Tether tensioning instrumentation and related methods

Information

  • Patent Grant
  • 11819255
  • Patent Number
    11,819,255
  • Date Filed
    Monday, October 7, 2019
    5 years ago
  • Date Issued
    Tuesday, November 21, 2023
    a year ago
Abstract
Tether tensioning instruments, such as instruments used to tension and/or lock a tether about a spinal feature to assist in spinal fixation, and related methods and systems. In some embodiments, the instrument may comprise a handle, a tensioner base coupled with the handle, at least a portion thereof being movably coupled to the handle, and a tether coupling member coupled with the tensioner base and configured to fixedly engage a tether. The instrument may further comprise a tensioner tip movably coupled with the tensioner base, wherein at least a portion of the tensioner base is biased away from the tensioner tip, and wherein the instrument is configured to allow for step-wise movement of the tensioner tip away from the tensioner base to increase tension between the tether and an element of the spinal fixation system.
Description
SUMMARY

Disclosed herein are various embodiments of tether tensioning instruments that may be used to increase tension on a tether preferable used in connection with a tether clamping assembly, along with various other inventive methods for using such instruments. In preferred embodiments, the tether tensioning instrument may be used in connection with a self-locking tether clamping implant/assembly. The inventive devices, features, and methods disclosed herein may be particularly suitable for use in connection with spinal fixation. However, it is contemplated that the inventive features, and methods disclosed herein may also be used in other medical procedures, such as bone fracture repair, cardiac procedures, and the like.


In a more particular example of a tether tensioning instrument, such as a spinal fixation tether tensioning instrument, the instrument may comprise a handle and a tensioner base coupled with the handle, wherein at least a portion of the tensioner base is slidably or otherwise movably coupled to the handle. The instrument may further comprise a tether coupling member coupled with the tensioner base and configured to fixedly engage a tether of a spinal fixation system and a tensioner tip movably coupled with the tensioner base. At least a portion of the tensioner base may be biased away from the tensioner tip. The instrument may be configured to allow for stepwise movement of the tensioner tip away from the tensioner base to increase tension between the tether and an element of the spinal fixation system.


In some embodiments, the spinal fixation tether tensioning instrument may comprise one or more components configured to be removed and recoupled together in between surgical procedures. In some such embodiments, the tensioner base may be removable from the handle.


In some embodiments, the tensioner tip may be removable from the handle. The instrument may therefore, in some such embodiments, be modular such that one or both of the tensioner tip and the tensioner base is configured to be removed and replaced with an alternative corresponding component having distinct characteristics relative to the at least one of the tensioner tip and the tensioner base, such as different spring strengths, tip engagement features, sizes, etc.


In some embodiments, the tensioner tip may be spring-loaded to bias an element of the spinal fixation system, such as an outer clamping piece of a clamping assembly, distally during use.


Some embodiments may further comprise a shaft extending from or otherwise coupled to the tensioner tip, which shaft may be configured to extend into the tensioner base to allow the tensioner tip to be slidably coupled with the tensioner base. In some such embodiments, the shaft may comprise a plurality of teeth configured to engage a pawl to allow the tensioner tip to slidably move with respect to the tensioner base in a stepwise manner.


In another example of a tether tensioning instrument for a medical procedure according to other embodiments, the instrument may comprise a handle and a tensioner base coupled with the handle. The instrument may further comprise a tether coupling member configured to fixedly engage a tether of a spinal fixation system and a spring-loaded tensioner tip movably coupled with the tensioner base. The instrument may be configured to allow for movement of the tensioner tip away from the tensioner base to increase tension between the tether and an element of the spinal fixation system. The spring-loaded tensioner tip may be configured to engage an element of the spinal fixation system so as to bias the element of the spinal fixation system received by the spring-loaded tensioner tip in a distal direction but allow for movement of the element of the spinal fixation system received by the spring-loaded tensioner tip in a proximal direction relative to the tether tensioning instrument.


In some embodiments, at least a portion of the tensioner base is slidably or otherwise movably coupled to the handle.


Some embodiments may further comprise a tether coupling member coupled with the tensioner base, which tether coupling member may be configured to allow the tether to be wrapped around the tether coupling member and/or locked in place thereon.


In some embodiments, the tensioner base may be slidably coupled with the handle. In some embodiments, at least a portion of the tensioner base may be biased away from the tensioner tip, such as by providing a spring in the tensioner base and/or a slider positioned within a chamber of the tensioner base.


Some embodiments may further comprise a tension gauge operably coupled with the tensioner base. The tension gauge may be configured to provide an indication of the position of the tensioner base relative to the handle and/or the current tension on the tether. For example, the tension gauge may be configured to provide an indication of the position of the tensioner base relative to the handle, which position may correspond with the tension on at least a portion of the tether during use.


