TETRACYCLIC LIQUID CRYSTAL COMPOUND HAVING DIATOMIC BONDING GROUP AND 2,3-DIFLUOROPHENYLENE, LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DISPLAY DEVICE

Abstract
A means is a compound represented by formula (1) , a liquid crystal composition containing the compound, and a liquid crystal display device including the composition.
Description
TECHNICAL FIELD

The invention relates to a liquid crystal compound, a liquid crystal composition and a liquid crystal display device. More specifically, the invention relates to a liquid crystal compound having 2,3-difluorophenylene and negative dielectric anisotropy, a liquid crystal composition containing the liquid crystal compound, and a liquid crystal display device including the composition.


BACKGROUND ART

In a liquid crystal display device, a classification based on an operating mode for liquid crystal molecules includes a phase change (PC) mode, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, an electrically controlled birefringence (ECB) mode, an optically compensated bend (OCB) mode, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a fringe field switching (FFS) mode and a field-induced photo-reactive alignment (FPA) mode. A classification based on a driving mode in the device includes a passive matrix (PM) and an active matrix (AM). The PM is classified into static, multiplex and so forth, and the AM is classified into a thin film transistor (TFT), a metal insulator metal (MIM) and so forth.


A liquid crystal composition is sealed into the device. Physical properties of the composition relate to characteristics in the device. Specific examples of the physical properties in the composition include stability to heat or light, a temperature range of a nematic phase, viscosity, optical anisotropy, dielectric anisotropy, specific resistance and an elastic constant. The composition is prepared by mixing many liquid crystal compounds. Physical properties required for a compound include high stability to environment such as water, air, heat and light, a wide temperature range of a liquid crystal phase, small viscosity, suitable optical anisotropy, large dielectric anisotropy, a suitable elastic constant and good compatibility with other liquid crystal compounds. A compound having high maximum temperature of the nematic phase is preferred. A compound having low minimum temperature in the liquid crystal phase such as the nematic phase and a smectic phase is preferred. A compound having small viscosity contributes to a short response time in the device. A suitable value of optical anisotropy depends on a mode of the device. A compound having large positive or negative dielectric anisotropy is preferred for driving the device at low voltage. A compound having good compatibility with other liquid crystal compounds is preferred for preparing the composition. The device may be occasionally used at a temperature below freezing point, and therefore a compound having good compatibility at low temperature is preferred.


Many liquid crystal compounds have been so far prepared. Development of a new liquid crystal compound has been still continued. The reason is that good physical properties that are not found in conventional compounds are expected from a new compound. The reason is that the new compound may be occasionally provided with a suitable balance regarding at least two physical properties in the composition. Compounds each having a tetracyclic ring as described below are reported.


WO 2010/082558 A discloses compound (A) on page 300.




embedded image


WO 98/27036 A discloses compound (B) on page 65.




embedded image


WO 2009/150966 A discloses compound (C) on page 213.




embedded image


WO 2009/031437 A discloses compound (D) on page 233.




embedded image


JP 2014-114276 A discloses compound (E) on page 63.




embedded image


JP 2002-193853 A discloses compound (F) on page 103.




embedded image


CN 102888226 A1 discloses compound (G) on page 6.




embedded image


CN 101928199 A1 discloses compound (H) on page 10.




embedded image


WO 2010/095506 A discloses compound (I) on page 64.




embedded image


Compound No.1-3-51 described in JP 2010-215609 A on page 54 is compound (J).




embedded image


Compounds (A) to (J) are disclosed, but liquid crystal performance is not known.


CITATION LIST
Patent Literature

Patent literature No. 1: WO 2010/082558 A.


Patent literature No. 2: WO 98/27036 A.


Patent literature No. 3: WO 2009/150966 A.


Patent literature No. 4: WO 2009/031437 A.


Patent literature No. 5: JP 2014-114276 A.


Patent literature No. 6: JP 2002-193853 A.


Patent literature No. 7: CN 102888226 Al.


Patent literature No. 8: CN 101928199 Al.


Patent literature No. 9: WO 2010/095506 A.


Patent literature No. 10: JP 2010-215609 A.


