This disclosure relates in general to drilling a wellbore in an earth formation so as to extract hydrocarbons from subterranean reservoirs therein and, more specifically, but not by way of limitation, to testing the hydrocarbons being produced from the subterranean reservoirs during the drilling procedure.
In typical drilling operations, a turntable on the floor of a drilling rig rotates a string of hollow steel pipes, known as drill pipe or drillstring. A drill bit is disposed at the end of the drill pipe and is rotated against the formation at the drill bit face. The drill bit grinds, crushes and chips through the rock as it is rotated by the drill pipe. A drilling fluid, often referred to a drilling mud or mud, is pumped from the surface through the drill pipe to the drill bit, where the drilling fluid flushes the rock cuttings from the drill bit face and lubricates the drill bit. The drilling fluid circulates in the wellbore flowing out through the drill bit and then returning up the annular space between the outside of the drill string and the sidewalls of the wellbore being drilled; this annular space is often referred to as the drilling annulus.
The drilling fluid or mud cools and lubricates the bit, carries the drill cuttings from the hole to the surface and cakes the sidewall of the wellbore to seal the wellbore and prevent the sidewall caving in. The cake formed on the sidewall is often referred to as filter cake. Sealing of the sidewalls is important as it prevents loss of the circulating drilling fluid to the earth formation surrounding the wellbore.
The hydrostatic pressure exerted by the column of drilling fluid in the wellbore prevents blowouts/inflow of reservoir fluids into the wellbore that may result, for example, when the wellbore penetrates a section of the subterranean formation comprising a high pressure oil or gas zone. Such an influx of oil or gas into the wellbore from the reservoir during drilling creates an adverse effect known as a kick, which is a highly undesirable affect that can have many adverse effects to the drilling operation. Thus, in a traditional drilling operation, the weight in pounds per gallon (“ppg”) of the drilling fluid must be sufficiently high to prevent blowouts/kicks, but not high enough to generate a downhole pressure in the wellbore that causes the sidewalls of the formation around the wellbore to fracture resulting in the drilling fluid flowing out of the wellbore through the fractures and into the formation, resulting in drilling fluid loss and break down of the drilling procedure. In other words, if the mud pressure is too low, the formation fluid surrounding the wellbore can force the filter cake from the sidewall of the wellbore and flow into the wellbore, resulting in a blowout/kick. Whereas if the bottomhole pressure produced by the drilling fluid becomes too high, the differential pressure between the wellbore and the surrounding formation becomes great enough that the formation fractures and drilling fluid flows out of the wellbore and into the formation, resulting in lost circulation.
Lost circulation is the loss of drilling fluids to the formation. The loss of drilling mud and cuttings into the formation results in slower drilling rates and plugging of productive formations. When circulation suddenly diminishes, the drilling rate or rate of penetration (“ROP”) must be scaled back as the mud flow rate is reduced. Moreover, losing mud into productive formations can severely damage the formation permeability, lowering production rates therefrom. Such plugged formations must often be subjected to costly enhanced recovery techniques in an effort to restore the formation permeability to raise production rates back up to their former levels.
The drill string usually consists of 30-foot lengths of pipe coupled together. On the lower end of the drill string are heavier-walled lengths of pipe, called drill collars, which help regulate the weight on the bit. When the bit has penetrated the distance of a pipe section, drilling is stopped, the string is pulled up to expose the top joint, a new section of drill pipe is added, the string is lowered into the wellbore and drilling resumes. This process continues until the bit becomes worn out, at which time the entire drill string must be removed from the wellbore. The cost of running a rig for a period of time is extremely high. Therefore, the speed of drilling of the wellbore is extremely important and trips, removing the drill bit from and returning it back into the wellbore, are highly undesirable.
During drilling of the wellbore, steps are taken to keep the pressure at the bottom of the borehole in a pressure window that is not higher than the pressure necessary to fracture the formation, as such fractures will lead to loss of drilling fluids to the formation, and is higher than a pore pressure of the formation to prevent flow of formation fluids into the wellbore as such a influx may create a blowout and/or a kick.
