The present disclosure relates to collapsible and expandable prosthetic heart valves, and more particularly, to apparatus and methods for stabilizing a collapsible and expandable prosthetic heart valve within a native annulus of a patient.
Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible and expandable valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible and expandable prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed to reduce its circumferential size.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the native annulus of the patient's heart valve that is to be repaired by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and expanded to its full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the stent is withdrawn from the delivery apparatus.
The clinical success of collapsible and expandable heart valves is dependent, in part, on the anchoring of the valve within the native valve annulus. Self-expanding valves typically rely on the radial force exerted by expanding the stent against the native valve annulus to anchor the prosthetic heart valve. However, if the radial force is too high, the heart tissue may be damaged. If, instead, the radial force is too low, the heart valve may move from its deployed position and/or migrate from the native valve annulus, for example, into the left ventricle.
Movement of the prosthetic heart valve may result in the leakage of blood between the prosthetic heart valve and the native valve annulus. This phenomenon is commonly referred to as paravalvular leakage. In mitral valves, paravalvular leakage enables blood to flow from the left ventricle back into the left atrium during ventricular systole, resulting in reduced cardiac efficiency and strain on the heart muscle.
Anchoring prosthetic heart valves within the native valve annulus of a patient, especially within the native mitral valve annulus, can be difficult. For instance, the native mitral valve annulus has reduced calcification or plaque compared to the native aortic valve annulus, for example, which can make for a less stable surface to anchor the prosthetic heart valve. For this reason, collapsible and expandable prosthetic mitral valves often include additional anchoring features such as a tether. The tether is commonly secured to an apical pad placed at the apex of the heart to anchor the prosthetic heart valve in position within the native valve annulus of the patient.
Despite the improvements that have been made to anchoring collapsible and expandable prosthetic heart valves, shortcomings remain. For example, to accommodate the tether, the prosthetic heart valve often extends at least partially into the ventricle, which can impede blood flow to the Left Ventricular Outflow Tract (LVOT).
In accordance with a first aspect of the present disclosure, a collapsible and expandable prosthetic heart valve having a low-profile is provided. Among other advantages, the prosthetic heart valve is designed to be securely anchored within the native mitral valve annulus without projecting into the ventricle. As a result, the prosthetic heart valve disclosed herein minimizes the obstruction of blood flow to the LVOT.
One embodiment of the prosthetic heart valve includes a prosthetic heart valve having an expandable stent with an inflow end and an outflow end, a valve assembly disposed within the stent including a cuff and a plurality of leaflets, a tether connector positioned between the inflow end and the valve assembly and a tether secured to the tether connector.
A method of implanting a prosthetic heart valve within a native heart valve annulus is provided herein and includes delivering a delivery device to a target site adjacent to a native valve annulus while the delivery device holds a prosthetic heart valve including a stent, a valve assembly disposed within the stent and a tether attached to the stent; deploying the prosthetic heart valve from the delivery device within the native valve annulus; creating a passage through the wall of the heart; extending the tether through the valve assembly and through the passage to a location outside the heart; attaching an apical pad to the tether; tensioning the tether; and securing the apical pad against an external surface of the heart.
Various embodiments of the present disclosure are described herein with reference to the drawings, wherein:
Blood flows through the mitral valve from the left atrium to the left ventricle. As used herein in connection with a prosthetic heart valve, the term “inflow end” refers to the end of the heart valve through which blood enters when the valve is functioning as intended, and the term “outflow end” refers to the end of the heart valve through which blood exits when the valve is functioning as intended. Also as used herein, the terms “substantially,” “generally,” “approximately,” and “about” are intended to mean that slight deviations from absolute are included within the scope of the term so modified.