In some embodiments, the instrument may be configured to allow for stepwise movement of the tensioner tip away from the tensioner base to increase tension between the tether and a clamping assembly of the spinal fixation system.


In an example of a method for fixation and/or tensioning of a tether to an anatomical feature of a patient, the method may comprise extending a flexible tether in a loop around an anatomical feature of a patient, such as a spinal lamina or other spinal feature. The flexible tether may then be extended through a tether clamping assembly, such as extending the tether through one or more passages defined by inner and outer clamping pieces of such a tether clamping assembly. A portion of the tether clamping assembly may then be coupled with a tensioner tip of a tether tensioning instrument, wherein the tensioner tip is slidably or otherwise movably coupled with a tensioner base of the tether tensioning instrument. One or both of the free ends of the tether may then be fixedly engaged or otherwise coupled with a portion of the tether tensioning instrument, such as a tensioner base of the tether tensioning instrument. The tether tensioning instrument may then be used to increase tension on the tether, which may result in temporary unlocking of the tether clamping assembly and/or decreasing a size of the loop as the tension is increased, preferably automatically as the tension is increased using the instrument.


In some implementations, the tether clamping assembly may comprise an inner coupling piece nestably coupleable within an outer coupling piece, wherein the tether is configured to extend through opposing passages defined by opposing surfaces of the inner and outer coupling pieces, and wherein the step of positioning the flexible tether through a tether clamping assembly comprises extending the tether through the opposing passages.


In some implementations, actuating the tether tensioning instrument to increase tension on the tether may take place by pulling a lever on the handle. In some such implementations, pulling the lever may result in advancement of a ratcheting mechanism of the tether tensioning instrument.


Some implementations may further comprise releasing the tension on the tether, which may be performed, at least in part, by actuating a trigger of the handle.


In some implementations, the tether clamping assembly may be configured to automatically self-lock the tether to the anatomical feature to maintain the size of the loop following release of the tension on the tether. This may allow for application of a final locking cap to the tether following release of the tension from the instrument, if desired.


The features, structures, steps, or characteristics disclosed herein in connection with one embodiment may be combined in any suitable manner in one or more alternative embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the figures, in which:



FIG. 1 depicts a tether being extended about a spinal feature;



FIG. 2 depicts the tether being extended through a tether clamping assembly according to some embodiments;



FIG. 3 depicts an outer clamping member of the tether clamping assembly of FIG. 2 being coupled with an inner clamping member to define opposing passages therethrough for the tether;



FIG. 4 depicts a tether tensioning instrument engaging the tether clamping assembly and tether to increase tension on the tether to both temporarily unlock the tether clamp provided by the tether clamping assembly and decrease the size of the loop about the spinal feature;



FIGS. 5A and 5B are exploded perspective views of a tether tensioning instrument according to some embodiments;



FIG. 6A is a cross-sectional view of the tether tensioning instrument of FIGS. 5A and 5B during a tether tensioning procedure; and



FIG. 6B is a cross-sectional view of the tether tensioning instrument of FIGS. 5A and 5B shown extending the tip from the body of the instrument to increase tension on the free ends of the tether during the tether tensioning procedure.





DETAILED DESCRIPTION

A detailed description of apparatus, systems, and methods consistent with various embodiments of the present disclosure is provided below. While several embodiments are described, it should be understood that the disclosure is not limited to any of the specific embodiments disclosed, but instead encompasses numerous alternatives, modifications, and equivalents. In addition, while numerous specific details are set forth in the following description in order to provide a thorough understanding of the embodiments disclosed herein, some embodiments can be practiced without some or all of these details. Moreover, for the purpose of clarity, certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the disclosure.


Apparatus, methods, and systems are disclosed herein relating to spinal fixation or other bone fixation. In some embodiments, tether tensioning instruments may be provided that may be used to increase tension on a tether, which may preferably be used in connection with tether clamping assemblies used to clamp a tether about a spinal feature to assist in spinal fixation. In preferred embodiments, the instrument may be used in connection with clamping assemblies configured such that one or more portions of a tether may be self-locked therein without requiring any additional locking elements, features, or steps. In this manner, for example, a tether may be looped around a spinal feature or other anatomical feature, coupled with a fixation element, such as a rod, and then locked in place to stabilize the anatomical feature. In some embodiments, the instrument may be used to both unlock the self-locking feature of the clamping assembly and increase tension on the free ends of the tether, which may result in decreasing a size of the loop about a spinal or other anatomical feature.


The embodiments of the disclosure may be best understood by reference to the drawings, wherein like parts may be designated by like numerals. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the apparatus and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified. Additional details regarding certain preferred embodiments and implementations will now be described in greater detail with reference to the accompanying drawings.