Normally, once a wellbore has been drilled, it is lined or cased with heavy steel piping, called casing or casing string, and the annulus between the wellbore and the casing is filled with cement. Properly designed and cemented casing prevents collapse of the wellbore and protects fresh water aquifers above the oil and gas reservoir from becoming contaminated with oil and gas and the oil reservoir brine. Similarly, the oil and gas reservoir is prevented from becoming invaded by extraneous water from aquifers that penetrated above the productive reservoirs. The total length of casing of uniform outside diameter that is run in the well during a single operation is called a casing string. The casing string is made up of joints of steel pipe that are screwed together to form a continuous string as the casing is extended into the wellbore.
Once the wellbore has been drilled to a target location in the subterranean formation, a location in the earth formation containing an oil/gas reservoir, the wellbore must be prepared for production of the surrounding oil/gas. At this point, the drill bit and drillstring is normally tripped out of the wellbore. If the wellbore is cased with a casing string, the casing string is perforated and pressure at the bottom of the wellbore, may if necessary, be increased to fracture the surrounding formation. At this point, the oil and gas may flow into the wellbore and testing equipment, often deployed on a wireline tool may be disposed into the wellbore to test the properties of the oil/gas flowing into the wellbore so that a production plan can be created and a determination made as to the production properties of the wellbore.
In one embodiment, the present disclosure provides a method for performing a drilling procedure using a drillstring to drill a wellbore into a subterranean formation to produce hydrocarbons from a hydrocarbon reservoir therein, where the formation is fractured during the drilling process and formation fluids are flowed into the wellbore and tested without completing the wellbore and/or while the drillstring is still in the wellbore.
In an aspect of the present invention, the measurements of the formation fluids are processed and drilling decisions are made, such as whether to complete the well, whether to continue drilling the wellbore, determination of a direction of continued drilling, determination as to fracture placement decisions and/or the like. In some embodiments, the drillstring may comprise wired drillstring and the measurements of the formation fluids may be communicated to the surface by the wired drillstring and processed at the surface in essentially real-time.
In another embodiment, the present disclosure provides a method for performing a drilling procedure using a drillstring to drill a wellbore into a subterranean formation to produce hydrocarbons from a hydrocarbon reservoir therein, comprising pumping a first regular drilling fluid into the wellbore during the drilling procedure, pumping a second, high-density drilling fluid into the wellbore to increase a pressure at the bottom of the wellbore above a fracture pressure of the formation and as a result fracture the subterranean formation, pumping a third drilling fluid with a density lower than the second drilling fluid into the wellbore to lower the pressure at the bottom of the wellbore below a pressure of the subterranean formation and measuring properties of a flow of formation fluids flowing from the subterranean formation into the wellbore.
In aspects of the present invention, the volumes, pump rates and densities of the drilling fluids may be processed to provide the pressure changes in the wellbore necessary for drilling the well, fracturing the well and flowing formation fluids into the well. In aspects of the present invention, additional fluids may be entrained with the drilling fluids, such as fluids for sealing the fractures to provide for continued drilling of the wellbore after testing of the formation fluids, clean and or proppant carrying fluids to provide for effective fracturing of the formation and/or the like. In aspects of the present invention, pressure control devices and methods such as chokes, gas injection systems, drilling fluid pumps and or the like may be used to help control the wellbore pressure during the testing while fracturing while drilling process.
The present disclosure is described in conjunction with the appended figures:
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the invention. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments maybe practiced without these specific details. For example, circuits may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
Also, it is noted that the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information. The term “computer-readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels and various other mediums capable of storing, containing or carrying instruction(s) and/or data.
Furthermore, embodiments may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as storage medium. A processor(s) may perform the necessary tasks. A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
A drill string 12 is suspended within the wellbore 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the wellbore 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the example of this embodiment, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the wellbore, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment may comprise a logging-while-drilling (“LWD”) module 120, a measuring-while-drilling (“MWD”) module 130, a roto-steerable system, a motor and/or drill bit 105.
The LWD module 120 may be housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed in the bottom hole assembly 100, e.g. as represented at 120A. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 120A as well.) The LWD module may include capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. The LWD module may include a fluid sampling device for sampling fluids from the formation surrounding the wellbore 11.