A dashed arrow, labeled “TA”, indicates a transapical approach of implanting a prosthetic heart valve, in this case to replace the mitral valve. In the transapical approach, a small incision is made between the ribs of the patient and into the apex of left ventricle LV to deliver the prosthetic heart valve to the target site. A second dashed arrow, labeled “TS”, indicates a transseptal approach of implanting a prosthetic heart valve in which the delivery device is inserted into the femoral vein, passed through the iliac vein and the superior vena cava into the right atrium RA, and then through the atrial septum into the left atrium LA for deployment of the valve. Other approaches for implanting a prosthetic heart valve are also possible and may be used to implant the collapsible prosthetic heart valve described in the present disclosure.
Prosthetic heart valve 10 includes an inner stent 12 securing a valve assembly 14, an outer stent 16 attached to and disposed around the inner stent, and a tether 18 configured to be secured to an apical pad 20. Both the inner stent 12 and the outer stent 16 may be formed from biocompatible materials that are capable of self-expansion, for example, shape-memory alloys such as nitinol. Alternatively, inner stent 12 and/or outer stent 16 may be balloon expandable or expandable by another force exerted radially outward on the stent. When expanded, outer stent 16 may exert an outwardly directed radial force against the native valve annulus that assists in anchoring inner stent 12 and valve assembly 14 within the native annulus.
Referring to
With additional reference to
Turning now to
When outer stent 16 is expanded, the struts 44 forming the cells 46 in the annular row of cells adjacent the atrial end 40 of the outer stent may bend about the midsections of the cells (e.g., in a direction generally orthogonal to the longitudinal axis) such that the upper apexes of the cells extend radially outward relative to the midsections of the cells and collectively form an atrial flange. The flange is designed to protrude into the left atrium LA and engage an upper surface of the native mitral valve annulus when prosthetic valve 10 is disposed within the native mitral valve MV, thereby preventing the mitral valve from migrating into left ventricle LV. Prosthetic heart valve 10 is anchored within the native mitral valve annulus by the radial force exerted by outer stent 16 against the native annulus, the flange engaging the atrial surface of the native valve annulus and the tether anchored to the ventricular wall of the heart. As is schematically shown in
Due to the low-profile of prosthetic heart valve 10, Systolic Anterior Motion (SAM) prevention features may optionally be provided, for example, on outer stent 16. SAM (e.g., the displacement of the free edge of native anterior leaflet AL toward left ventricular outflow tract LVOT) can result in severe left ventricular outflow tract LVOT obstruction and/or mitral regurgitation. To prevent the occurrence of SAM, or at least significantly reduce its likelihood, a ring 54 may be positioned on an anterior side of outer stent 16. A cord 56 attached at one end to ring 54 may be inserted through native anterior leaflet AL (shown in
In a preferred embodiment, prosthetic heart valve 10 may include an inner skirt 58, an outer skirt 60 and a cover 62. Outer skirt 60 may be disposed about the abluminal surface of outer stent 16 and may be formed of a polyester fabric that promotes tissue ingrowth. Inner skirt 58 may be disposed about the luminal surface of outer stent 16 and may be formed of any suitable biological material, such as bovine or porcine pericardium, or any suitable biocompatible polymer, such as PTFE, urethanes or similar materials. When prosthetic heart valve 10 is secured within the native mitral valve annulus, inner skirt 58 acts in combination with outer skirt 60 to prevent mitral regurgitation, or the flow of blood between the prosthetic heart valve 10 and the native mitral valve annulus. In one embodiment, inner skirt 58 and outer skirt 60 extend only between the atrial end 40 of outer stent 16 and attachment features 48 to facilitate the suturing of the outer stent to inner stent 12. Cover 62 may be attached from the atrial end 40 of outer stent 16 to the junction of body portion 26 and strut portion 28 of inner stent 12 such that the cover extends across a gap defined between the inner stent and the outer stent, forming a pocket 64 underneath the cover and between the inner and outer stents. Cover 62 may be formed from a porous polyester mesh material. The pores of the mesh material are preferably of a size that allows antegrade blood to flow into pocket 64, but prevents coagulated blood, or thrombosis, from leaving the pocket.
