In general, the present invention relates to items, such as bolas, where two balls are joined together by a flexible tether. The present invention also relates to toy balls that contain internal lighting units for internally illuminating the toy balls.
Tethered balls, in the form of bolas, have existed as a hunting weapon throughout recorded history. Bolas consist of two balls, rocks or other weighted objects that are joined together by a flexible tether. Bolas typically have long tethers and are spun as they are thrown. When the bola strikes an animal's legs, wings or neck, the weighted objects cause the tether to wrap around the animal, therein incapacitating the animal.
Bolas are ancient weapons that are rarely used for hunting in the modern world. However, the physics of a bola are fascinating and have been adapted to other less deadly products. For example, in the toy industry, bolas have been made using rubber balls and string tethers. The toy bolas are used as projectiles in games where the target has poles or pegs around which the toy bola can wrap. Such prior art toy bolas are exemplified in U.S. Pat. No. 5,522,597 to Hanks, entitled Game Apparatus, and U.S. Pat. No. 5,375,848 to Colemant, entitled Bola Ball Game.
In such prior art, the balls used with the tether tend to be of a large size and a large mass. The tether provides significant wind resistance. As such, the balls must have a significant mass in order to be thrown any useful distance. A large diameter is also needed so that the ball can be effectively gripped and thrown. Accordingly, a diameter of at least 2.5 inches is required to enable the toy balls to be readily grasped and thrown. Few, if any, hand-thrown bolas exist with balls under a two inch diameter. This is because the balls become too small to be comfortably grasped and thrown. Also small diameter balls tend to lack the mass needed for a bola to travel long distances and effectively wrap around a target object.
In the toy industry, there are also many toys that are internally illuminated and contain activation mechanisms that are triggered by motion. Such illumination units have been placed in balls and in other objects that are thrown, bounced, or caught. Such prior art is exemplified by U.S. Pat. No. 7,223,150 to Chernick, entitled Illuminated Elastomeric Flying Disc And Its Method Of Manufacture.
In the present invention, the concept of a bola is transformed into a unique skill game toy. The skill game toy has two balls joined by a tether. However, the tether is shortened and the balls have a small diameter. The skill game toy is designed not to be thrown at an object, but rather, to be flipped and twirled in a user's hand. The combination of ball size and tether length combine to produce an advancement in the art, as is described and claimed below.
The present invention is a skill toy that is juggled, spun, and flipped in one hand or between both hands. The skill toy has two subassemblies that each contains a rounded translucent shell. The translucent shell surrounds an internal illumination unit, wherein the rounded translucent shell has a maximum diameter of under two inches. The illumination units are motion activated and contain lights that actually internally illuminate the translucent shell.
A tether joins the subassemblies together. The tether has a first end and an opposite second end. The tether can be selectively attached to, and detached from, the two subassemblies. The tether has a length of between four inches and six inches, so it is just long enough to span the back of a hand.
For a better understanding of the present invention, reference is made to the following description of an exemplary embodiment thereof, considered in conjunction with the accompanying drawings, in which:
Although the present invention toy assembly can be embodied in many ways, only one embodiment of the present invention is illustrated and described. The exemplary embodiment is selected in order to set forth one of the best modes contemplated for the invention. The illustrated embodiment, however, is merely exemplary and should not be considered a limitation when interpreting the scope of the appended claims.
Referring to
Each of the ball-shaped subassemblies 12 has a spherical shell 16. The spherical shell 16 is preferably made of a translucent elastomeric material. The elastomeric material has a high durometer, so as to provide the spherical shell 16 with a high resiliency and the ability to rebound well when impacted against a hard surface. Accordingly, it will be understood that the ball-shaped subassemblies 12 will bounce when dropped against a hard surface. Likewise, they will bounce against each other if the two ball-shaped subassemblies 12 collide while being manipulated.
An electronic unit 18 is disposed within each spherical shell 16. Each electronic unit 18 consists of a small circuit board 20 that supports a battery 22, a switch 24, a logic circuit 26 and at least one LED 28. The switch 24 is preferably an accelerometer switch or another such switch that can sense when the circuit board 20 is experiencing physical movement. The logic circuit 26 turns the LEDs 28 on for a predetermined period of time, such as a few seconds, each time movement is detected. Once the movement stops and the predetermined period of time for activation has expired, the logic circuit 26 turns the LEDs 28 off.
The LEDs 28 are bright enough to shine light through the translucent material of the spherical shell 16. As such, the spherical shell 16 appears to be internally illuminated when it experiences movement. The circuit board 20 can flash or sequence the lighting of the LEDs 28 when the LEDs 28 are activated, therein producing changing light patterns in the internal illumination of the ball-shaped subassemblies 12.