The MWD module 130 may also be housed in a special type of drill collar, as is known in the art, and may contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool may further include an apparatus (not shown) for generating electrical power for the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. The MWD module may include one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
In MPD, a drilling annulus 110 is formed between a drillstring 120 and a sidewall 130 of a wellbore 133, which is being drilled. Drilling fluid is pumped by a pump 155 into the drilling annulus 110. The drilling annulus 110 may be closed using a pressure containment device 140. This pressure containment device 140 comprises sealing elements, which engage with the outside surface of the drillstring 120 so that flow of drilling fluid between the pressure containment device 140 and the drillstring 120 is substantially prevented. The pressure containment device 140 may allow for rotation of the drillstring 120 in the wellbore 133 so that a drill bit 150 on the lower end of the drillstring 120 may be rotated.
A flow control device 160 may be used to provide a flow path for the escape of drilling fluid from the drilling annulus 110. After the flow control device 160, a pressure control manifold (not shown), comprising at least one adjustable choke 163, may be used to control the rate of flow of drilling fluid out of the drilling annulus 110. When closed during drilling, the pressure containment device 140 creates a backpressure in the wellbore, and this back pressure can be controlled by using the adjustable choke 163, which may comprise a choke, a valve and/or the like, on the pressure control manifold to control the degree to which flow of drilling fluid out of the drilling annulus 110 is restricted. The drilling fluid may flow into a collector/pit 170 and may then be recirculate in the drilling operation
During MPD an operator/processor may monitor and compare the flow rate of drilling fluid into the drillstring 120, which comprises a pipe with a central cavity 122, with the flow rate of drilling fluid out of the drilling annulus 110, to detect if there has been a kick or if drilling fluid is being lost to the formation. A sudden increase in the volume or volume flow rate out of the drilling annulus 110 relative to the volume or volume flow rate into the drillstring 120 may indicate that there has been a kick. By contrast, a sudden drop in the flow rate out of the drilling annulus 110 relative to the flow rate into the drillstring 120 may indicate that the drilling fluid has penetrated the formation and is being lost to the formation during the drilling process. In general, in conventional drilling processes, both fracturing the formation during drilling and flowing formation fluids into the wellbore while drilling are occurrences to be avoided.
In MPD procedures the pump 155 and the choke 163 may be used to control the BHP during the drilling process. In some MPD processes, often referred to as multiphase MPD, gas injection may also be used to control the BHP. In such MPD procedures gas may be pumped by a compressor 172 into the drilling annulus 110 in order to reduce BHP. Often, the wellbore is lined with a pipe that is referred to as a casing string that may be cemented to the wellbore wall to, among other things, stabilize the wellbore and allow for flow of drilling fluids, production of hydrocarbons from the wellbore and/or the like. In such aspects, the drilling annulus may be formed by the annulus lying between the drillstring and the casing string.
Annular gas injection is an MPD process for reducing the BHP in a wellbore. In many annular gas injection systems, in addition to lining the wellbore with casing, a secondary annulus is created around the drilling annulus by placing an additional pipe concentrically around the casing for at least a section of the wellbore. This secondary annulus may be connected by one or more orifices at one or more depths to the primary annulus, through which the drilling fluids flow.
In an embodiment of the present invention, the illustrated MPD system may be used to provide for testing while fracturing while drilling. For example, the MPD system may be operated during the drilling process to create a bottom hole pressure that is higher than the formation fracture pressure and as a result fracture the formation. Increase in bottom hole pressure may be provided by the MPD system by use of the choke or other device for controlling flow of drilling fluids out of the drilling annulus, the pump rate/compression of the drilling fluid being pumped into the well and/or the like. The MPD system may then be used to reduce the bottom hole pressure below the pore pressure of the formation so that formation fluids will flow from the higher pressure formation into the lower pressure wellbore. Pressure in the bottom of the wellbore may be decreased by injecting gas into the drilling annulus, reducing choke of the drilling fluids flowing out of the drilling annulus and/or the like. In aspects of the present invention, the weight of mud used in the MPD system may be varied to help increase/reduce the bottom hole pressure.
In one embodiment, the present disclosure provides a process to evaluate the potential of the reservoir as perforated by a wellbore before the drilling operation has been completed. In aspects of the present invention, the decision to fracture and complete the well may be made with a significantly higher certainty based on the actual reservoir characteristics rather than the expectation based on off-set well and other predictive data.
