Tethered security system with wireless communication

Information

  • Patent Grant
  • 11741800
  • Patent Number
    11,741,800
  • Date Filed
    Friday, May 14, 2021
    3 years ago
  • Date Issued
    Tuesday, August 29, 2023
    10 months ago
Abstract
Embodiments of the present invention are directed to security systems for securing an item of merchandise from theft or unauthorized removal. For example, the security system may include a sensor configured to be coupled to the item of merchandise and a base configured to removably support the sensor and the item of merchandise thereon. The base includes a charging circuit for providing power to the sensor and/or the item of merchandise. The security system also includes a controller operably coupled to the base and a key configured to wirelessly communicate with the base and/or controller. The sensor is configured to wirelessly communicate with the base.
Description
BACKGROUND OF THE INVENTION

Embodiments of the present invention relate generally to security systems for protecting items of merchandise, such as consumer electronics products.


It is common practice for retailers to provide demonstration models of relatively expensive consumer electronics products, such as handheld devices, tablets, and laptop computers, so that a potential purchaser may examine the product more closely and test the operation of its features. A working demonstration model, however, increases the possibility that the demonstration model will be stolen or removed from the display area by an unauthorized person. As a result, demonstration models of consumer electronics products are typically protected by a security system that permits a potential purchaser to examine and operate the product, while reducing the likelihood that the demonstration model will be stolen or removed from the display area.


The security system displays an item of merchandise so that a potential purchaser can readily view and, in some instances, operate the item when making a decision whether to purchase the item. At the same time, the item of merchandise is usually physically secured on the security system so as to prevent, or at least deter, theft of the item. The merchandise display security system may also include an alarm that is activated to alert store personnel in the event that a shoplifter attempts to separate the item of merchandise from the security system.


BRIEF SUMMARY

Embodiments of the present invention are directed to security systems for securing an item of merchandise from theft or unauthorized removal. In one embodiment, the security system includes a sensor configured to be coupled to the item of merchandise and a base configured to removably support the sensor and the item of merchandise thereon. The base includes a charging circuit for providing power to the sensor and/or the item of merchandise. The security system also includes a controller operably coupled to the base and a key configured to wirelessly communicate with the base and/or controller. The sensor is configured to wirelessly communicate with the base.


In one embodiment, the security system may include a sensor configured to be coupled to the item of merchandise and a base configured to removably support the sensor and the item of merchandise thereon. The base may also include a charging circuit for providing power to the sensor and/or the item of merchandise. The system may further include a cable connected to the sensor and the base, wherein the cable includes at least one conductor for defining a sense loop and the charging circuit and the sense loop are electrically isolated from one another.


In another embodiment, a security system for securing an item of merchandise is provided. The security system includes a sensor configured to be coupled to the item of merchandise and a base configured to removably support the sensor and the item of merchandise thereon. The base includes a charging circuit for providing power to the sensor and/or the item of merchandise when the sensor is supported on the base. In addition, the security system includes a cable connected to the sensor at one end and connected to the base at an opposite end, wherein the cable includes at least one conductor for defining a sense loop. The sensor is configured to wirelessly communicate with the base, and the base is configured to generate an alarm signal in response to the wireless communication with the sensor or an interruption in the sense loop.


In another embodiment, a method for securing an item of merchandise is provided. The method includes coupling a sensor to an item of merchandise and connecting a cable to the sensor for defining a sense loop between the sensor and a base. The method also includes positioning the sensor on the base for removably supporting the sensor and the item of merchandise thereon, wherein the base includes a charging circuit for providing power to the sensor and/or the item of merchandise and configured to wirelessly communicate with the sensor. The base is configured to generate an alarm signal in response to wireless communication with the sensor or an interruption in the sense loop


In one embodiment, a method for securing an item of merchandise is provided. The method includes coupling a sensor to an item of merchandise and connecting a cable to the sensor for defining a sense loop between the sensor and a base. The method also includes positioning the sensor on the base for removably supporting the sensor and the item of merchandise thereon, wherein the base includes a charging circuit for providing power to the sensor and/or the item of merchandise. The charging circuit and the sense loop are electrically isolated from one another.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a security system according to one embodiment of the present invention.



FIG. 2 is a schematic of a security system according to another embodiment of the present invention.



FIG. 3 is a schematic view of a security system according to an additional embodiment of the present invention.



FIG. 4 is a schematic view of a security system according to one embodiment of the present invention.



FIG. 5 is a schematic view of a security system according to an embodiment of the present invention.



FIG. 6 is a schematic view of a security system according to another embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Referring to the accompanying figures wherein identical reference numerals denote the same elements throughout the various views, embodiments of security systems according to the present invention for protecting an item of merchandise against theft or unauthorized removal are disclosed. The item of merchandise may be any item, including any number of consumer electronics products (e.g. hand-held device, cellular phone, smart phone, tablet, laptop computer, etc.). The security systems described herein are operable for securing the item of merchandise against theft or authorized removal, while at the same time permitting a potential purchaser to closely examine and operate the item of merchandise in a display area. The security system permits a potential purchaser to examine and test the item of merchandise, while reducing the likelihood that the item of merchandise will be stolen or removed from the display area by an unauthorized person. According to various embodiments, FIG. 1 shows a security system for use with a handheld electronic device (e.g., a phone or tablet), FIG. 2 shows a security system for use with a camera (e.g., a point-and-shoot camera), and FIG. 3 shows a security system for use with a camera (e.g., a camera with a removable lens). The systems shown and described herein are suitable for securing an item of merchandise in a residential or commercial environment, as well as a retail environment, and furthermore, is not intended to be limited to use only as a security display device for protecting against theft and/or unauthorized removal.