Prosthetic heart valve 10 may be used to repair a malfunctioning native heart valve, such as a native mitral valve, or a previously implanted and malfunctioning prosthetic heart valve. Although prosthetic heart valve 10 is described herein as repairing a native mitral valve, it will be appreciated that the prosthetic heart valve may be used to repair other cardiac valves such as the aortic valve. Once prosthetic heart valve 10 has been properly positioned within the native mitral valve annulus of the patient, it works as a one-way valve, allowing blood to flow into left ventricle LV, and preventing blood from returning to left atrium LA.
Delivery device 100 includes a handle (not shown) connected to a delivery tube 102 having a lumen 104 therethrough, an outer dilator 106 disposed within the lumen of the delivery tube and an inner dilator 108 disposed within the lumen of the outer dilator. The handle may include one or more actuators, such as rotatable knobs, linear slides, pull handles, levers, or buttons, for controlling the operation of delivery device 100. Delivery tube 102 extends from a leading end 110 to a trailing end (not shown) at which the delivery tube is operably connected to the handle. Delivery device 100 may be any tube-like delivery device, such as a catheter, a trocar, a laparoscopic instrument, or the like, configured to house prosthetic heart valve 10 as the delivery device is advanced toward the native mitral valve annulus.
In one embodiment, delivery tube 102 may be mounted on a carriage (not shown) that is slidably mounted within the handle. The carriage is thus configured to retract delivery tube 102 to deploy prosthetic heart valve 10 from the leading end 110 of the delivery tube. By way of example, the carriage may be coupled to a first actuator, which may be a rotatable knob that precisely controls movement of delivery tube 102, and/or a linearly translatable actuator such as a slide that quickly translates the carriage and, in turn, the delivery tube.
Inner dilator 108 may be rotatably disposed within the lumen of outer dilator 106. Rotation of inner dilator 108 may be controlled by a second actuator disposed on the handle. The second actuator may, for example, be a manually operated rotatable knob or a button that activates a motorized rotation mechanism. A pair of suture receiving clips or another suture attachment mechanism (not shown) may be provided adjacent the leading end of inner dilator 108. Outer dilator 106 may have a pair of diametrically opposed holes 112 at its leading end and proximate the suture clips of inner dilator 108. In this manner, sutures 52, attached to the retaining loops 50 of prosthetic heart valve 10, may be threaded through holes 112 of outer dilator 106 and secured to the suture clips of inner dilator 108 as shown in
The use of delivery device 100 to deliver and, if necessary, reposition or retrieve prosthetic heart valve 10, will now be described with reference to
After an incision has been made between the ribs of the patient and into the apex of the heart, delivery device 100 may be percutaneously introduced into the patient using a transapical approach and delivered to an implant site adjacent the native mitral valve annulus. Once delivery device 100 has reached the target site, the first actuator may be actuated to retract delivery tube 102. Actuation of the first actuator will unsheathe prosthetic heart valve 10, allowing outer stent 16 to expand from the collapsed condition and engage the native valve annulus, while also allowing inner stent 12 to expand from the collapsed condition to the expanded condition within the outer stent. After the inner stent 12 and the outer stent 16 have been expanded, a physician may determine whether prosthetic heart valve 10 has restored proper blood flow through the native mitral valve. More particularly, the physician may determine: 1) whether valve assembly 14 is functioning properly; and 2) whether the prosthetic heart valve 10 has been properly seated within the native valve annulus to form a seal between the prosthetic heart valve and the native mitral valve annulus.