In an embodiment of the present invention, during the drilling process, pressure in the wellbore 133 is raised above the fracture pressure for a formation 200 surrounding the wellbore producing a fracture in the formation 200. Drilling fluid flowing out of the annulus through a conduit 160 may be choked by a choke 163 to increase the pressure of the drilling fluid in the drilling annulus and thus the BHP in the wellbore 133. The drilling fluid may flow through the conduit 160 to a mud pit 170 where the drilling fluid may be processed and pumped back into the wellbore by a pump 155. The flow rate of the drilling fluid produced by the pump 155 may also be used to control the BHP in the wellbore 133.
In an embodiments of the present invention, the wellbore pressure is then dropped below a pore pressure of the formation 200 surrounding the wellbore so that reservoir/formation fluids flow from the formation 200 into the wellbore 133, where properties of the flowing reservoir fluids can be measured to determine the performance of the reservoir as perforated by the wellbore in its current condition. Lowering of the wellbore/BHP may be achieved, by among other things, pumping gas into the drilling annulus, reducing weight/density of the drilling fluid circulating in the wellbore, adjusting the choke 163, adjusting the pump rate from the pump 155 and/or the like. A processor or the like (not shown) may be used to control the pump 155, the choke 163 and the other apparatus in the drilling system. The processor may receive feedback from sensors and apparatus in the drilling system and may process a BHP from this feedback and control the drilling system accordingly.
In some embodiments of the present invention, the reservoir/formation fluids are flowed into the wellbore during drilling while drilling fluids are circulating through the wellbore. As such, sensors may be used that can differentiate the drilling and formation fluids and/or that have been calibrated for the drilling fluids. In other aspects of the present invention, a process or may process the measurements from the sensors to account for presence of the drilling fluid. In some embodiments of the present invention, the sensors may be disposed on the drill string, which is still present in the well during the fracturing of the formation and the flowing of the formation fluids into the well.
The bottom hole pressure of the wellbore 133 is the sum of the surface pressure, the hydrostatic head of all of the fluids in the well and the frictional pressure drop driving the fluid up the well. In embodiments of the present invention, the surface pressure, the hydrostatic head of all of the fluids in the well and/or the frictional pressure drop driving the fluid up the well may be used to modulate the bottom hole pressure to provide for the pressure changes in the testing while fracturing while drilling process.
In regular drilling operations, the drilling annulus is left open so the surface pressure is effectively atmospheric pressure. In MPD the drilling annulus is capped by a drilling annulus sealing mechanism 140, such as rotating control devices (“RCDs”) or the like. The drilling annulus sealing mechanism 140 allows the surface pressure to be increased. Under dynamic (rotating) conditions, the surface pressure may be increased to 200-400 psi. Under static (non-rotating) conditions, the pressure can be up to double this limit. In MPD, higher surface pressures may be achieved using a blow-out-preventer (“BOP”), pipe rams and or an annular preventer to provide even higher annular pressures.
In some embodiments, the BHP may be changed by changing the drilling fluid/mud weight/density. In such embodiments, it is not necessary to displace the entire volume of one weight of mud from the wellbore/drilling annulus with a drilling fluid/mud having a different weight/density. Instead, in aspects of the present invention, a volume of a new weight mud to provide a desired BHP is pumped around the system so that delivery of a portion of the volume of the new weight mud in the drilling annulus provides sufficient length of the new weight mud and sufficient density difference to provide a desired change in BHP.
In some embodiments, gas injection into the drilling annulus may be used to modify the weight of the drilling fluid in the drilling annulus and control the BHP. Use of gas injection in some embodiments of the present invention may provide for bringing some control/flexibility to the management of the BHP. For example, in a multiphase MPD system, changes in choke pressure can be amplified and provide much larger changes in bottom hole pressure due to the effect of pressure on gas and mixture density. However, the compressible gas phase may make detection and interpretation of the influx of reservoir fluids more difficult.
In
In some embodiments of the present invention, a volume of a fracturing fluid 183 may be pumped into the drillstring following the heavy drilling fluid 186. The fracturing fluid 183 may comprise a clean fluid or a proppant loaded fluid. In an embodiment of the present invention, the heavy drilling fluid 186 and the fracturing fluid may be pumped into the wellbore 133 such that when a sufficient height of the heavy drilling fluid 186 for fracturing the formation 200 is disposed in the drilling annulus, the fracturing fluid 183 is disposed at the bottom of the wellbore 133 and/or across the reservoir interval for the fracturing operation. This positioning of the fracturing fluid 183 across the reservoir interval, may, among other things, mitigate formation damage during fracturing and ensure a useful fracture remains open for the testing of the properties of the flow of the formation fluids.