According to one embodiment shown in FIG. 1, the security system 10 generally comprises a sensor 12 configured to be secured to an item of merchandise 14. The sensor 12 may be electrically connected to an adapter cable 16 with a connector 17 that is configured to electrically connect to an input jack of the item of merchandise 14. The security system 10 may also include a base 18 that is configured to removably support the sensor 12 and the item of merchandise 14 thereon. In some embodiments, the base 18 and the sensor 12 include one or more contacts 28, 40 for facilitating contact charging when the sensor is supported on the base. In addition, the security system 10 also includes a cable 20 that is secured to the sensor 12 at one end and operably engaged with a recoiler 22 at an opposite end. As explained in further detail below, a sense circuit or loop defined through the cable 20 may be electrically isolated from any charging circuit used to charge the sensor 12 and/or the item of merchandise 14. As such, the sense loop may be used to detect various security events associated with the cable 20, such as the cable being cut, shorted, and/or disconnected. The charging circuit allows for charging of the item of merchandise 14 and/or power source carried by the sensor 12. The sensor 12 may detect security events associated with the sensor and/or the item of merchandise 14, such as the item of merchandise being removed from the sensor.


The sensor 12 may be secured to the item of merchandise 14 using any desired technique, such as an adhesive and/or mechanical brackets. In addition, the adapter cable 16 may be hardwired to the sensor 12 at one end, and the connector 17 at the opposite end may be configured to be removably inserted into the input jack of the item of merchandise 14. Thus, the sensor 12 and the item of merchandise 14 may be electrically connected via the adapter cable 16 and connector 17. The sensor 12 may include a printed circuit board (PCB) 24, circuitry, or the like. Moreover, the sensor 12 may include a power source 26, such as a battery or capacitor. As noted above, the sensor 12 may include one or more electrical contacts 28. In some embodiments, the sensor 12 includes a plurality of electrical contacts 28. The electrical contacts 28 may be in electrical communication with the PCB 24 and the adapter cable 16. Alternatively, the electrical contacts 28 may be electrically connected to only the adapter cable 16.


In some embodiments, the sensor 12 may not supply power to the item of merchandise 14 when the item is lifted from the base 18. Rather, the item of merchandise 14 may operate using its own power source when lifted from the base 18. Should a security event occur, the sensor 12 may utilize its power source 26 to generate a security signal as explained in further detail below.


In one alternative embodiment, the sensor 12 may be configured to receive power from a battery of the item of merchandise 14. The sensor 12 may utilize the power provided from the battery to perform one or more security functions (e.g., communicating with the base 18). Thus, unlike conventional sensors 12 that utilize its own power source, the sensor may be configured to utilize the power source of the item of merchandise 14. In some embodiments, the sensor 12 may be configured to toggle between transmitting and receiving power to an item of merchandise 14. In another example, the item of merchandise 14 may utilize USB “on-the-go” or like functionality for facilitating power transfer from the item of merchandise to the sensor 12. The sensor 12 may be configured to toggle to receiving power from the item of merchandise 14 when the sensor is lifted from the base 18 and is no longer receiving power.


Moreover, the sensor 12 may include wireless communication circuitry 30 for communicating with the base 18. As explained in further detail below, the wireless communication circuitry 30 may be configured to wirelessly communicate with the base 18 in response to a security event. For example, a security event may occur when the sensor 12 is removed from the item of merchandise 14 in an unauthorized manner, or the adapter cable 16 is removed from the item of merchandise in an unauthorized manner. In some embodiments, the sensor 12 includes a switch 33 (e.g., a plunger switch) that is configured to detect when the sensor is removed from the item of merchandise 14 in an unauthorized manner.



FIG. 3 shows another embodiment of a security system. The embodiment shown in FIG. 3 may be used for items of merchandise 14 such as cameras or the like and function in a similar manner as that described above. In this embodiment, the sensor 12 includes an electrical coupling 35 between the electrical contacts 28 and the battery 19 of the item of merchandise 14. The electrical coupling 35 may be in various forms, such as a flexible circuit or a cable including one or more conductors. Thus, power may be transferred directly to the battery 19 of the item of merchandise 14 when the sensor 12 is supported on the base 18. Moreover, the sensor 12 may also include a secondary sensor 37. The secondary sensor 37 could be used to protect a removable component of the item of merchandise 14, such as a removable lens. In some embodiments, the electrical coupling and the secondary sensor are similar to that described in U.S. Provisional Application No. 61/915,197, filed on Dec. 12, 2013, and International Application No. PCT/US2014/62768, filed on Oct. 29, 2014, the contents of which are hereby incorporated by reference in their entirety herein.


The base 18 may be configured to be supported on a fixed support or display surface, such as a counter, shelf, fixture, or the like. Thus, the base 18 may be located entirely above the support surface. The base 18 may be secured to the support surface using any desired technique such as an adhesive and/or fasteners. The base 18 may include a recoiler 22 as discussed above. As such, the cable 20 may be extended from the base 18 when the sensor 12 and the item of merchandise 14 are lifted from the base, and the cable may be retracted into the base when the sensor and the item of merchandise are returned to the base. The recoiler 22 may be spring biased in some embodiments such that the cable 20 is automatically retracted within the base 18. Furthermore, the base 18 may include a PCB 32, circuitry, or the like that is in electrical communication with the cable 20. In this regard, the cable 20 may include one or more electrical conductors extending along the length of the cable. In some cases, the cable 20 may include a pair of conductors for defining a sense loop or circuit and conducting an electrical signal. In other cases, the cable 20 may include a single conductor, such as an optical conductor for conducting an optical signal (e.g., a fiber optic cable).