FIG. 1 depicts a spinal column having a plurality of vertebral bodies 50 during an early stage of a surgical procedure involving fusionless spinal fixation. It should be appreciated that the instruments, features, and/or method steps described herein may, however, be used in connection with other surgical procedures in which it may be desired to apply tension to a tether or other component, such as spinal fusion procedures, bone fractures, cardiac procedures, and the like. In the depicted method, however, a tether 110 is provided with a leader 112, which may comprise a stiffer material compared to the primary portion of tether 110 to facilitate passing the tether 110 beneath a lamina 55 or another structure of the spinal column.



FIGS. 2 and 3 illustrate additional steps in the aforementioned procedure. In these steps, a clamping assembly is used that comprises a first coupling piece 140, which may comprise an inner coupling piece, and a second coupling piece 150, which may comprise an outer coupling piece, which is configured to be nestably coupled with the first/inner coupling piece 140. The clamping assembly defines two opposing passages configured to receive and engage portions of tether 110 therein, as shown in FIGS. 2 and 3. The first passage may be defined at least in part (in some such embodiments, wholly) by a first external surface of the first/inner coupling piece 140 and first internal surface of the second/outer coupling piece 150.


The second passage may be configured to receive a second portion of the tether 110 therethrough so as to define a loop for engaging a spinal feature of a patient, such as the lamina 55 depicted in FIGS. 1-3. The second passage may also be defined at least in part (in some such embodiments, wholly) by a second external surface of the first/inner coupling piece 140 and a second internal surface of the second/outer coupling piece 150. The first and second passages are configured such that the tether 110 can be clamped in between the first coupling piece 140 and the second coupling piece 150 so as to provide a force differential between extending the tether 110 through the first and second passages in a first direction and in a second direction at least substantially opposite the first direction to facilitate tightening the loop around the spinal feature while inhibiting loosening of the tether 110 around the spinal feature.


In some embodiments and/or implementations, the clamping assembly is self-locking. In preferred embodiments, the clamping assembly may be configured such that one or more portions of tether 110 may be self-locked therein without requiring any additional locking elements, features, or steps. In this manner, for example, a tether 110 may be looped around a spinal feature or other anatomical feature, coupled with a fixation element, such as a rod 120, and then locked in place to stabilize the anatomical feature. Thus, again, in preferred embodiments and implementations, by advancing tether 110 through one or both passages of the tether clamping assembly, the tension on tether 110 alone results in a tightening, and preferably a locking, of tether 110 in the clamping assembly. In order words, upon extending respective tether portions through the aforementioned passages and applying tension in the upward direction (relative to the orientation depicted in FIGS. 2 and 3), the tether portions retain the applied tension and are prevented, or at least inhibited, from being pulled in the opposite, downward direction. Although a locking cap may be used with the assembly to finalize the locking of the tether in place about a spinal or other anatomical structure, such as the locking cap 160 shown in FIG. 3 it should be understood that, preferably, this tension alone results in an at least temporary locking of the tether to the structure. As also shown in FIGS. 2 and 3, a shaft portion 170 of inner coupling piece 140—which, as discussed below, may be frangible and/or otherwise removable—may extend through an opening in outer coupling piece 150 and may extend into an instrument used to tension tether 110 during use.


Additional details of various tether clamping assemblies that may be used in connection with one or more of the instruments and/or methods disclosed herein can be found in U.S. Patent Application Publication No. 2019/0175223 titled “Nesting Tether Clamping Assemblies and Related Methods and Apparatus,” which is hereby incorporated by reference in its entirety.



FIG. 4 illustrates a tensioning instrument 200 according to some embodiments being used to tension and lock tether 110 about lamina 55 within the aforementioned clamping assembly comprising inner coupling/clamping member 140 and outer coupling/clamping member 150. Tensioning instrument 200, which is shown and described in greater detail below with reference to other figures, is shown in FIG. 2 being used to simultaneously unlock the self-locking clamp provided by the clamping assembly and apply tension to decrease the size of the loop defined by tether 110 around the adjacent anatomical feature (lamina 55). Upon releasing this tension, the clamping assembly automatically locks in place, which lock may in some embodiments and implementations be maintained by an optional locking cap.



FIGS. 5A and 5B are exploded views of the instrument 200 illustrating various important functional aspects, elements, and features of certain preferred embodiments. As shown in FIG. 5A, for example, tensioning instrument 200 comprises a handle 210 that is coupled with a tensioner base 230 and a tensioner tip 250. In preferred embodiments, tensioning instrument 200 is modular in that one or more elements of the instrument may be removed therefrom and, in some cases, replaced with another element either identical to or functionally similar to the original element.