In embodiments of the present invention, monitoring of the wellbore is very important. For example, in certain aspects, a surface multiphase flowmeter (not shown), a fluid tracking (Flair) type system (not shown) and/or the like may be used to measure properties of the flow of the drilling fluid. Down hole instrumentation including bottomhole pressure sensors pressure sensors along the drill string may be used to measure pressure in the wellbore 133. MWD tools may be used to measure properties of the formation 200. In aspects of the present invention, wellbore measurements of pressure and/or flow and/or formation measurements may be used to determine a fracturing pressure, enhance the interpretation of the influx of the reservoir fluids as well as enabling improved pressure control. In some aspects, temperature measurements may be used to evaluate the type of fluid influx into the wellbore 133 from the formation 200, condition of fluid influx into the wellbore 133 from the formation 200 and/or the like. In some aspects of the present invention, acoustic sensors may be to track the different fluids in the wellbore 133.
In some aspects of the present invention, sealing fluids may be pumped down the wellbore subsequent to the heavy drilling fluid 186 to provide sealing the fractures after the properties of the flow of reservoir fluids have been tested. Sealing the fractures will prevent fluid loss to the formation 200 when the drilling operation resumes.
In embodiments of the present invention, the pressures associated with the drilling system are modulated to overcome the fracture pressure of the formation. To effectively modulate these pressures, it may be necessary to consider the surface pressure and flow limits for the wellbore fluids. The limiting parameters on the operation of the drilling system to produce fractures while drilling include:
Dependent on the limiting parameter, in embodiments of the present invention, the drilling procedure may be operated so as to minimize one of the parameters. In situations where the drilling procedure is pump pressure limited, but not annulus pressure limited, a “U” tubing effect may be used to create the pressure in the wellbore to produce fracturing. The “U” tubing effect occurs when the heavy fluid is being pumped down the drill pipe and the increase hydrostatic head in the drill pipe accelerates the flow of the drilling fluids circulating in the wellbore so that the choke on the annulus must be closed to slow the flow, which has the result of increasing the annulus pressure, as desired for fracturing of the formation 200, while keeping the pump pressure at a lower level (minimizing the limited pump pressure parameter). In some embodiments, the heavy drilling fluid 186 is used as the fracturing fluid and, as a result, at least a portion of the heavy drilling fluid 186 is lost to the formation and will not have to be lifted out of the wellbore.
In step A, in the testing while fracturing while drilling procedure a steady circulation of a normal drilling mud 250 occurs and the drilling procedure may be in drilling mode, i.e., the drilling system is drilling the wellbore through an earth formation.
In step B, a volume of a heavier mud 255 may be introduced into the drilling fluids circulating in the wellbore. The heavier mud 255 increases the bottom hole pressure in the wellbore. In aspects of the present invention, the heavier mud 255 may be introduced into the wellbore when the drilling of the borehole has ceased and/or when the drill bit has been pulled back from the bottom of the wellbore. In embodiments of the present invention, the volume and/or flow rate of the heavier mud 255 is configured to provide a hydrostatic head that increased the BHP beyond the fracturing pressure to produce fractures 275 in the earth formation (not shown). In embodiments of the present invention, the top hole pressure may also be manipulated/managed using a choke or the like. The control of the top hole pressure may be used in combination with the heavier mud 255 to control the BHP.
In step C, after the heavier mud 255 is introduced in to the wellbore, a volume of a fluid loss mud 270 may be pumped into the wellbore. The fluid loss mud 270 may comprise a regular drilling mud, such as the normal mud 250, and a fluid loss agent. In embodiments of the present invention, a processor may process circulation hydraulics calculations to determine the different mud volumes and the pressures required to exceed the fracture pressure of the formation. The processor (not shown) may control the pumps (not shown) and/or the choke (not shown) to provide the calculated mud flows and the calculated pressures in the wellbore.