The base 18 may further include an alarm mechanism 34, such as a piezoelectric transducer, for generating an audible alarm in response to a security event. The base 18 may also include a battery 31 or power source that is in electrical communication with the PCB 32. The base 18 may include a port 36 that is configured to facilitate communication with a key 39. For example, the port 36 may facilitate wireless communication with a key 39 for arming or disarming the security system 10. In one embodiment, the key 39 is an infrared key configured to arm/disarm the alarm with a unique identifying code. In some embodiments, the key 39 is similar to the IR and IR2 keys manufactured by InVue Security Products Inc. The base 18 may include a switch 38 (e.g., a plunger switch) that is configured to detect when the base is removed from the support surface in an unauthorized manner. As such, the security system 10 may be a “standalone” system that is configured to detect various security events and configured to be supported on a display surface.


As discussed above, the base 18 may include one or more electrical contacts 40. The contacts 28, 40 of the base 18 and the sensor 12 are configured to align with one another and contact one another when the sensor is supported on the base. Thus, the base 18 and the sensor 12 are in electrical communication with one another when the sensor is supported on the base. The base 18 may be electrically connected to a power source 42 which is configured to provide power to the base and the one or more electrical contacts 40 in the base. The power source 42 may include a connector at a free end (e.g., a USB or like plug). The base 18 may also include charging circuitry 45 that is configured to facilitate power transfer from the external power source 42 and the electrical contacts 40. Thus, when the sensor 12 is supported on the base 18, power is able to be transferred between the contacts 28, 40 and to the sensor. The adapter cable 16 is electrically connected to the sensor contacts 28 as power is delivered such that power is provided to the item of merchandise 14. Therefore, the item of merchandise 14 may be powered by power transferred thereto and may be used to charge a battery associated with the item of merchandise. In some embodiments, any voltage adaption occurs in the base 18. Voltage adaption may be needed in order to accommodate different items of merchandise 14 that require different operating voltages. Any voltage adaption may occur prior to power being provided to the contacts 28 on the sensor 12. Thus, the sensor 12 and adapter cable 16 do not provide any voltage adaption. In one embodiment, the adapter cable connector 17 may include an LED or visual indicator that is activated when the item of merchandise 14 is being charged. The LED may be deactivated when the sensor 12 is lifted from the base 18.


In some cases, the base 18 and the sensor 12 may include an electrical contact that detects that the sensor is lifted off of the base. For example, the sensor 12 and base 18 may each include a contact that is configured to engage one another when the sensor is supported on the base. These contacts may not transfer power. However, the contact on the base may communicate with the PCB 32 to indicate when the sensor 12 has been lifted off of the base and to cease transferring power to the electrical contacts 28, 40. This arrangement of contacts may reduce arcing and power surges when the sensor 12 is placed back on the base 18 since power will no longer be transferred to the contacts on the base after the sensor is lifted.


An end of cable 20 may be mechanically secured to the sensor 12. Thus, the cable 20 is not electrically connected to the sensor 12 in any way, and the conductors in the cable are electrically isolated from the power transmitted to the sensor and the item of merchandise 14. In one example, the cable 20 may be attached to the sensor 12 with a swivel 44 or like connector (e.g., an audio jack connector) to allow for rotational movement between the sensor and the cable. The swivel 44 could be permanently attached to the sensor 12 or could be removably attached if desired. In some embodiments, the sensor 12 may include a capacitor to aid in the transition between a position where the item of merchandise 14 and/or sensor 12 are being charged to a position where the item of merchandise and/or sensor are no longer being charged. Thus, a false alarm may be avoided if power is lost momentarily when power to the sensor is transitioned between power sources. Although the aforementioned embodiments describe that power may be transferred via contact charging, it is understood that other techniques could be used to transfer power to sensor 12 and the item of merchandise 14. For example, inductive charging functionality could be employed for transferring power.


As discussed above, the sensor 12 may be configured to emit a wireless signal in response to a security event. In one embodiment, the base 18 may include wireless communication circuitry 56 that is configured to communicate with the wireless communication circuitry 30 of the sensor 12. For example, the base 18 may be configured to receive the wireless signal emitted by the sensor 12 and to generate an alarm signal (e.g., an audible and/or a visible alarm) in response thereto. In some embodiments, the sensor 12 includes a radio transmitter that is configured to emit a signal at a frequency that is detectable by a radio receiver in the base 18. Upon receipt of the signal, the base 18 would generate an alarm signal. Other wireless communication techniques are possible such as, for example, Bluetooth, Bluetooth low energy (BLE), WiFi, or the like. The base 18 may be configured to “listen” for the wireless signal emitted by the sensor 12 and generate an alarm signal upon receiving the signal. Thus, in some bases, one-way communication from the sensor 12 to the base 18 occurs.


In one embodiment, the sensor 12 and the base 18 are configured to be paired with one another. For example, the sensor 12 may include a unique identifier (e.g., a serial number) that is communicated to the base 18, such as via respective wireless communication circuitry 30, 56. The sensor 12 may be configured to emit a signal to the base 18 whereby the base recognizes the sensor's identifier. Thus, no alarm signal is generated when the base 18 is receiving the signal from the sensor 12. However, the base 18 may be configured to detect when the signal is no longer received and to generate an alarm signal in response thereto. In one example, the sensor 12 and base 18 may be paired with one another when the sensor is supported on the base. This pairing may occur each time the sensor 12 is placed on the base 18. Pairing between a sensor 12 and base 18 may reduce false alarms and cross talk between other sensors and bases that are proximate to one another.