SUMMARY OF INVENTION
Technical Problem

A first object is to provide a liquid crystal compound satisfying at least one of physical properties such as high stability to heat or light, a high clearing point (or high maximum temperature of a nematic phase), low minimum temperature of a liquid crystal phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, a suitable elastic constant and good compatibility with other liquid crystal compounds. The object is to provide a compound having better physical properties in comparison with a similar compound. A second object is to provide a liquid crystal composition that contains the compound and satisfies at least one of physical properties such as high stability to heat or light, high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance and a suitable elastic constant . The object is to provide a liquid crystal composition having a suitable balance regarding at least two of the physical properties. A third object is to provide a liquid crystal display device including the composition, and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio, a small flicker rate and a long service life.


Solution to Problem

The invention concerns a compound represented by formula (1), a liquid crystal composition containing the compound, and a liquid crystal display device including the composition:




embedded image


wherein, in formula (1),


R1 is alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons;


ring A1 and ring A2 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl pyridine-2,5-diyl or pyrimidine-2,5-diyl, and ring A3 is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and


Z1, Z2 and Z3 are independently a single bond, —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—, and at least one of Z1, Z2 and Z3 is —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—.


Advantageous Effects of Invention

A first advantage is to provide a liquid crystal compound satisfying at least one of physical properties such as high stability to heat or light, a high clearing point (or high maximum temperature of a nematic phase), low minimum temperature of a liquid crystal phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, a suitable elastic constant and good compatibility with other liquid crystal compounds. The advantage is to provide a compound having larger dielectric anisotropy in comparison with a similar compound. The advantage is to provide a compound having better compatibility with other liquid crystal compounds, larger negative dielectric anisotropy and smaller viscosity in comparison with a similar compound (Comparative Examples 1 and 2). A second advantage is to provide a liquid crystal composition that contains the compound and satisfies at least one of physical properties such as high stability to heat or light, high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance and a suitable elastic constant. The advantage is to provide a liquid crystal composition having a suitable balance regarding at least two of the physical properties. A third advantage is to provide a liquid crystal display device including the composition, and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio, a small flicker rate and a long service life.







DESCRIPTION OF EMBODIMENTS

Usage of terms herein is as described below. Terms “liquid crystal compound,” “liquid crystal composition” and “liquid crystal display device” may be occasionally abbreviated as “compound,” “composition” and “device,” respectively. “Liquid crystal compound” is a generic term for a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a compound having no liquid crystal phase but to be added for the purpose of adjusting physical properties of a composition such as maximum temperature, minimum temperature, viscosity and dielectric anisotropy. The compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and has rod-like molecular structure. “Liquid crystal display device” is a generic term for a liquid crystal display panel and a liquid crystal display module. “Polymerizable compound” is a compound to be added for the purpose of forming a polymer in the composition.


The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. An additive is added to the composition for the purpose of further adjusting the physical properties. The additive such as the polymerizable compound, a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer, a dye and an antifoaming agent is added thereto when necessary. The liquid crystal compound and the additive are mixed in such a procedure. A proportion (content) of the liquid crystal compound is expressed in terms of weight percent (% by weight) based on the weight of the liquid crystal composition containing no additive, even after the additive is added. A proportion (amount of addition) of the additive is expressed in teams of weight percent (% by weight) based on the weight of the liquid crystal composition containing no additive. Weight parts per million (ppm) may be occasionally used. A proportion of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the weight of the polymerizable compound.


“Clearing point” is a transition temperature between the liquid crystal phase and an isotropic phase in the liquid crystal compound. “Minimum temperature of the liquid crystal phase” is a transition temperature between a solid and the liquid crystal phase (the smectic phase, the nematic phase or the like) in the liquid crystal compound. “Maximum temperature of the nematic phase” is a transition temperature between the nematic phase and the isotropic phase in a mixture of the liquid crystal compound and a base liquid crystal or in the liquid crystal composition, and may be occasionally abbreviated as “maximum temperature.” “Minimum temperature of the nematic phase” may be occasionally abbreviated as “minimum temperature.” An expression “increase the dielectric anisotropy” means that a value of dielectric anisotropy positively increases in a composition having positive dielectric anisotropy, and the value of dielectric anisotropy negatively increases in a composition having negative dielectric anisotropy. An expression “having a large voltage holding ratio” means that the device has a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature in an initial stage, and the device has the large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature even after the device has been used for a long period of time. In the composition or the device, the characteristics may be occasionally examined before and after an aging test (including an acceleration deterioration test).