For example, in some embodiments, the tensioner base 230 and/or tensioner tip 250 may be removed to allow for cleaning and/or sterilization between uses. In some embodiments and implementations, tensioner base 230 and/or tensioner tip 250 may be removed and replaced with alternative components having different uses, features, and/or specifications. For example, in some embodiments, a tensioner base having a spring or other biasing means of a different strength than tensioner base 230 may be used, if desired. Similarly, an alternative tensioner tip, such as, for example, a tensioner tip having a different spring/biasing strength, a different number of ratcheting teeth, and/or a different type of coupling features for coupling with a fixation assembly may be used as a replacement for tensioner tip 250.


Handle 210 may therefore comprise one or more elements configured to facilitate removal and/or recoupling of one or more other elements of instrument 200. For example, handle 210 comprises a pair of rails 220 configured to slidably engage a similar pair of rails 234 on tensioner base 230. A pair of stops 222 may be provided, which may engage one or more corresponding surfaces of tensioner base 230 (more particularly, tensioned slider 237 of tensioner base 230) in order to stop and lock base 230 to handle 210. Release actuator 215 may also be provided to unlock tensioner base 230 from handle 210. In some embodiments, actuator 215 may be spring-loaded and may comprise a button that, while being pushed, recesses a locking surface that normally prevents tensioner base 230 from being slid in an unlocking direction with respect to handle 210. In some preferred embodiments, this locking surface may be ramped so as to allow base 230 to be slidably received on handle 210 in one direction by recessing spring-loaded actuator 215, after which actuator 215 may pop back out to provide the aforementioned locking surface.


Other features of handle 210 that can be seen in FIGS. 5A and 5B include a tensioning lever 212, which, as discussed below, can be used to increase the tension on a tether, in some embodiments in a ratcheting or otherwise stepwise manner. A trigger 214 may also be provided, which, due to the presence of ratcheting teeth or, in other embodiments, other locking features, may be used to release a lock that may otherwise prevent tip 250 from being retracted towards base 230 and/or handle 210.


By contrast, by squeezing lever 212 against grip 216 of handle 210, tip 250 is advanced away from handle 210 and/or base 230 (otherwise stated, handle 210 and/or base 230 are pushed away from tip 250). As discussed below in connection with FIGS. 6A and 6B, this may be accomplished by providing a pawl 213 that is pivotably coupled with handle 212 and advances a set of teeth thereon that engage a series of similar teeth formed on tip 250 and then lock in place to prevent movement of tip 250 in the opposite direction.


Additional functional elements of tensioner base 230 include a housing 236 within which is positioned slider 237 and spring 235. Slider 237 is slidably positioned within the depicted chamber of housing 236 adjacent to spring 235 so that slider 237 is biased in one direction (the proximal direction in the depicted embodiment) relative to the adjacent chamber/housing 236, which itself is slidable relative to handle 210. By providing one or more tether coupling members 232, which are configured to fixedly engage a tether 110, this configuration allows for more precise tensioning of the tether 110 and may further allow for inclusion of a tensioning gauge 238.


Tensioning gauge 238 may comprise a window, which, in the depicted embodiment, is formed on a top portion of housing 236, and allows viewing of the position of slider 237 therewithin. Thus, by providing one or more markings (a simple tick mark will suffice for some embodiments and purposes) on a portion of slider 237 that is visible through the aforementioned window, the extent to which slider 237 has been moved vis-à-vis handle 210, which may correspond with the tension being applied to tether 110, may be determined by viewing the position of the slider 237 within the window. In some embodiments, alphanumeric or other markings, such as tick marks, as shown in FIG. 4, may be provided adjacent the window, which may be used to more precisely gauge the current tension. FIG. 6B depicts instrument 200 under such tension and illustrates how, under such tension, the spring-loaded slider 237 stays fixed vis-à-vis handle 210 while the outer housing 236 slides forward to increase the bias provided by spring 235 during use and, as mentioned above, in some embodiments, provide an at least general indication (specific upon proper calibration) of the current tension being applied.


In the depicted embodiment, tether coupling members 232 are provided on both sides of tensioner base 230. Tether coupling members 232 comprise opposing grooves although, as those of ordinary skill in the art will appreciate, in other embodiments, a single tether coupling member 232 may be provided and/or may comprise only a single such groove. Preferably, the grooves defined by one or both of the tether coupling members 232 have, at least in part, a portion that is smaller in width/size than that of the tether 110 being used, which may allow the tether 110 to be pinched therein to provide additional locking forces. As shown in FIG. 4, the tether may also, or alternatively, be wrapped around and/or tied on the tether coupling member(s) 232. In addition, a wide variety of other tether coupling members are contemplated, such as hooks, bars, clasps or other closable pinching mechanisms, and the like.