In another embodiment, a central controller may be employed that is configured to communicate with a plurality of sensors 12 and/or bases 18. For example, the central controller may be configured to wirelessly communicate with a plurality of sensors 12 having unique identifiers. The controller may be paired with each of the sensors 12 and be configured to generate an alarm signal when communication with a sensor is lost. The controller may also generate an alarm signal if the sensor 12 emits a security signal to indicate that an alarm event has occurred (e.g., the sensor is removed from the item of merchandise 14). The controller may also be configured to communicate with a respective base 18 so that the base may generate an alarm signal when communication with an associated sensor 12 ceases or when the sensor emits a security signal. In other embodiments, the controller may be integrated with the base 18.


It is understood that the cable 20 may be any suitable cord, tether, or the like. In addition, the cable 20 may include one or more electrical conductors for transmitting electrical, security, and/or communication signals. In addition, the cable 20 may be a single strand, multi-strand, or braided. The cable 20 may be flexible to facilitate extension and retraction with the base 18, and in some embodiments, may be formed of a cut-resistant material. Furthermore, the cable 20 may have various cross sections, such as round or flat. In some embodiments, the security system 10 may not include a recoiler 22. Thus, the cable 20 could be a straight or coiled cable that is secured to the sensor 12 at one end and electrically connected to base 18 at an opposite end.


Various sensing techniques may be employed for determining whether the cable 20 has been cut or removed from the sensor 12 in an unauthorized manner. For example, the cable 20 may include a pair of electrical conductors that define a sense loop therethrough. Thus, should the sense loop be interrupted (e.g., by cutting or shorting the cable 20), the PCB 32 in the base 18 may detect the interruption and generate an alarm signal. In some embodiments, a resistor may be disposed within the sense loop at an end of the cable 20 secured to the sensor 12. Changes in the resistance may be used to determine whether the cable 20 has been cut or shorted. For example, a range of resistance values between the cable 20 being shorted and the cable fully extended from the base 18 may be used to determine resistance values indicative of cutting or shorting.


In an additional embodiment, an end of the cable 20 operably engaged with the recoiler may include an inductive coil 52, and the base may also include an inductive coil 54 (see, e.g., FIG. 4). The inductive coils 52, 54 may be configured to communicate via inductance to establish a sense loop through the cable 20. In one example, the inductive coil 54 in the base is stationary, while the other inductive coil 52 is coupled to the recoiler 22 and is configured to rotate about the stationary inductive coil as the cable 20 is extended and retracted. The stationary inductive coil 54 could be sized and configured to be positioned within the recoiler inductive coil 52 such that the rotating inductive coil surrounds the stationary inductive coil. However, the inductive coils 52, 54 only need to be positioned proximate to one another to allow for inductive communication. As such, the stationary 54 and recoiler 52 inductive coils are configured to be in electrical communication with one another. As current is transmitted through the recoiler inductive coil 52, an inductance is transmitted to the stationary inductive coil 54 and through the conductors in the cable 20. This inductance may be in the form of a particular waveform. If the cable 20 is cut or shorted, a change in inductance or the waveform may be detected by the base 18. The base 18 may then generate an alarm signal in response to the change in inductance. In some embodiments, the end of the cable 20 secured to the sensor 12 may include a resistor or a capacitor defined in the sense loop. The resister or capacitor may be used to detect security events, such as an authorized person attempting to short the cable between the ends of the cable 20.


The sensor 12 may include an additional pressure switch 47 that is configured to operably engage an end of the cable 20 (see, e.g., FIG. 1). For instance, the sensor 12 may include a pressure switch 47 that is configured to engage the end of the cable 20 when the cable is secured to the sensor. The pressure switch 47 may be electrically connected to the sensor's PCB 24 such that should the end of the cable 20 be removed in an unauthorized manner, the sensor 12 may detect the removal and be configured to emit a wireless signal to the base 18 to generate an alarm signal. Notably, this pressure switch 47 is also electrically isolated from the cable 20, as the pressure switch may be a mechanical engagement with the cable only. Moreover, is understood that various types of switching devices may be used that allows the PCB 24 to detect when the cable 20 is attached or detached from the sensor 12.


In an alternative embodiment, the end of the cable 20 secured to the sensor 12 may not include a resistor or capacitor. Rather, the end of the cable 20 may include an inductive coil that is configured to electrically communicate with an inductive coil in the sensor 12. Thus, in this embodiment, a pair of inductive coils may be provided at the sensor 12 level and at the base 18 level. When the sensor 12 is lifted from the base 18, power for driving the sensor inductive coil may be provided by the battery of the item of merchandise 14 or the capacitor. As such, electrical communication between the sensor 12 and inductive coils and interruption in the communication is detectable when the inductive transfer is interrupted.


A separate lock mechanism 50 may be disposed within the base 18 for locking the base to the sensor 12 to prevent the sensor and item of merchandise 14 from being lifted from the base. For example, a fastener may be used to secure the base 18 to the sensor 12. Such a lock may be employed after hours in a retail environment to prevent unauthorized removal and further security of the item of merchandise 14, as the cable 20 will be inaccessible. It is also understood that the lock mechanism 50 could incorporate electro-mechanical means for locking the sensor 12 to the base 18. In one example, the lock mechanism 50 could be actuated in response to communication with a key 39. For example, in some embodiments, a shape memory material (e.g., Nitinol) may be used in connection with a lock mechanism 50. For example, electrical power provided by the key 39 may be transferred to the lock mechanism 50 for causing a change in shape in the shape memory material (e.g., a change in length), thereby actuating a mechanical lock mechanism. In one example, where a shape memory material is utilized, a change in shape of the shape memory material may cause mechanical actuation (e.g., linear and/or rotary movement) of the lock mechanism 50. The shape memory material may be operably engaged with a lock mechanism 50 in any number of configurations to facilitate such actuation. Moreover, the shape memory material may be any suitable material, such as a metal, a polymer, or a combination thereof, that is configured to change its shape (e.g., length, area, etc.) in response to an electric current or a change in temperature and to return to its original shape after the electric current is no longer transferred therethrough. For example, transferring current through the shape memory material may cause the material to be heated and thereby contract. Upon removal of the current, the shape memory material may return to its original shape. In some embodiments, the lock mechanism 50 may utilize shape memory material and be similar to that disclosed in in U.S. application Ser. No. 14/328,051, entitled Merchandise Security Devices for Use with an Electronic Key, the contents of which are hereby incorporated by reference in their entirety herein.