In step D, the testing while fracturing while drilling process, in accordance with embodiments of the present invention, is controlled to provide for inflow of reservoir fluids 280 into the wellbore 133. In embodiments of the present invention, after the heavier mud 255 has passed through the drill bit 150, some of the heavier mud 255 may be lost through the fractures 275. This loss reduces the overall volume of the heavier mud 255 in the circulating fluid flow, and thus results in a reduction in the bottomhole pressure. In embodiments of the present invention, the amount of the heavier mud 255 is selected and/or other pressure management controls, such as choke, surface pressure, gas injection and/or the like, are controlled to provide that the BHP is reduced below the formation fracture pressure/the formation pressure. In embodiments of the present invention, reduction of the BHP below the reservoir pressure results in a flow of the reservoir fluids 280 into the wellbore 133. At this point, testing apparatus on the drillstring and or the like may be used to test the properties of the flow of the reservoir fluids 280 into the wellbore 133. In embodiments of the present invention, properties of the flow of the reservoir fluids 280 that are tested may include: flow rate, temperature, pressure, composition, density, phase (such as oil, gas, water, liquid phase and/or phase ratios), resistivity, conductivity and/or the like. In embodiments of the present invention, monitoring the flow of the reservoir fluids 280 into the wellbore 133 can yield the reservoir flow potential.
In step E, the fractures 275 are sealed to prevent further influx of the reservoir fluids 280 into the wellbore 133. In embodiments of the present invention, after testing the formation fluids 280, the fluid loss mud 270 will have contacted the formation for a sufficient period of time to seal the wellbore 133 and this will prevent loss of drilling mud to the formation, increasing the BHP and returning the wellbore to normal circulation. In embodiments of the present invention, the properties of the fluid loss mud 270, the composition/volumes of the drilling muds in the train of drilling muds flowed through the wellbore 133, the surface pressure, use of gas injection and/or the like may be used to control the amount of time the wellbore 133 has the required pressure for the reservoir fluids 280 to flow into the wellbore 133. In embodiments of the present invention, MWD sensors may be used to measure properties of the flow of the reservoir fluids 280 into the wellbore 133.
In embodiments of the present invention, after Step E or during Step E, the drilling of the wellbore may recommence. In embodiments of the present invention, the testing of flow of the reservoir fluids 280 into the wellbore 133 may occur without completion of the well, while the drill bit/drillstring is still in the wellbore 133 and/or the like. In embodiments of the present invention, a determination regarding continuing drilling the wellbore, parameters for continuing drilling of the wellbore (such as drilling direction or the like), fracture placement in the wellbore 133 and/or the like may be determined from the measurements made on the reservoir fluids 280 flowing into the wellbore 133 during the testing while fracturing while drilling procedure.
In embodiments of the present invention, coiled tubing or the like may be used to introduce one of the fluids, such as the heavier mud 255, the fluid loss mud 270 and/or the like, into the wellbore 133. As noted previously, gas injection may be used to control the BHP during the testing while fracturing while drilling procedure. Gas injection may provide for fine tuning, real time control, more accurate control and/or more effective control of the BHP in combination with the mud-train BHP control.
In step 310, a drilling operation is proceeding in which a drilling system is drilling a wellbore through an earth formation to/through a hydrocarbon reservoir in the earth formation. The drilling process may be a conventional drilling process, a MPD drilling process or the like. In the drilling process a drilling mud may be circulated through the wellbore. The drilling mud may have a weight selected to maintain the BHP in a desired pressure window that is designed to prevent fracturing the formation or allowing influx of formation fluids into the wellbore.
In step 320 the earth formation is fractured. In embodiments of the present invention, the formation is fractured while drilling, i.e., with the drill bit/drillstring still in the wellbore. In embodiments of the present invention, by fracturing the formation without tripping the drill bit, drilling time may be saved as the drill bit is in position for continued drilling.
In aspects of the present invention, the fracturing of the drilling may be produced by raising the BHP above a fracture pressure of the formation. The fracture pressure may in some aspects be calculated from measurement made on the formation, modeling of the formation and/or the like. The BHP may be controlled to produce the fracture by controlling a surface choke that chokes the flow of drilling fluid out of the drilling annulus, the weight of the mud being circulated though the wellbore, the pump rate of the mud, injection of gas into the mud and/or the like. Packers, a collar on the drillstring and/or the like may be used to isolate a section of the wellbore where the formation is to be fractured and/or to provide for increasing the BHP within a section of the wellbore.