Tensioner tip 250 comprises a shaft 254 having a plurality of ratcheting teeth 257 formed thereon. Shaft 254 is configured to be slidably received in an opening defined within handle 210. As best shown in the cross-sectional views of FIGS. 6A and 6B. This opening is defined in part by slider 237 of tensioner base 230 when tensioner base 230 is coupled with handle 210.


Tip 250 further comprises a spring 255 positioned within a chamber 260 that is rigidly coupled to shaft 254. A distal implant engaging end 252 of tip 250 comprises a plurality of prongs 256 that may collectively define a pair of opposing grooves 258 for receiving a rod 120 or another elongated fixation member. As shown in FIG. 5B, some embodiments may further comprise an implant engaging member 257, which may be slidably positioned within the chamber 260 and may be biased towards the distal end of the instrument 200 using spring 255 or another suitable biasing member. By providing a spring-loaded tip in this manner, the outer clamping piece 150 may be allowed to “float” or move slightly in the proximal direction to unlock the tether 110 while it is being tensioned/tightened. Moreover, biasing the outer clamping piece 150 towards the inner clamping piece 140 facilitates re-engagement of the self-locking mechanism of the clamping assembly mentioned throughout this disclosure following release of the tension on the opposing ends of the tether 110 by instrument 200.


It may be desirable to provide a floating implant engaging member 257 that is specifically configured to firmly engage a portion of the implant—i.e., in the case of the depicted system, the outer clamping piece 150. However, it is contemplated that, in alternative embodiments, the outer clamping piece 150 or another portion of the implant may directly engage the spring 255 or another biasing member to provide similar benefits.



FIGS. 6A and 6B are cross-sectional views during a tensioning process using instrument 200 and a clamping assembly comprising a tether 110, a rod 120, an inner clamping member 140, and an outer clamping member 150, as previously mentioned. In these figures it can be seen that lever 212 is operably and pivotably coupled with pawl 213, which comprises a set of ratcheting teeth 219 that are configured to engage teeth 257 of shaft 254. After coupling one or both free ends of tether 110 to instrument 200 (preferably to the sliding portion of tensioner base 230, such as to one or both tether coupling members 232), tip 250 may be moved apart from base 230 by squeezing lever 212 against grip 216 of handle 210. This can be done multiple times as desired to increase the tension on tether 110 to a desired level, thereby also decreasing the size of the loop defined by tether 110. By way of the various springs and levers within instrument 200, teeth 219 of pawl 213 engage teeth 257 and forces shaft 254 distally, as shown in FIG. 6B. Releasing lever 212 causes these teeth to disengage, as shown in FIG. 6A. Teeth 217 on trigger 214, however, remain engaged with teeth 257 to prevent tip 250 from moving proximally towards handle 210. Tip 250 may be moved away from handle 210 following a procedure, in some cases removed entirely to allow for cleaning and/or replacement with a different tip, by simply pulling tip 250 away from handle 210 and/or base 230.


As shaft 254 advances distally, the distance between tip 250 and the rest of instrument 200 increases and, due to the engagement of the tether 110 with a proximal portion of the instrument 200, increases tension on the tether 110. As also shown in FIG. 6B, as this tension increases, housing 236, which is slidable/movable relative to handle 210, moves distally relative to handle 210 and compresses spring 235.


In certain embodiments of methods for tensioning a tether during a surgical procedure, such as tensioning a tether about a spinal feature for a fusionless spinal fixation procedure, the tether may initially be looped around the spinal feature or other anatomical feature. One or both sides of the tether may then be positioned within a tether clamping assembly, such as in between inner and outer nestable clamping pieces of a clamping assembly. A rod or other elongated fixation member may also be coupled with the clamping assembly, such as within a slot of the outer clamping piece.


In embodiments having a locking cap, the locking cap may be seated but not fully locked in place. In some embodiments and implementations, a driver may be used to apply the locking cap. In embodiments comprising a clamping assembly having a guide post, such as shaft portion 170 of inner coupling piece 140, the guide post may be inserted into the driver to facilitate this step. Similarly, the shaft portion 170 may be inserted within a hole/tunnel of instrument 200, which may also facilitate a desired coupling and alignment of instrument 200 with the clamping assembly/implant.


Instrument 200 may then be positioned over the clamping assembly/implant preferably with the rod 120 extending through and/or contacting slot 258. The free ends of the tether 110 may then be wrapped around one or both opposing tether coupling members 232 or otherwise coupled to tensioner base 230 or another portion of instrument 200, after which instrument 200 may be actuated, such as by repeatedly squeezing lever 212, to separate tip 250 from base 230 and steadily increase the tension on tether 110. In some embodiments and implementations, the step of actuating the tether tensioning instrument both unlocks the tether clamping assembly and decreases a size of the loop, in some cases simultaneously.