Therefore, embodiments of the present invention may provide several advantages. As noted above, the sense loop and the charging circuit may be electrically isolated from one another. Because the cable 20 does not require conductors for transferring power, the cable may only require one or two conductors, which reduces the overall diameter of the cable. In addition, since the conductor(s) in the cable 20 are electrically isolated from the charging circuit and any voltage adaption may occur in the base 18, the cable may also be simplified in construction in order to define a sense loop. It is also possible that a greater effective length of cable 20 may be used for a similarly sized recoiler 22 since a smaller diameter wire may be used. Moreover, the pull force required to extend the cable 20 from the recoiler 22 may also be reduced in view of larger cables (e.g., less than 1 lb). Moreover, the base 18 may not require a slip ring for electrically communicating with the recoiler 22 and the cable 20. Similarly, no slip may be required for electrical communication between the sensor 12 and the end of the cable 20 since only a mechanical connection takes place. It is also possible that less “wear and tear” may take place on the cable 20, sensor 12, and base 18 since lighter and smaller components may be used.



FIG. 5 illustrates an additional embodiment of a security system 60. The security system 60 may include a security system 10 similar to that discussed above in FIGS. 1-4, including a sensor 12 and a base 18. FIG. 5 demonstrates that various add-on features may be utilized with the security systems discussed above. For example, the security system 60 may include a hub 62 configured to operably engage a stand 18. The hub 62 may include an interface (e.g., a plug connector) that is configured to releasably engage the stand 18, such as an input port 64, and to provide electrical communication therebetween. It is understood that such a connection between the hub 62 and the base 18 may be reversed in some embodiments. The hub 62 may be located such that a bottom surface of the base 18 may be positioned on the hub and supported thereby. Thus, the hub 62 may be positioned between the base 18 and the support surface, or the hub could be positioned below the support surface. In some cases, the base 18 may engage the hub 62 and be sized such that the hub is inaccessible when the base is engaged with the hub. In one example, the base 18 could include a port (e.g., a micro-USB or USB-A port) that is configured to engage a corresponding connector on the hub 62 (e.g., a micro-USB or USB-A connector). When the base 18 is connected to the hub 62, electrical, data, security, and other signals may be able to be transferred therebetween. The hub 62 may allow for ready replacement of the base 18 or an entire security system 10. Thus, retailers may be able to easily replace, repair, remove, and swap security systems 10 or components thereof. And as such, the hub 62 may facilitate a modular system that is capable of use with a plurality of security systems 10.


As shown in FIG. 5, the hub 62 may further be operably engaged with a digital interface box (“DIB”) 66 or like controller and a power source 68 (e.g., an OEM power source). The DIB 66 and power source 68 may be configured to releasably engage the hub 62 and/or stand 18, such as below a support surface, although hard wiring or other connections may be used. The power source 68 may transmit power to the hub 62 which allows for power to be transmitted to the system 10. The DIB 66 may facilitate data communication with the system 10. For example, the DIB 66 may be operably engaged with a laptop 70 or other electronic device configured to provide data regarding an item of merchandise 14 for digital signage. The laptop 70 may be managed by a retailer. Likewise, the DIB 66 may be configured to obtain data regarding the item of merchandise 14 and provide the data to the laptop 70. For instance, the data may be the number of pickups of the sensor 12 off of the base 18, the number of put downs of the sensor onto the base, the power status of the item of merchandise 14, the lock down status of the system 10, the alarm status of the system, the power level of a back-up battery in the sensor and/or base, etc. In addition, the DIB 66 may be configured to receive data from a security system 10 that results in performance of a particular function, such as directing a camera to record the location of an alarming system 10 or actuating digital signage. It is understood that the hub 62 may be omitted in some embodiments. Thus, the DIB 66 and/or power supply 68 may be configured to connect directly to the base 18 (e.g., via port 64).



FIG. 6 shows another embodiment of a security system 100. The security system 100 may also be configured to operate with the security systems 10 discussed above. As shown in this embodiment, the hub 62 may also be operably engaged with other optional features, such as a motion sensor 72 and a digital price tag 74. The motion 72 sensor could be used for detecting when the sensor 12 is lifted off of the base 18, such as for triggering digital signage for providing information regarding the item of merchandise M. The motion sensor 72 could also be configured to detect when a customer or potential buyer approaches a security system 10, such as for actuating digital signage or other features. The digital price tag 74 could be used to display various features of the item of merchandise 14, such as a price of the item, and may be used in conjunction with the motion sensor 72 to display various features associated with the item of merchandise.