A compound represented by formula (1) may be occasionally abbreviated as compound (1). At least one compound selected from the group of compounds represented by formula (1) may be occasionally abbreviated as compound (1). “Compound (1)” means one compound, a mixture of two compounds or a mixture of three or more compounds represented by formula (1). A same rule applies also to any other compound represented by any other formula. In formulas (1) to (15), a symbol of A1, B1, C1 or the like surrounded by a hexagonal shape correspond to a ring such as ring A1, ring B1 and ring C1, respectively. The hexagonal shape represents a six-membered ring such as cyclohexane or benzene. The hexagonal shape may occasionally represent a fused ring such as naphthalene or a bridged ring such as adamantane.


A symbol of terminal group R11 is used in a plurality of compounds in chemical formulas of component compounds. In the compounds, two groups represented by two pieces of arbitrary R11 may be identical or different. For example, in one case, R11 of compound (2) is ethyl and R11 of compound (3) is ethyl. In another case, R11 of compound (2) is ethyl and R11 of compound (3) is propyl. A same rule applies also to a symbol of R12, R13, Z11 or the like. In compound (15), when i is 2, two of ring E1 exists. In the compound, two groups represented by two of ring E1 may be identical or different. A same rule applies also to two of arbitrary ring E1 when i is larger than 2. A same rule applies also to other symbols.


An expression “at least one piece of ‘A’” means that the number of ‘A’ is arbitrary. An expression “at least one piece of ‘A’ may be replaced by ‘B’” means that, when the number of ‘A’ is 1, a position of ‘A’ is arbitrary, and also when the number of ‘A’ is 2 or more, positions thereof can be selected without restriction. A same rule applies also to an expression “at least one piece of ‘A’ is replaced by ‘B’.” An expression “at least one piece of ‘A’ may be replaced by ‘B’, ‘C’ or ‘D’” includes a case where arbitrary ‘A’ is replaced by ‘B’, a case where arbitrary ‘A’ is replaced by ‘C’, and a case where arbitrary ‘A’ is replaced by ‘D’, and also a case where a plurality of pieces of ‘A’ are replaced by at least two pieces of ‘B’, ‘C’ and/or ‘D’. For example, “alkyl in which at least one piece of —CH2— may be replaced by —O— or —CH═CH—” includes alkyl, alkoxy, alkoxyalkyl, alkenyl, alkoxyalkenyl and alkenyloxyalkyl. In addition, a case where two pieces of consecutive —CH2— are replaced by —O— to form —O—O— is not preferred. In alkyl or the like, a case where —CH2— of a methyl part (—CH2—H) is replaced by —O—to form —O—H is not preferred, either.


An expression “R11 and R12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine” may be occasionally used. In the expression, “in the groups” may be interpreted according to wording. In the expression, “the groups” means alkyl, alkenyl, alkoxy, alkenyloxy or the like. More specifically, “the groups” represents all of the groups described before the term “in the groups.” The common interpretation is applied also to terms of “in the monovalent groups” or “in the divalent groups.” For example, “the monovalent groups” represents all of the groups described before the term “in the monovalent groups.”


Alkyl of the liquid crystal compound is straight-chain alkyl or branched-chain alkyl, but includes no cyclic alkyl. In general, straight-chain alkyl is preferred to branched-chain alkyl. A same rule applies also to a terminal group such as alkoxy and alkenyl . With regard to a configuration of 1, 4-cyclohexylene, trans is preferred to cis for increasing the maximum temperature. Then, 2-fluoro-1,4-phenylene means two divalent groups described below. In a chemical formula, fluorine may be leftward (L) or rightward (R). A same rule applies also to an asymmetrical divalent group formed by eliminating two hydrogens from a ring, such as tetrahydropyran-2,5-diyl.




embedded image


The invention includes items described below.