Following sufficient tensioning of tether 110, the release trigger 214 may be actuated to release the tension on tether 110. In embodiments using a self-locking clamping assembly, this step may also result in an at least initial locking/clamping of tether 110 about the anatomical feature, given the tension in the opposite direction (opposite to the free ends of the tether). If desired, the locking cap, such as cap 160, may then be fully tightened to secure the self-locking of the tether 110 about the anatomical feature. Due to the self-locking features of preferred embodiments of the clamping assemblies, the locking cap 160 may be applied while tether 110 is under tension from instrument 200 or, alternatively, after the tension has been released.


Guide post 170 may then be removed. In some embodiments, guide post 170 may therefore have a frangible section to facilitate breaking off guide post 170. In some implementations, the ends of tether 110 may then be cut adjacent to the places at which the opposing ends of tether 110 exit the clamping assembly/implant.


The foregoing specification has been described with reference to various embodiments and implementations. However, one of ordinary skill in the art will appreciate that various modifications and changes can be made without departing from the scope of the present disclosure. For example, various operational steps, as well as components for carrying out operational steps, may be implemented in various ways depending upon the particular application or in consideration of any number of cost functions associated with the operation of the system. Accordingly, any one or more of the steps may be deleted, modified, or combined with other steps.


Further, this disclosure is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope thereof. Likewise, benefits, other advantages, and solutions to problems have been described above with regard to various embodiments. However, benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced, are not to be construed as a critical, a required, or an essential feature or element.


Those having skill in the art will appreciate that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present inventions should, therefore, be determined only by the following claims.