FIG. 6 also shows that the system 100 may include an integrated DIB and power supply 76 that may be configured to wirelessly communicate with the item of merchandise 14, the sensor 12, and/or the key 39. Of course, the DIB/power source may be separate components if desired. The DIB/power supply 76 may be configured to communicate with one system 10 or in some cases, may be configured to communicate with a plurality of systems 10. In one embodiment, the item of merchandise 14, key 39, and DIB/power supply 76 may be wirelessly paired with one another (e.g., via BLE). The key 39 may be configured to communicate with the DIB/power source to perform arming/disarming functions and/or a lock down function, as discussed above. Moreover, the item of merchandise 14 may be configured to communicate directly with the DIB/power source 76. For example, the item of merchandise 14 may include a software application that allows for communication with the DIB/power source 76.


In some embodiments, the DIB/power source 76 may be configured to communicate with a retailer's laptop 70, tablet 78, or like electronic device through a cloud network 80. In one particular embodiment, a plurality of DIB/power supplies 76 and/or systems 10 are configured to communicate with one or more retailer's electronic devices 70, 78 over the network 80. For instance, the cloud network 80 may facilitate communication with a plurality of tablet devices 78 used by sales associates within a retail environment. Communication over the network 80 may occur wirelessly (e.g., via radiofrequency communication). One or more gateways and/or nodes may be used to facilitate communication between the DIB/power supply 76 and the retailer's electronic device(s) 78. For instance, a gateway 84 (e.g., a router) between the DIB/power supply and the cloud network 80 may be configured to facilitate communication with a retailer's gateway 82 and may be configured to allow the retailer to provide and receive data from the system 10. The retailer may be able to direct various commands via the cloud network 80 such as, for example, ensuring planogram compliance. In some embodiments, such commands could include powering up or down one or more items of merchandise 14, performing a roll call of one or more items of merchandise (either at a particular time or after an alarming event), determining a location of an alarming system 10, identifying a specific key that armed/disarmed/locked/unlocked a particular system 10, remotely enabling or disabling an item of merchandise, remotely locking down an item of merchandise, checking the power status of an item of merchandise, tracking usage of an item of merchandise, tracking one or more items of merchandise (e.g., via serial number), assigning particular keys 39 to authorized users, and/or directing a camera to record the location of an alarming system 10. As such, a retailer may be able to more effectively manage any number of features regarding one or more security systems 10.


The foregoing has described one or more embodiments of security systems for securing an item of merchandise from theft or unauthorized removal. Although various embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description is provided for the purpose of illustration only, and not for the purpose of limitation.