In step 340, reservoir fluids are flowed into the wellbore from the reservoir. In embodiments of the present invention, to produce the flow of the reservoir fluids into the wellbore, the BHP is reduced below the pore pressure of the reservoir. This means that the BHP pressure has to be reduced from the fracturing pressure to a lower pressure, this reduction in pressure may be achieved by loss of drilling fluid into the reservoir, reducing weight of the mud flowing in the wellbore/drilling annulus, injection of gas into the drilling fluid, reduction of surface pressure, opening chokes or the like, adjusting pump rate for the drilling fluid into the wellbore and/or the like. In some aspects of the present invention, the BHP may be measured directly by pressure sensors on the drillstring, bottomhole assembly and/or the like. In other aspects, the BHP may be processed from drilling parameters such as mud weight, pump rate, choke position, drillstring frictional properties, drilling annulus frictional properties, gas injection properties, flow rate of drilling mud into and out of the wellbore and/or the like.
In step 340, properties of the flow of the reservoir fluids into the wellbore are measured. These properties may be measured by sensors on the drillstring such as MWD sensors or the like. In embodiments of the present invention, by keeping the drill string in the wellbore it is possible to use sensors on the drillstring to measure formation fluid properties without the need to use wireline tools. The measured properties may include flow rate, phase of the flow, fluid analysis of the composition of the flow, ratios of the phases of the flow, water content, salinity of the flow, resistivity of the flow, capacitance of the flow, density of the flow, temperature of the flow, viscosity of the flow and/or the like.
In step 350 the measurements are processed and a determination with respect to the drilling of the wellbore may be made. For example, the measurements may be processed to characterize production properties of the reservoir at the location of the fracture(s). These production properties may include expected rates/volumes of the different hydrocarbons that are expected to be produced if the wellbore were completed. In embodiments of the present invention, problems with production from the wellbore may be determined from the processed measurements, such as low flow rates, undesirable phase ratios and/or the like. From the processed measurements, a determination with respect to drilling the wellbore may be made. Such determinations may include, stop drilling and complete the well, continue drilling the well, change direction of drilling the well, where to place a fracture in the formation and/or the like. In embodiments of the present invention, because the well has not been completed and/or the drill string is still in the well, continued drilling/fracturing may occur essentially immediately. Once the further drilling has reached a new target location, the fracturing, testing and determination steps may be repeated.
In some embodiments, the different weight drilling fluids may be pumped through the wellbore in a fluid train and a clean fluid and/or a fluid containing a proppant may be pumped into the wellbore in the train to provide for effective fracturing of the formation during the drilling process. A processor may be used to process volumes, pump rates and/or weights of the different fluids in the train to provide for positioning of the fluids in desired locations in the well. In some embodiments, a sealing fluid may be pumped into the wellbore after the testing of the formation fluids so as to seal fractures in the subterranean formation. In some embodiments, coiled tubing may be used to inject one of more of the fluids into the drilling annulus.
While the principles of the disclosure have been described above in connection with specific apparatuses and methods, it is to be clearly understood that this description is made only by way of example and not as limitation on the scope of the invention.