In the event that the physician determines that the valve assembly 14 is malfunctioning or that prosthetic heart valve 10 is positioned incorrectly within the native mitral annulus, the physician may recapture the prosthetic heart valve. To recapture prosthetic heart valve 10, the physician may actuate the second actuator which causes inner dilator 108 to rotate about its axis relative to outer dilator 106 and delivery tube 102. Rotation of inner dilator 108 results in sutures 52 wrapping about the inner dilator and forcing the ventricular end 42 of outer stent 16 to collapse toward the longitudinal axis to a diameter capable of being inserted into the leading end 110 of delivery tube 102, for example, a diameter of equal to or less than approximately 36 French. Collapsing the ventricular end 42 of outer stent 16 similarly collapses the outflow end 24 of inner stent 12. With the ventricular end 42 of outer stent 16 and the outflow end of inner stent 12 collapsed, tether 18 may be disengaged from the tether retention mechanism and retracted toward the trailing end of delivery device 100 to pull the outer stent, and with it inner stent 12, within delivery tube 102. If valve assembly 14 was working as intended, but prosthetic heart valve 10 was mispositioned within the native mitral valve annulus, the physician may only need to partially collapse the prosthetic heart valve within delivery tube 102 before repositioning the delivery tube with respect to the native mitral annulus and redeploying the prosthetic heart valve as previously described. Alternatively, if valve assembly 14 was malfunctioning, prosthetic heart valve 10 may be completely recaptured and removed from the patient. The physician may then repeat the procedure described above with a different prosthetic heart valve 10.
Once the physician has confirmed that prosthetic heart valve 10 has been properly positioned within the native annulus of the patient, sutures 52 may be cut or otherwise disengaged from inner dilator 108. Delivery device 100 may then be removed from the patient.
In some instances, the physician may find it desirable to secure the native anterior leaflet AL of native mitral valve MV to the outer stent 16 of prosthetic mitral valve 10 to prevent SAM. Using a clamp (not shown) and a needle (not shown), or another piercing tool, the physician may hold the anterior leaflet while piercing a hole through the leaflet. Cord 56 may then be inserted through the hole and tied to the native anterior leaflet to secure the native leaflet to prosthetic heart valve 10.
Once the prosthetic heart valve 10 has been properly positioned in the native valve annulus, the physician may pull tether 18 through the puncture at the apex of the heart so that the tether extends out from the left ventricle LV of the heart. Apical pad 20 may then be inserted through the incision between the ribs of the patient and placed against an external surface of the heart before tether 18 is tensioned and secured to the apical pad. With prosthetic heart valve 10 properly positioned and anchored within the native mitral valve annulus of a patient, the prosthetic heart valve may work as a one-way valve to restore proper function of the heart valve by allowing blood to flow in one direction (e.g., from the left atrium to the left ventricle) while preventing blood from flowing in the opposite direction.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/052,160 filed on Jul. 15, 2020 the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
3898701 | La Russa | Aug 1975 | A |
4275469 | Gabbay | Jun 1981 | A |
4423730 | Gabbay | Jan 1984 | A |
4491986 | Gabbay | Jan 1985 | A |
4759758 | Gabbay | Jul 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5078720 | Burton et al. | Jan 1992 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5411552 | Andersen et al. | May 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5980533 | Holman | Nov 1999 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6083257 | Taylor et al. | Jul 2000 | A |
6090140 | Gabbay | Jul 2000 | A |
6214036 | Letendre et al. | Apr 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6332893 | Mortier | Dec 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6391050 | Broome | May 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468299 | Stack et al. | Oct 2002 | B2 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6488702 | Besselink | Dec 2002 | B1 |