Item 1. A compound, represented by formula (1):




embedded image


wherein, in formula (1) ,


R1 is alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons;


ring A1 and ring A2 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl, and ring A3 is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and


Z1, Z2 and Z3 are independently a single bond, —CH2O—, —COO—, —CH2CH2— or —CH═CH—, and at least one of Z1, Z2 and Z3 is —CH2O—, —OCH2—, —COO—, —CH2CH2— or —CH═CH—, in which, when ring A3 is 2-fluoro-1,4-phenylene, at least one of ring A1 and ring A2 is 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl, and Z3 is a single bond,


in which, when R1 is CH2═CH— or alkenyloxy, Z1 and Z3 each are a single bond, and when Z2 is —CH═CH—, at least one of ring A1, ring A2 and ring A3 is 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl,


in which, when Z1 and Z2 each are a single bond and Z3 is —CH2O—, at least one of ring A2 and ring A3 is 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl.


Item 2. The compound according to item 1, wherein, in formula (1) , R1 is alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons; ring A1 is 1,4-cyclohexylene, and ring A2 and ring A3 are independently 1,4-cyclohexylene 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and Z1, Z2 and Z3 are independently a single bond, —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—, and at least one of Z1, Z2 and Z3 is —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 3. The compound according to item 1, wherein, in formula (1) , R1 is alkenyl having 2 to 10 carbons, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons; ring A1 is 1,4-cyclohexylene, and ring A2 and ring A3 are independently 1,4 -cyclohexylene, 1,4 -phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and Z1, Z2 and Z3 are independently a single bond, —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—, and at least one of Z1, Z2 and Z3 is —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 4. The compound according to item 1, represented by formula (1-1) , formula (1-2) or formula (1-3):




embedded image


wherein, in formula (1-1) to formula (1-3),


R1 is alkyl having 1 to 10 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 10 carbons, alkoxy having 1 to 10 carbons or alkenyl having 2 to 10 carbons;


ring A2 and ring A3 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and


Z1, Z2 and Z3 are independently —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 5. The compound according to item 1, represented by any one of formula (1-4) to formula (1-7):




embedded image


wherein, in formula (1-4) to formula (1-7) , R1 and R2 are independently alkyl having 1 to 10 carbons, alkoxy having 1 to 10 carbons or alkenyl having 2 to 10 carbons; and Z1 is —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 6. The compound according to item 1, represented by any one of formula (1-8) to formula (1-10):




embedded image


wherein, in formula (1-8) to formula (1-10) , R1 and R2 are independently alkyl having 1 to 10 carbons, alkoxy having 1 to 10 carbons or alkenyl having 2 to 10 carbons; and Z2 is —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 7. The compound according to item 1, represented by any one of formula (1-11) or formula (1-12):




embedded image


wherein, in formula (1-11) or formula (1-12) , R1 and R2 are alkyl having 1 to 10 carbons, alkoxy having 1 to 10 carbons or alkenyl having 2 to 10 carbons; and Z3 is —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—.


Item 8. The compound according to item 1, represented by any one of formula (1-13) to formula (1-24):




embedded image


embedded image


wherein, in formula (1-13) to formula (1-24), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons, alkoxy having 1 to 5 carbons or alkenyl having 2 to 5 carbons.


Item 9. The compound according to item 1, represented by any one of formula (1-25) to formula (1-31):




embedded image


wherein, in formula (1-25) to formula (1-31), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons, alkoxy having 1 to 5 carbons or alkenyl having 2 to 5 carbons.


Item 10. The compound according to item 1, represented by any one of formula (1-32) to formula (1-36):




embedded image


wherein, in formula (1-32) to formula (1-36), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons, alkoxy having 1 to 5 carbons or alkenyl having 2 to 5 carbons.


Item 11. The compound according to item 8, wherein, in formula (1-13) to formula (1-18), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.


Item 12. The compound according to item 9, wherein, in formula (1-25) to formula (1-28), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.


Item 13. The compound according to item 10, wherein, in formula (1-32) or formula (1-33), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.