Claims
  • 1. A method for fixation of a tether to an anatomical feature of a patient, the method comprising the steps of: extending a flexible tether in a loop around an anatomical feature of a patient;positioning the flexible tether through a tether clamping assembly;engaging a portion of the tether clamping assembly with a tensioner tip of a tether tensioning instrument, wherein the tensioner tip is movably coupled with a tensioner base of the tether tensioning instrument, and wherein the tensioner tip is spring-loaded;fixedly engaging the tether with a portion of the tether tensioning instrument; andactuating the tether tensioning instrument to increase tension on the tether in a stepwise manner, wherein the step of actuating the tether tensioning instrument unlocks the tether clamping assembly and simultaneously decreases a size of the loop.
  • 2. The method of claim 1, wherein the anatomical feature comprises a lamina of a spinal column of the patient.
  • 3. The method of claim 1, wherein the tether clamping assembly comprises an inner coupling piece nestably coupleable within an outer coupling piece, wherein the tether is configured to extend through opposing passages defined by opposing surfaces of the inner and outer coupling pieces, and wherein the step of positioning the flexible tether through a tether clamping assembly comprises extending the tether through the opposing passages.
  • 4. The method of claim 1, wherein the step of actuating the tether tensioning instrument to increase tension on the tether comprises pulling a lever on a handle of the tensioning instrument, and wherein pulling the lever advances a ratcheting mechanism of the tether tensioning instrument.
  • 5. The method of claim 4, further comprising releasing the tension on the tether.
  • 6. The method of claim 5, wherein the step of releasing the tension on the tether is performed, at least in part, by actuating a trigger of the handle.
  • 7. The method of claim 5, wherein the tether clamping assembly is configured to automatically self-lock the tether to the anatomical feature to maintain the size of the loop following release of the tension on the tether.
  • 8. The method of claim 4, further comprising the steps of: removing the tensioner tip from the tensioner base; andremoving the tensioner base from a handle of the tether tensioning instrument.
  • 9. The method of claim 1, wherein the step of actuating the tether tensioning instrument to increase tension on the tether comprises advancing the tensioner tip away from the tensioner base.
  • 10. The method of claim 1, wherein the tensioner tip is configured to bias an element of the tether tensioning instrument distally during use.
  • 11. The method of claim 10, wherein the tensioner tip is configured to unlock the flexible tether during tensioning of the flexible tether.
  • 12. The method of claim 11, wherein the tensioner tip is configured to lock the flexible tether upon release of the tension on the flexible tether.
  • 13. The method of claim 1, wherein the step of actuating the tether tensioning instrument to increase tension on the tether in a stepwise manner comprises repeatedly pulling a lever on a handle of the tensioning instrument.
US Referenced Citations (166)
Number Name Date Kind
1346940 Collins Jul 1920 A
4156574 Boden May 1979 A
4732180 Fixel Mar 1988 A
5304178 Stahurski Apr 1994 A
5312410 Miller May 1994 A
5383905 Golds et al. Jan 1995 A
5413576 Rivard May 1995 A
5582612 Lin Dec 1996 A
5702399 Kilpela et al. Dec 1997 A
5980473 Korakianitis Nov 1999 A
6053921 Wagner Apr 2000 A
6086590 Margulies et al. Jul 2000 A
6391030 Wagner et al. May 2002 B1
6514255 Ferree Feb 2003 B1
6595994 Kilpela et al. Jul 2003 B2
6656185 Gleason et al. Dec 2003 B2
6689140 Cohen Feb 2004 B2
6695852 Gleason Feb 2004 B2
7207090 Mattchen Apr 2007 B2
7326222 Dreyfuss et al. Feb 2008 B2
7481828 Mazda et al. Jan 2009 B2
7828830 Thramann et al. Nov 2010 B2
7959654 Mazda et al. Jun 2011 B2
8096998 Cresina Jan 2012 B2
8162946 Baccelli et al. Apr 2012 B2
8172843 Baccelli et al. May 2012 B2
8221464 Belliard et al. Jul 2012 B2
8257367 Bryant et al. Sep 2012 B2
8323294 Mickiewicz et al. Dec 2012 B2
8323318 Baccelli et al. Dec 2012 B2
8323319 Mazda et al. Dec 2012 B2
8353962 Eckman Jan 2013 B2
8430918 Baccelli et al. Apr 2013 B2
8465495 Belliard Jun 2013 B2
8469966 Allen et al. Jun 2013 B2
8469967 Pratt et al. Jun 2013 B2
8496660 Carl et al. Jul 2013 B2
8636770 Hestad et al. Jan 2014 B2
8721689 Butler et al. May 2014 B2
8728083 Baccelli et al. May 2014 B2
8747405 Belliard Jun 2014 B2
8801759 Mazda et al. Aug 2014 B2
8814910 Baccelli et al. Aug 2014 B2
8828055 Blain et al. Sep 2014 B2
8870870 Baccelli et al. Oct 2014 B2
8906068 Bedor Dec 2014 B1
8945188 Rezach et al. Feb 2015 B2
8961572 Kim et al. Feb 2015 B2
8979908 Lee et al. Mar 2015 B2
8984720 Gephart Mar 2015 B2
9039708 Larroque-Lahitette May 2015 B2
9039711 Mickiewicz et al. May 2015 B2
9078644 Stone Jul 2015 B2