Claims
  • 1. A system comprising: a plurality of security systems each configured to protect one or more items of merchandise from theft in a retail environment, each of the plurality of security systems comprising wireless communication circuitry; anda plurality of handheld electronic devices configured to be used by sales associates within the retail environment for wirelessly communicating with the plurality of security systems,wherein each of the plurality of security systems and each of the handheld electronic devices are configured to wirelessly communicate data between one another regarding each of the plurality of security systems,wherein one or more of the plurality of security systems is configured to receive one or more commands wirelessly from the plurality of handheld electronic devices for controlling the one or more of the plurality of security systems.
  • 2. The system of claim 1, wherein each of the plurality of security systems is configured to receive one or more commands from each of the handheld electronic devices for ensuring planogram compliance.
  • 3. The system of claim 1, wherein each of the plurality of security systems is configured to wirelessly communicate data regarding the one or more items of merchandise to one or more of the handheld electronic devices.
  • 4. The system of claim 1, wherein each of the plurality of security systems comprises: a sensor configured to be attached to an item of merchandise and configured to detect removal of the item of merchandise from the sensor; anda base configured to removably support the sensor and the item of merchandise.
  • 5. The system of claim 4, wherein each sensor is configured to wirelessly communicate with the base for detecting a security event.
  • 6. The system of claim 4, wherein each of the sensors is configured to wirelessly communicate the data.
  • 7. The system of claim 4, wherein each sensor comprises a unique identifier for pairing the sensor with the base.
  • 8. The system of claim 4, wherein each of the sensors is configured to wirelessly communicate a unique identifier.
  • 9. The system of claim 4, wherein each of the plurality of security systems further comprises a cable configured to be attached to the sensor at one end and to be operably engaged with the base at an opposite end.
  • 10. The system of claim 1, wherein the one or more commands comprises a command from one or more of the handheld electronic devices to lock one or more of the plurality of security systems.
  • 11. The system of claim 1, wherein the data comprises a location of one or more of the plurality of security systems.
  • 12. The system of claim 1, further comprising a key configured to communicate with each of the plurality of security systems for controlling each of the security systems.
  • 13. The system of claim 12, wherein the key is configured to wirelessly communicate with each of the plurality of security systems for disarming the security system.
  • 14. The system of claim 12, further comprising a plurality of keys, wherein the one or more commands comprises a command from one or more of the handheld electronic devices to authorize particular keys to users.
  • 15. The system of claim 12, wherein the one or more commands comprises a command from one or more of the handheld electronic devices to identify a specific key that has disarmed or unlocked a particular one of the plurality of security systems.
  • 16. The system of claim 1, further comprising a controller configured to facilitate wireless communication between the plurality of security systems and the plurality of handheld electronic devices.
  • 17. The system of claim 1, wherein the data comprises a power status of one or more of the items of merchandise.
  • 18. The system of claim 1, wherein the data comprises a lock status or an alarm status of one or more of the plurality of security systems.
  • 19. The system of claim 1, wherein the one or more commands comprises a command from the one or more of the handheld electronic devices to power up or down one or more items of merchandise.
  • 20. The system of claim 1, wherein the one or more commands comprises a command from the one or more of the handheld electronic devices to determine a location of each of the plurality of security systems.
  • 21. The system of claim 1, wherein the one or more commands comprises a command from the one or more of the handheld electronic devices to enable or disable one or more items of merchandise.
  • 22. The system of claim 1, wherein the one or more commands comprises a command from the one or more of the handheld electronic devices to track usage of one or more items of merchandise.
  • 23. The system of claim 1, wherein the one or more commands comprises a command from the one or more of the handheld electronic devices to track an identifier of one or more items of merchandise.
  • 24. The system of claim 1, wherein the plurality of handheld electronic devices are configured to wirelessly communicate with the plurality of security systems over a network, and wherein the network comprises one or more gateways and/or nodes configured to facilitate communication between the plurality of security systems and the plurality of computers.
  • 25. A method comprising: providing a plurality of security systems each configured to protect one or more items of merchandise from theft in a retail environment, each of the plurality of security systems comprising wireless communication circuitry;wirelessly communicating between a plurality of handheld electronic devices configured to be used by sales associates within the retail environment and the plurality of security systems;wirelessly communicating data between each of the plurality of security systems and the plurality of handheld electronic devices regarding each of the plurality of security systems; andreceiving, at one or more of the plurality of security systems, one or more commands wirelessly from one or more of the handheld electronic devices for controlling the one or more of the plurality of security systems.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/733,953, filed on Jan. 3, 2020, which is a continuation of U.S. application Ser. No. 16/388,453, filed on Apr. 18, 2019, and now U.S. Pat. No. 10,529,201, which is a continuation of U.S. application Ser. No. 16/110,336, filed on Aug. 23, 2018, now U.S. Pat. No. 10,290,192, which is a continuation of U.S. application Ser. No. 15/803,375, filed on Nov. 3, 2017, now U.S. Pat. No. 10,078,945, which is a continuation of U.S. application Ser. No. 15/260,455, filed on Sep. 9, 2016, now U.S. Pat. No. 9,811,988, which is a continuation of U.S. application Ser. No. 14/618,342 filed on Feb. 10, 2015, now U.S. Pat. No. 9,443,404, which claims the benefit of the filing dates of U.S. Provisional Application No. 61/939,954 filed on Feb. 14, 2014, and U.S. Provisional Application No. 61/974,058 filed on Apr. 2, 2014, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (138)
