 is a solid state power controller (SSPC). Embodiments of the present invention may be used in DC systems or AC systems. If used with an AC system and with the switching device 40 as a plurality of semiconductor devices, these semiconductor devices would be AC switches and the voltage protection device would be bidirectional as shown in FIG. 4a or FIG. 4b and may provide symmetrical positive and negative protection.

Claims
  • 1. A protection device tester for testing a protection device in a circuit comprising a source and load, the protection device tester comprising: a detector electrically connected in parallel to the protection device to detect a property of a voltage spike produced by opening a switching device provided in the circuit; anda controller provided within the detector to determine a condition of the protection device based on the detected property of the voltage spike produced by the opening of the switching device, wherein the switching device comprises a plurality of switches, wherein the switches are semiconductor devices electrically connected in parallel to be opened or closed individually.
  • 2. The protection device tester according to claim 1, wherein the controller determines the condition of the protection device based on whether the detected property of the voltage spike produced by the opening of the switching device is within a predetermined range.
  • 3. The protection device tester according to claim 1, wherein the controller determines the condition of the protection device based on whether the detected property of the voltage spike produced by the opening of the switch is above or below a predetermined value.
  • 4. The protection device tester according to claim 1, wherein the controller determines the condition of the protection device based on how much the detected property of the voltage spike produced by the opening of the switch is above or below a predetermined value or range.
  • 5. The protection device tester according to claim 1, wherein the detector detects the peak voltage of the voltage spike.
  • 6. The protection device tester according to claim 1, further comprising a short circuit to be applied across an output of the circuit before opening the switching device.
  • 7. The protection device tester according to claim 1, wherein the detector includes a charging resistor electrically connected in series with a diode and a capacitor that is charged by the voltage spike.
  • 8. The protection device tester according to claim 7, wherein the condition of the protection device is determined based in part on a measured charge on the capacitor.
Priority Claims (2)
Number Date Country Kind
1021430.2 Dec 2010 GB national
1120802.2 Dec 2011 GB national
US Referenced Citations (84)
Number Name Date Kind
3964530 Nickles Jun 1976 A
3977182 Schroff Aug 1976 A
3999449 Chana et al. Dec 1976 A
4007388 Lawyer et al. Feb 1977 A
4157496 St-Jean Jun 1979 A
4158949 Reider Jun 1979 A
4180972 Herman et al. Jan 1980 A
4244178 Herman et al. Jan 1981 A
4269032 Meginnis et al. May 1981 A
4335997 Ewing et al. Jun 1982 A
4337616 Downing Jul 1982 A
4373326 Smale Feb 1983 A
4387563 Bell Jun 1983 A
4426841 Cornelius et al. Jan 1984 A
4470756 Rigo et al. Sep 1984 A
4480958 Schlechtweg Nov 1984 A
4484136 Tuttle Nov 1984 A
4502635 Klomp et al. Mar 1985 A
4901527 Nash et al. Feb 1990 A
4916906 Vogt Apr 1990 A
5020318 Vdoviak Jun 1991 A
5080555 Kempinger Jan 1992 A
5083422 Ogt Jan 1992 A