6517576 | Gabbay | Feb 2003 | B2 |
6533810 | Hankh et al. | Mar 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6610088 | Gabbay | Aug 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6685625 | Gabbay | Feb 2004 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6783556 | Gabbay | Aug 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6797002 | Spence | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7137184 | Schreck | Nov 2006 | B2 |
7160322 | Gabbay | Jan 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7311730 | Gabbay | Dec 2007 | B2 |
7374573 | Gabbay | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7452371 | Pavcnik et al. | Nov 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
RE40816 | Taylor et al. | Jun 2009 | E |
7585321 | Cribier | Sep 2009 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7731742 | Schlick et al. | Jun 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7846203 | Cribier | Dec 2010 | B2 |
7846204 | Letac et al. | Dec 2010 | B2 |
7857845 | Stacchino et al. | Dec 2010 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
D648854 | Braido | Nov 2011 | S |
D652926 | Braido | Jan 2012 | S |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
D653342 | Braido et al. | Jan 2012 | S |
D653343 | Ness et al. | Jan 2012 | S |
D654169 | Braido | Feb 2012 | S |
D654170 | Braido et al. | Feb 2012 | S |
D660432 | Braido | May 2012 | S |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
8252051 | Chau | Aug 2012 | B2 |
D684692 | Braido | Jun 2013 | S |
8628571 | Hacohen | Jan 2014 | B1 |
8840661 | Manasse | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
9480559 | Vidlund | Nov 2016 | B2 |
9827092 | Vidlund | Nov 2017 | B2 |
9895221 | Vidlund | Feb 2018 | B2 |
10201419 | Vidlund | Feb 2019 | B2 |
10299917 | Morriss | May 2019 | B2 |
10463489 | Christianson | Nov 2019 | B2 |
10470877 | Tegels | Nov 2019 | B2 |
10492908 | Hammer | Dec 2019 | B2 |
10610358 | Vidlund | Apr 2020 | B2 |
10952844 | Vidlund | Mar 2021 | B2 |
11033389 | Solem | Jun 2021 | B2 |
11039921 | Tegels | Jun 2021 | B2 |
11096782 | Christianson | Aug 2021 | B2 |
11179236 | Schankereli | Nov 2021 | B2 |
11648108 | Liu | May 2023 | B2 |
20020036220 | Gabbay | Mar 2002 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040225354 | Allen | Nov 2004 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050137695 | Salahieh | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050256566 | Gabbay | Nov 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060106415 | Gabbay | May 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060167468 | Gabbay | Jul 2006 | A1 |
20060173532 | Flagle et al. | Aug 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195180 | Kheradvar et al. | Aug 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060241744 | Beith | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259120 | Vongphakdy et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070073391 | Bourang et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070162100 | Gabbay | Jul 2007 | A1 |
20070168013 | Douglas | Jul 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070239271 | Nguyen | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070270943 | Solem | Nov 2007 | A1 |
20070288087 | Fearnot et al. | Dec 2007 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080114452 | Gabbay | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080243245 | Thambar | Oct 2008 | A1 |
20080255662 | Stacchino et al. | Oct 2008 | A1 |
20080262602 | Wilk et al. | Oct 2008 | A1 |
20080269879 | Sathe et al. | Oct 2008 | A1 |
20090054975 | del Nido et al. | Feb 2009 | A1 |
20090099653 | Suri et al. | Apr 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049306 | House et al. | Feb 2010 | A1 |
20100087907 | Lattouf | Apr 2010 | A1 |
20100131055 | Case et al. | May 2010 | A1 |
20100168778 | Braido | Jul 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100217382 | Chau | Aug 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110224678 | Gabbay | Sep 2011 | A1 |
20120303116 | Gorman, III et al. | Nov 2012 | A1 |