Number Name Date Kind
2873822 Sloan Feb 1959 A
3338077 Kaneda Aug 1967 A
3913880 Lucasey et al. Oct 1975 A
4305266 Lockwood Dec 1981 A
4984098 Buntsis Jan 1991 A
5094396 Burke Mar 1992 A
5124685 Rankin Jun 1992 A
5685436 Davet Nov 1997 A
5861807 Leyden et al. Jan 1999 A
6019304 Skowronski et al. Feb 2000 A
RE37590 Leyden et al. Mar 2002 E
6386906 Burke May 2002 B1
6419175 Rankin, VI Jul 2002 B1
6598433 Malvasio Jul 2003 B1
6659382 Ryczek Dec 2003 B2
6756900 Leyden et al. Jun 2004 B2
6799994 Burke Oct 2004 B2
6848282 Palzkill et al. Feb 2005 B2
6859142 Baumeister et al. Feb 2005 B2
6896543 Fort et al. May 2005 B2
7002467 Deconinck Feb 2006 B2
7015596 Pail Mar 2006 B2
7081822 Leyden et al. Jul 2006 B2
7132952 Leyden et al. Nov 2006 B2
7135972 Bonato Nov 2006 B2
7187283 Leyden et al. Mar 2007 B2
7209038 Deconinck et al. Apr 2007 B1
7327276 Deconinck et al. Feb 2008 B1
7403117 Leyden et al. Jul 2008 B2
7403119 Leyden Jul 2008 B2
7445175 Leyden et al. Nov 2008 B2
7593142 Marszalek et al. Sep 2009 B2
7667601 Rabinowitz et al. Feb 2010 B2
7701339 Irmscher et al. Apr 2010 B2
7710266 Belden, Jr. et al. May 2010 B2
7714722 Marszalek et al. May 2010 B2
7724135 Rapp et al. May 2010 B2
7782207 Gillard Aug 2010 B2
7984886 Lin Jul 2011 B2
7994914 Irmscher et al. Aug 2011 B2
8013740 Irmscher et al. Sep 2011 B2
8081075 Irmscher et al. Dec 2011 B2
8089357 Irmscher et al. Jan 2012 B2
8102262 Irmscher et al. Jan 2012 B2
8106772 Irmscher et al. Jan 2012 B2
8191851 Crown Jun 2012 B2
8212672 Brenner Jul 2012 B2
8314699 Irmscher et al. Nov 2012 B2
8384543 Tatsumi et al. Feb 2013 B2
8427314 Billiard Apr 2013 B2
8542120 Brenner Sep 2013 B2
8558688 Henson et al. Oct 2013 B2
8604927 Sisney Dec 2013 B2
8624737 Irmscher et al. Jan 2014 B2
8659426 Yunker et al. Feb 2014 B2
8698617 Henson et al. Apr 2014 B2
8698618 Henson et al. Apr 2014 B2
8701452 Foster et al. Apr 2014 B2
9353552 Kelsch et al. May 2016 B1
9443404 Grant et al. Sep 2016 B2
9747765 Berglund et al. Aug 2017 B1
9761101 Berglund et al. Sep 2017 B2
9805564 Berglund et al. Oct 2017 B1
9811988 Grant et al. Nov 2017 B2
9928704 Berglund et al. Mar 2018 B2
10043358 Berglund et al. Aug 2018 B1
10078945 Grant et al. Sep 2018 B2
10127745 Grant et al. Nov 2018 B2
10210681 Grant et al. Feb 2019 B1
10258172 Grant et al. Apr 2019 B2
10290192 Grant et al. May 2019 B2
10347061 Grant et al. Jul 2019 B2
10475308 Grant et al. Nov 2019 B2
10529201 Grant Jan 2020 B2
11037417 Grant Jun 2021 B2
20040229498 Fort et al. Nov 2004 A1
20050234778 Sperduti et al. Oct 2005 A1
20060097875 Ott May 2006 A1
20060170550 Marsilio Aug 2006 A1
20060238342 Leyden et al. Oct 2006 A1
20070159327 Belden et al. Jul 2007 A1
20070296545 Clare Dec 2007 A1
20080035778 Belden et al. Feb 2008 A1
20080142665 Belden et al. Jun 2008 A1
20080204239 Marszalek et al. Aug 2008 A1
20090033497 Wyatt, Jr. et al. Feb 2009 A1
20090173868 Fawcett et al. Jul 2009 A1
20100079285 Fawcett et al. Apr 2010 A1
20100175438 Sankey Jul 2010 A1
20100176945 Fawcett et al. Jul 2010 A1
20100194568 Irmscher et al. Aug 2010 A1
20100253519 Brackmann et al. Oct 2010 A1
20110062294 Johnson et al. Mar 2011 A1
20110068919 Rapp et al. Mar 2011 A1
20110133050 Eisenberger, Sr. et al. Jun 2011 A1
20110187531 Oehl et al. Aug 2011 A1
20110254661 Fawcett et al. Oct 2011 A1
20110303816 Horvath et al. Dec 2011 A1
20110309928 Henson et al. Dec 2011 A1
20110309934 Henson et al. Dec 2011 A1
20120043936 Ferguson Feb 2012 A1
20120205326 Richter et al. Aug 2012 A1
20120218109 Tatsumi et al. Aug 2012 A1
20120235817 Forster Sep 2012 A1
20120268103 Henson et al. Oct 2012 A1
20120293330 Grant et al. Nov 2012 A1
20130026322 Wheeler et al. Jan 2013 A1
20130098122 Eckert Apr 2013 A1
20130196530 Cheatham et al. Aug 2013 A1
20130238516 Moock et al. Sep 2013 A1
20130268316 Moock et al. Oct 2013 A1
20140022078 Brenner Jan 2014 A1
20140063238 Abdollahzadeh et al. Mar 2014 A1
20140118145 Wawrzyniak et al. May 2014 A1
20140118930 Sedon May 2014 A1
20140159898 Wheeler et al. Jun 2014 A1
20140253332 Sayegh Sep 2014 A1
20140263873 Kim Sep 2014 A1
20140298246 Wang Oct 2014 A1
20140328020 Galant Nov 2014 A1
20150049904 Sen Feb 2015 A1
20150208826 Yang et al. Jul 2015 A1
20150235533 Grant et al. Aug 2015 A1
20150305518 Galant Oct 2015 A1
20150332386 Pappas et al. Nov 2015 A1
20160235217 Johnston et al. Aug 2016 A1
20160335859 Sankey Nov 2016 A1
20160351029 Fawcett et al. Dec 2016 A1
20160379455 Grant et al. Dec 2016 A1
20170193780 Moock et al. Jul 2017 A1
20170245663 Berglund et al. Aug 2017 A1
20180061197 Grant et al. Mar 2018 A1
20180240315 Berglund et al. Aug 2018 A1
20180365948 Grant et al. Dec 2018 A1
20190208926 Grant et al. Jul 2019 A1
20190244495 Grant et al. Aug 2019 A1
20190272689 Grant et al. Sep 2019 A1
20200143641 Grant et al. May 2020 A1
Foreign Referenced Citations (7)
Number Date Country
102009049738 Apr 2011 DE
2363422 Dec 2001 GB
2006079323 Mar 2006 JP
1020090123334 Dec 2009 KR
2011045058 Apr 2011 WO
2014019072 Feb 2014 WO
2014078966 May 2014 WO
Non-Patent Literature Citations (8)
Entry
“Freedom Micro”, 2013, 2 pages, Mobile Technologies Inc., www.mobiletechinc.com, Hillsboro, Oregon, USA.
“MTI Freedom LP3 Brochure,” Mobile Technologies, Inc., dated Sep. 2009 (1 page).
“MTI Freedom LP3 Product Manual,” Mobile Technologies, Inc., dated Mar. 2010 (20 pages).
“MTI Freedom LP3 Product Manual,” Mobile Technologies, Inc., dated Mar. 2011 (25 pages).
MTI Freedom LP3 Quick Reference Guide, Mobile Technologies, Inc., dated Feb. 2010 (2 pages).
“MTI Freedom One Product Manual,” Mobile Technologies, Inc., dated Jun. 2011 (32 pages).
“MTI Freedom One Product Manual,” Mobile Technologies, Inc., dated Jun. 2012 (32 pages).
“MTI Freedom One Sell Sheet,” Mobile Technologies, Inc., dated 2012 (2 pages).
Related Publications (1)
Number Date Country
20210272428 A1 Sep 2021 US
Provisional Applications (2)
Number Date Country
61974058 Apr 2014 US
61939954 Feb 2014 US
Continuations (6)
Number Date Country
Parent 16733953 Jan 2020 US
Child 17320696 US
Parent 16388453 Apr 2019 US
Child 16733953 US
Parent 16110336 Aug 2018 US
Child 16388453 US
Parent 15803375 Nov 2017 US
Child 16110336 US
Parent 15260455 Sep 2016 US
Child 15803375 US
Parent 14618342 Feb 2015 US
Child 15260455 US