5183389 Gilchrist et al. Feb 1993 A
5256973 Thee et al. Oct 1993 A
5257909 Glynn et al. Nov 1993 A
5261790 Dietz et al. Nov 1993 A
5270658 Epstein Dec 1993 A
5302085 Dietz et al. Apr 1994 A
5302086 Kulesa et al. Apr 1994 A
5369882 Dietz et al. Dec 1994 A
5815353 Schwenkel Sep 1998 A
5936508 Parker Aug 1999 A
5970430 Burns et al. Oct 1999 A
6354803 Grover et al. Mar 2002 B1
6398486 Storey et al. Jun 2002 B1
6439616 Karafillis et al. Aug 2002 B1
6722466 Tong et al. Apr 2004 B1
6738245 Ely May 2004 B2
6769865 Kress et al. Aug 2004 B2
6857853 Tomberg et al. Feb 2005 B1
6923616 Mcrae et al. Aug 2005 B2
6963044 Fusaro et al. Nov 2005 B2
6984112 Zhang et al. Jan 2006 B2
7053624 Klijn et al. May 2006 B2
7090466 Honkomp et al. Aug 2006 B2
7097429 Athans et al. Aug 2006 B2
7119597 Barrett Oct 2006 B1
7131817 Keith et al. Nov 2006 B2
7144215 Keith et al. Dec 2006 B2
7147440 Benjamin et al. Dec 2006 B2
7189063 Honkomp Mar 2007 B2
7198467 Keith et al. Apr 2007 B2
7207776 Townes et al. Apr 2007 B2
7238008 Bobo et al. Jul 2007 B2
7244101 Lee et al. Jul 2007 B2
7251941 Koshoffer et al. Aug 2007 B2
7322797 Lee et al. Jan 2008 B2
7341429 Montgomery et al. Mar 2008 B2
7435049 Ghasripoor et al. Oct 2008 B2
7436644 Nagai et al. Oct 2008 B2
7600972 Benjamin et al. Oct 2009 B2
7731482 Lagrange et al. Jun 2010 B2
7766621 Maggs et al. Aug 2010 B1
8083475 Bulgrin et al. Dec 2011 B2
8573942 Strohl et al. Nov 2013 B2
20010019573 Dougherty et al. Sep 2001 A1
20030214302 Slamecka Nov 2003 A1
20040012393 Schmalz et al. Jan 2004 A1
20040148513 Scott et al. Jul 2004 A1
20050030693 Deak et al. Feb 2005 A1
20060238363 Johnson Oct 2006 A1
20070146945 Zhang et al. Jun 2007 A1
20070285266 Angle et al. Dec 2007 A1
20080055797 Wardzala Mar 2008 A1
20080181779 Decardenas Jul 2008 A1
20090160425 Berland et al. Jun 2009 A1
20100023286 Rodseth et al. Jan 2010 A1
20100129226 Strohl et al. May 2010 A1
20100164717 Hammer et al. Jul 2010 A1
20100178173 Charlton Jul 2010 A1
20120119918 Williams May 2012 A1
20130136618 Stapleton May 2013 A1
20140294587 Dupeyre et al. Oct 2014 A1
Foreign Referenced Citations (15)
Number Date Country
2072230 Feb 1991 CN
2619355 Jun 2004 CN
1580496 Feb 2005 CN
201094134 Jul 2008 CN
201166694 Dec 2008 CN
101787903 Jul 2010 CN
3539421 May 1987 DE
102007026244 Dec 2008 DE
0091865 Oct 1983 EP
2053285 Apr 2009 EP
2530546 Dec 2012 EP
2004297849 Oct 2004 JP
2006087227 Mar 2006 JP
3148975 Mar 2009 JP
2009243427 Oct 2009 JP
Non-Patent Literature Citations (9)
Entry
Search Report and Written Opinion from FR Application No. 1161732 dated Jul. 23, 2013.
Search Report from corresponding GB Application No. 1120802.2 Mar. 9, 2012.
PCT Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/012258 on May 13, 2014.
European Search Report and Opinion issued in connection with corresponding EP Application No. 12194394.8 on May 14, 2014.
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201110463195.X on Feb. 15, 2015.
Chinese Office Action issued in connection with corresponding CN Application No. 201210493673.6 on Mar. 17, 2015.
European Office Action issued in connection with corresponding EP Application No. 12194394.8 on Jul. 9, 2015.
Unofficial translation of CN Search Report dated Mar. 17, 2015 in connection with related CN Application 201210493673.6.
Unofficial English translation of Japanese Office Action issued in connection with corresponding JP Application No. 2011275228 Nov. 4, 2015.
Related Publications (1)
Number Date Country
20120153963 A1 Jun 2012 US