This application is a U. S. National Stage Application under 35 U.S.C. §371 and claims priority to Patent Cooperation Treaty Application No. PCT/IB2012/055431 filed Oct. 8, 2012, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/544,027 filed Oct. 6, 2011. Both of these applications are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2012/055431 | 10/8/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/050989 | 4/11/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2783026 | Reistle, Jr. | Feb 1957 | A |
3231031 | Cleary | Jan 1966 | A |
3248938 | Hill et al. | May 1966 | A |
3529665 | Malone | Sep 1970 | A |
3578078 | Shilander | May 1971 | A |
4867241 | Strubhar | Sep 1989 | A |
5472049 | Chaffee et al. | Dec 1995 | A |
5511615 | Rhett | Apr 1996 | A |
5730219 | Tabel et al. | Mar 1998 | A |
6021377 | Dubinsky et al. | Feb 2000 | A |
6176323 | Weirich et al. | Jan 2001 | B1 |
6427530 | Krueger et al. | Aug 2002 | B1 |
6435277 | Qu et al. | Aug 2002 | B1 |
6705413 | Tessari | Mar 2004 | B1 |
6837309 | Boney et al. | Jan 2005 | B2 |
6837313 | Hosie et al. | Jan 2005 | B2 |
6981560 | Nguyen et al. | Jan 2006 | B2 |
7044239 | Pinckard et al. | May 2006 | B2 |
7114562 | Fisseler et al. | Oct 2006 | B2 |
7174975 | Krueger et al. | Feb 2007 | B2 |
7174978 | Taniguchi et al. | Feb 2007 | B2 |
7252162 | Akinlade et al. | Aug 2007 | B2 |
7380600 | Willberg et al. | Jun 2008 | B2 |
7493948 | Cooper et al. | Feb 2009 | B2 |
7806203 | Krueger et al. | Oct 2010 | B2 |
7963325 | Johnson et al. | Jun 2011 | B2 |
20020023752 | Qu et al. | Feb 2002 | A1 |
20040206494 | Stephenson et al. | Oct 2004 | A1 |
20050167159 | Bailey et al. | Aug 2005 | A1 |
20050230107 | McDaniel et al. | Oct 2005 | A1 |
20060062084 | Drew | Mar 2006 | A1 |
20060113077 | Willgerg et al. | Jun 2006 | A1 |
20060144620 | Cooper et al. | Jul 2006 | A1 |
20060196664 | Hall et al. | Sep 2006 | A1 |
20060225926 | Madhavan et al. | Oct 2006 | A1 |
20070045006 | Krueger et al. | Mar 2007 | A1 |
20070151762 | Reitsma | Jul 2007 | A1 |
20070284106 | Kalman et al. | Dec 2007 | A1 |
20080108524 | Willberg et al. | May 2008 | A1 |
20090095474 | Lesso et al. | Apr 2009 | A1 |
20090145660 | Johnson et al. | Jun 2009 | A1 |
20090151938 | Conkle et al. | Jun 2009 | A1 |
20100243242 | Boney | Sep 2010 | A1 |
20100268469 | Harrison | Oct 2010 | A1 |
20110139464 | Henderson et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0718641 | Jun 1996 | EP |
2280163 | Jul 2006 | RU |
162 | Jun 2003 | UZ |
9842948 | Oct 1998 | WO |
0161146 | Aug 2001 | WO |
0250398 | Jun 2002 | WO |
02088522 | Nov 2002 | WO |
03048525 | Jun 2003 | WO |
2009077715 | Jun 2009 | WO |
2009087069 | Jul 2009 | WO |
2009094066 | Jul 2009 | WO |
Entry |
---|
International Search Report of PCT Application No. PCT/US2008/084620 dated Jul. 20, 2010: pp. 1-5. |
Examination Report of Gulf Corporation Council Application No. GCC/P/2008/12322 dated Sep. 8, 2012: pp. 1-4. |
International Search Report of PCT Application No. PCT/IB2012/055431 dated Feb. 26, 2013: pp. 1-4. |
Carman, “Fluid Flow Through Granular Beds,” Transactions of the Institution of Chemical Engineers, 1937, vol. 15: pp. 150-166. |
Hewett et al., “SPE 39945: Induced Stress Diversion: A Novel Approach to Fracturing Multiple Pay Sands of the NBU Field, Uintah Co., Utah,” SPE International, 1998: pp. 375-383. |
Kneissl, “SPE/IADC 67690: Reservoir Characterization Whilst Underbalanced Drilling,” SPE International, 2001: pp. 1-9. |
Martins et al., “Tip Screenout Fracturing Applied to the Ravenspurn South Gas Field Development,” SPE Productions Engineering, Aug. 1992: pp. 252-258. |
Smith et al., “Tip Screenout Fracturing: A Technique for Soft, Unstable Formations,” SPE Production Engineering, May 1987: pp. 95-103. |
Smith, et al., “Tip Screenout Fracturing: A Technique for Soft, Unstable Formations”, SPE 13273, Society of Petroleum Engineers, May 1, 1987, 9 pages. |
Hewett, et al., “Induced Stress Diversion: A Novel Approach to Fracturing Multiple Pay Sands of the NBU Field, Uintah Co., Utah”, SPE 39945, Society of Petroleum Engineers, Jan. 1, 1998, 9 pages. |
Martins et al., “Tip Screenout Fracturing Applied to the Ravenspurn South Gas Field Development”, SPE 19766, Society of Petroleum Engineers, Aug. 1, 1992, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20140238668 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61544027 | Oct 2011 | US |