20130079873 | Migliazza | Mar 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130184811 | Rowe | Jul 2013 | A1 |
20140296969 | Tegels | Oct 2014 | A1 |
20140296975 | Tegels | Oct 2014 | A1 |
20140358224 | Tegels | Dec 2014 | A1 |
20160235525 | Rothstein et al. | Aug 2016 | A1 |
20170128209 | Morriss et al. | May 2017 | A1 |
20170312078 | Krivoruchko | Nov 2017 | A1 |
20170319333 | Tegels | Nov 2017 | A1 |
20180014932 | Hammer | Jan 2018 | A1 |
20190183642 | Tegels | Jun 2019 | A1 |
20190269839 | Wilson | Sep 2019 | A1 |
20210030537 | Tegels | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
19857887 | Jul 2000 | DE |
10121210 | Nov 2005 | DE |
102005003632 | Aug 2006 | DE |
202008009610 | Dec 2008 | DE |
0850607 | Jul 1998 | EP |
1000590 | May 2000 | EP |
1129744 | Sep 2001 | EP |
1157673 | Nov 2001 | EP |
1360942 | Nov 2003 | EP |
1584306 | Oct 2005 | EP |
1598031 | Nov 2005 | EP |
1926455 | Jun 2008 | EP |
2850008 | Jul 2004 | FR |
2847800 | Oct 2005 | FR |
9117720 | Nov 1991 | WO |
9716133 | May 1997 | WO |
9832412 | Jul 1998 | WO |
9913801 | Mar 1999 | WO |
2001028459 | Apr 2001 | WO |
2001049213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0156500 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
02067782 | Sep 2002 | WO |
03047468 | Jun 2003 | WO |
2005070343 | Aug 2005 | WO |
06073626 | Jul 2006 | WO |
2007071436 | Jun 2007 | WO |
08070797 | Jun 2008 | WO |
2010008548 | Jan 2010 | WO |
2010008549 | Jan 2010 | WO |
10051025 | May 2010 | WO |
10087975 | Aug 2010 | WO |
2010096176 | Aug 2010 | WO |
2010098857 | Sep 2010 | WO |
WO-2013028387 | Feb 2013 | WO |
WO-2018218121 | Nov 2018 | WO |
WO-2019057185 | Mar 2019 | WO |
Entry |
---|
“Catheter-Implanted Prosthetic Heart Valves: Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta In Isolated Vessels and Closed Chest Pigs”, Knudsen et al., The International Journal of Artificial Organs, vol. 16, No. 5, May 1993, pp. 253-262. |
“Direct-Access Valve Replacement”, Christoph H. Huber, et al., Journal of the American College of Cardiology, vol. 46, No. 2, (Jul. 19, 2005). |
“Minimally invasive cardiac surgery”, M. J. Mack, Surgical Endoscopy, 2006, 20:S488-S492, DOI: 10.1007/s00464-006-0110-8 (presented Mar. 23, 2006). |
“Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery”, John G. Webb et al., Circulation, 2006; 113:842-850 (Feb. 6, 2006). |
“Percutaneous Aortic Valve Replacement: Resection Before Implantation”, Quaden, Rene et al., European J. of Cardio-Thoracic Surgery, vol. 27, No. 5, May 2005, pp. 836-840. |
“Transapical aortic valve implantation: an animal feasibility study”; Todd M. Dewey et al., The annals of thoracic surgery 2006; 82: 110-6 (Feb. 13, 2006). |
“Transapical Transcatheter Aortic Valve Implantation in Humans”, Samuel V. Lichtenstein et al., Circulation. 2006; 114: 591-596 (Jul. 31, 2006). |
“Transluminal Aortic Valve Placement. A Feasability Study with a Newly Designed Collapsible Aortic Valve”, Moazami et al., ASAIO Journal, vol. 42, No. 5, 1996, pp. M381-M385. |
“Transluminal Catheter Implanted Prosthetic Heart Valves”, Andersen, H. R., International Journal of Angiology, vol. 7, No. 2, Mar. 1998, pp. 102-106. |
“Transluminal Implantation of Artificial Heart Valves”, Andersen, H. R., et al., European Heart Journal, vol. 13, No. 5, May 1992, pp. 704-708. |
Closed Heart Surgery: Back to the Future, Samuel V. Lichtenstein, The Journal of Thoracic and Cardiovascular Surgery, vol. 131, No. 5, May 2006, pp. 941-943. |
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008. |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR—dated May 25, 2010? |
Transapical Approach for Sutureless Stent-Fixed Aortic Valve Implantation: Experimental Results, Th. Walther et al., European Journal of Cardio-Thoracic Surgery, vol. 29, No. 5, May 2006, pp. 703-708. |
Transcatheter Valve Repair, Hijazi et al., CRC Press, Jan. 2006, pp. 165-186. |
U.S. Appl. No. 29/375,243, filed Sep. 20, 2010—Braido, et al., U.S. Appl. No. 29/375,243, filed Sep. 20, 2010, titled “Surgical Stent Assembly”. |
International Search Report for PCT/US2021/041243 mailed Oct. 28, 2021 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20220015899 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
63052160 | Jul 2020 | US |