Each of the ball-shaped subassemblies 12 also includes a receptacle 30. The receptacle 30 is sized to receive and engage a connector 32, which is used to terminate the tether 14. The tether 14 can be a length of string, but is preferably a length of flat woven ribbon, like that of a sneaker shoelace. A flat ribbon adds a level of comfort to the toy assembly 10, as is later explained. A tether 14 of flat ribbon also provides a widened surface for a manufacturer's graphics.
The tether 14 has two free ends 34, 36. The ends 34, 36 of the tether 14 are terminated with connectors 32. The connectors 32 at either end 34, 36 of the tether 14 are identical. The connectors 32 are dimensioned and sized to engage the receptacles 30 formed into each of the ball-shaped subassemblies 12. The connectors 32 preferably engage the receptacles 30 with an interference fit, wherein friction keeps the connectors 32 engaged within the receptacles 30. Releasable mechanical features, such as threading or a tab lock can also be used. Regardless, it will be understood that each ball-shaped subassembly 12 will remain attached to the tether 14 and will not inadvertently separate. However, a user can detach each of the ball-shaped subassemblies 12 from the tether 14 when desired.
Referring to
With the size of the ball-shaped subassemblies 12 and the length of the tether 14 described, a person can perform a variety of tricks with the toy assembly 10. By way of example, one of the tricks is called a roundabout. To perform a roundabout, a user holds the toy assembly 10 in one hand with a first of the ball-shaped subassemblies 12A in the palm under the ring finger and a second of the ball-shaped subassemblies 12b pinched between the thumb and forefinger. See
This causes the second of the ball-shaped subassemblies 12b to rotate behind the hand. See
This can end the trick. However, the tether 14 is taut and can transfer the energy of momentum to the first of the ball-shaped subassemblies 12A. The pinky finger can be bent forward to release the first of the ball shaped subassemblies 12A. The first of the ball-shaped subassemblies 12A then uses the momentum to rotate away from the palm and up over the forefinger to the back of the hand. See
It will be understood that the size of the ball-shaped subassemblies 12 and the length of the tether 14 between the ball-shaped subassemblies 12 is critical to the ability to perform a maneuver such as is described between
Since many of the tricks involve swinging and wrapping the tether 14 around the hand, a tether 14 with a flat profile is preferred. A tether 14 with a flat profile prevents the tether 14 from rolling along a finger or the edge of the hand. A tether 14 with a flat profile also inhibits the tether 14 from cutting into the hand should the tether 14 come into contact with skin while taut.
It will be understood that the embodiment of the present invention that is illustrated and described is merely exemplary and that a person skilled in the art can make many variations to that embodiment. For instance, the ball-shaped subassemblies can be made with an oblong shape or a pear shape as a matter of design choice. All such embodiments are intended to be included within the scope of the present invention as defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
442675 | Wilcox | Dec 1890 | A |
2408160 | Brunner | Sep 1946 | A |
2500073 | Hayes | Mar 1950 | A |
2852261 | Meminger | Sep 1958 | A |
3049352 | Hancock | Aug 1962 | A |
3357705 | Blanchard | Dec 1967 | A |
4192044 | Ballerini | Mar 1980 | A |
4266781 | Blue | May 1981 | A |
5236383 | Connelly | Aug 1993 | A |
5294129 | Brown | Mar 1994 | A |
5375848 | Coleman | Dec 1994 | A |
5377995 | Clark | Jan 1995 | A |
5522597 | Hanks | Jun 1996 | A |
5580336 | Coallier | Dec 1996 | A |
5934784 | Dion | Aug 1999 | A |
6308956 | Reid | Oct 2001 | B1 |
6889982 | Gove | May 2005 | B1 |
7223150 | Chernick et al. | May 2007 | B2 |
7328902 | White | Feb 2008 | B1 |
7374496 | Grant | May 2008 | B2 |
8454459 | Reed | Jun 2013 | B1 |
20040135318 | Long | Jul 2004 | A1 |
20050082761 | Lynch | Apr 2005 | A1 |
20060094573 | Weck | May 2006 | A1 |
20070035093 | Fuchs | Feb 2007 | A1 |
20070246886 | Hunt | Oct 2007 | A1 |
20070257438 | Deal | Nov 2007 | A1 |
20080093803 | Vallee | Apr 2008 | A1 |
20090278316 | LaMarte | Nov 2009 | A1 |
20110037226 | Nickles | Feb 2011 | A1 |
Entry |
---|
“Official Rules—Ladder Golf”, <https://laddergolf.com/pages/official-rules>, pp. 1-7, retrieved on Nov. 13, 2017. |