9084644 Knueppel Jul 2015 B2
9084645 Knueppel Jul 2015 B2
9101406 Belliard Aug 2015 B2
9101425 Douget et al. Aug 2015 B2
9107720 Pratt et al. Aug 2015 B2
9113963 Baccelli et al. Aug 2015 B2
9113966 Baccelli et al. Aug 2015 B2
9119675 Lee et al. Sep 2015 B2
9144440 Aminian Sep 2015 B2
9186185 Hestad et al. Nov 2015 B2
9192367 Nunley et al. Nov 2015 B2
9204902 Belliard et al. Dec 2015 B2
9204903 Belliard et al. Dec 2015 B2
9216047 Bryant et al. Dec 2015 B2
9295496 Le Couedic et al. Mar 2016 B2
9314275 Clement et al. Apr 2016 B2
9333021 Gephart May 2016 B2
9345465 Aldridge et al. May 2016 B2
9370390 Mickiewicz et al. Jun 2016 B2
9393051 Baccelli et al. Jul 2016 B2
9402666 Al Shail Aug 2016 B2
9433441 George et al. Sep 2016 B2
9492207 Baccelli et al. Nov 2016 B2
9579127 Kostuik et al. Feb 2017 B2
9585705 Koch et al. Mar 2017 B2
9668774 Larroque-Lahitette Jun 2017 B2
9675386 Akbarnia et al. Jun 2017 B2
9707025 Cavallazzi Jul 2017 B2
9717536 Baccelli et al. Aug 2017 B2
9757167 Hsu et al. Sep 2017 B2
9775651 Le Couedic et al. Oct 2017 B2
9833275 Mickiewicz et al. Dec 2017 B2
9848921 Mazda et al. Dec 2017 B2
9872713 Simpson et al. Jan 2018 B2
9901377 Legallois Feb 2018 B2
9907598 Feibel et al. Mar 2018 B2
9949778 Baccelli et al. Apr 2018 B2
9993351 Carl et al. Jun 2018 B2
9999450 Hsu et al. Jun 2018 B2
10022159 Simpson Jul 2018 B2
10034692 Palmer et al. Jul 2018 B2
10052143 Hulliger Aug 2018 B2
10070906 Douget et al. Sep 2018 B2
10188429 Carlson et al. Jan 2019 B2
10231765 Al Shail et al. Mar 2019 B2
10278746 Deneuvillers et al. May 2019 B2
10314635 Gephart Jun 2019 B2
10426537 Baccelli et al. Oct 2019 B2
10433878 Deneuvillers Oct 2019 B2
10485600 Gephart et al. Nov 2019 B2
10499972 Bosshard et al. Dec 2019 B2
10568673 Palagi et al. Feb 2020 B2
10595904 Albert et al. Mar 2020 B2
10595920 Simpson et al. Mar 2020 B2
10603078 Simpson et al. Mar 2020 B2
20020035366 Walder et al. Mar 2002 A1
20020072753 Cohen Jun 2002 A1
20040199169 Koons Oct 2004 A1
20040243131 Dirks et al. Dec 2004 A1
20050177179 Baynham et al. Aug 2005 A1
20050234471 Schmucki Oct 2005 A1
20060271055 Thramann Nov 2006 A1
20090082821 Konno et al. Mar 2009 A1
20090138048 Baccelli et al. May 2009 A1
20090248077 Johns Oct 2009 A1
20100042106 Bryant Feb 2010 A1
20100298829 Schaller Nov 2010 A1
20110238118 Baccelli et al. Sep 2011 A1
20110245875 Karim Oct 2011 A1
20110288589 Fielding et al. Nov 2011 A1
20120143207 Belliard et al. Jun 2012 A1
20120197257 Knueppel Aug 2012 A1
20120232533 Veldman Sep 2012 A1
20120271354 Baccelli et al. Oct 2012 A1
20120303121 Douget et al. Nov 2012 A1
20120323280 Chin et al. Dec 2012 A1
20130237990 Nunley et al. Sep 2013 A1
20130261625 Koch et al. Oct 2013 A1
20130261668 Douget et al. Oct 2013 A1
20130261680 Baccelli et al. Oct 2013 A1
20140074172 Lee et al. Mar 2014 A1
20140100573 Llas Vargas Apr 2014 A1
20140114356 Le Couedic et al. Apr 2014 A1
20140148854 Carlson et al. May 2014 A1
20140214040 Carl et al. Jul 2014 A1
20140257397 Akbarnia et al. Sep 2014 A1
20140277162 Kostuik et al. Sep 2014 A1
20140336708 Mazda et al. Nov 2014 A1
20150112389 Le Couedic et al. Apr 2015 A1
20150119938 Lee et al. Apr 2015 A1
20150223845 Larroque-Lahitette Aug 2015 A1
20150305782 Baccelli et al. Oct 2015 A1
20150320448 Legallois Nov 2015 A1
20150342657 Voisard Dec 2015 A1
20150366598 Douget et al. Dec 2015 A1
20160038194 Belliard et al. Feb 2016 A1
20160106478 Simpson Apr 2016 A1
20160157896 Palmer Jun 2016 A1
20160213404 Al Shail et al. Jul 2016 A1
20160242825 Simpson et al. Aug 2016 A1
20160249957 Deneuvillers Sep 2016 A1
20160331431 Gephart Nov 2016 A1
20170172633 Simpson et al. Jun 2017 A1
20180014857 Albert Jan 2018 A1
20180021077 Simpson et al. Jan 2018 A1
20180110544 Simpson Apr 2018 A1
20180153591 Schafer Jun 2018 A1
20180263668 Hsu et al. Sep 2018 A1
20180289404 Shoshtaev Oct 2018 A1
20180296251 Palmer Oct 2018 A1
20180353217 Rice Dec 2018 A1
20190059958 Mast Feb 2019 A1
20200078067 Gephart et al. Mar 2020 A1
Foreign Referenced Citations (10)
Number Date Country
2014203469 Jul 2014 AU
2014201336 Oct 2014 AU
2014201339 Oct 2014 AU
2725993 Jun 2012 EP
2730242 Sep 2013 EP
2716262 Sep 2014 EP
2002009604 Feb 2002 WO
2006119447 Nov 2006 WO
2013001180 Jan 2013 WO
2016116692 Jul 2016 WO
Non-Patent Literature Citations (7)
Entry
Feb. 4, 2021, PCT/US2020/054610, International Search Report (3 pgs).
Feb. 4, 2021, PCT/US2020/054610, Written Opinion (4 pgs).
NPL: Biomechanical Evaluation of Spinal Fixation Devices: II. Stability Provided by Eight Internal Fixation Devices, Published May 15, 1988, (6 pgs).
Machine Translation: WO2016116692, dated Jul. 28, 2016, Pasquet et al. (11 pgs).
Machine Translation: EP2716262B1, dated Sep. 4, 2014 Medicrea International, (17 pgs).
Machine Translation: WO2013001180, dated Jan. 3, 2013, Im-planet, Societe Anonyme (11 pgs).
Machine Translation: EP2725993B1, dated Jun. 27, 2012, Im-planet, Societe Anonyme (21 pgs).
Related Publications (1)
Number Date Country
20210100598 A1 Apr 2021 US