Item 14. A liquid crystal composition containing at least one compound according to any one of items 1 to 13.


Item 15. The liquid crystal composition according to item 14, further containing at least one compound selected from the group of compounds represented by formulas (2) to (4):




embedded image


wherein, in formulas (2) to (4),


R11 and R12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— maybe replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine;


ring B1, ring B2, ring B3 and ring B4 are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene or pyrimidine-2,5-diyl; and


Z11, Z12 and Z13 are independently a single bond, —COO—, —CH2CH2—, —CH═CH— or —C≡C—.


Item 16. The liquid crystal composition according to item 15, further containing at least one compound selected from the group of compounds represented by formulas (5) to (11):




embedded image


wherein, in formulas (5) to (11),


R13, R14 and R15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine, and R15 may be hydrogen or fluorine;


ring C1, ring C2, ring C3 and ring C4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine, tetrahydropyran-2,5-diyl or decahydronaphthalene-2,6-diyl;


ring C5 and ring C6 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl or decahydronaphthalene-2,6-diyl;


Z14, Z15, Z16 and Z17 are independently a single bond, —COO—, —CH2O—, —OCF2—, —CH2CH2— or —OCF2CH2CH2—;


L11 and L12 are independently fluorine or chlorine;


S11 is hydrogen or methyl;


X is —CHF— or —CF2—; and


j, k, m, n, p, q, r and s are independently 0 or 1, a sum of k, m, n and p is 1 or 2, a sum of q, r and s is 0, 1, 2 or 3, and t is 1, 2 or 3.


Item 17. The liquid crystal composition according to item 15 or 16, further containing at least one compound selected from the group of compounds represented by formulas (12) to (14):




embedded image


wherein, in formulas (12) to (14),


R16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine;


X11 is fluorine, chlorine, —CF3, —CHF2, —CH2F, —OCF3, —OCHF2, —OCF2CHF2 or —OCF2CHFCF3;


ring D1, ring D2 and ring D3 are independently 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl or pyrimidine -2,5-diyl;


Z18, X19 and Z20 are independently a single bond, —COO—, —CH2O—, —CF2O—, —OCF2—, —CH2CH2—, —CH═CH—, —C≡C— or —(CH2)4—; and


L13 and L14 are independently hydrogen or fluorine.


Item 18. The liquid crystal composition according to any one of items 15 to 17, further containing at least one compound selected from the group of compounds represented by formula (15):




embedded image


wherein, in formula (15),


R17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine;


X12 is —C≡N or —C≡C—C≡N;


ring E1 is 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl or pyrimidine-2,5-diyl;


Z21 is a single bond, —COO—, —CH2O—, —CF2O—, —OCF2—, —CH2CH2— or —C≡C—;


L15 and L16 are independently hydrogen or fluorine; and


i is 1, 2, 3 or 4.


Item 19. A liquid crystal display device, including the liquid crystal composition according to any one of items 14 to 15.


The invention further includes the following items: (a) the composition, further containing at least one optically active compound and/or at least one polymerizable compound; and (b) the composition, further containing at least one antioxidant and/or at least one ultraviolet light absorber.


The invention further includes the following items: (c) the composition, further containing one, two or at least three additives selected from the group of a polymerizable compound, a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer, a dye and an antifoaming agent; and (d) the composition, wherein a maximum temperature of a nematic phase is 70° C. or higher, an optical anisotropy (measured at 25° C.) at a wavelength of 589 nanometers is 0.08 or more and a dielectric anisotropy (measured at 25° C.) at a frequency of 1 kHz is −2 or less.


The invention still further includes the following items: (e) a device including the composition and having a PC mode, a TN mode, an STN mode, an ECB mode, an OCB mode, an IPS mode, a VA mode , an FFS mode, an FPA mode or a PSA mode; (f) an AM device including the composition; (g) a transmissive device including the composition; (h) use of the composition as the composition having the nematic phase; and (i) use as an optically active composition by adding the optically active compound to the composition.


An aspect of compound (1), synthesis of compound (1), the liquid crystal composition and the liquid crystal display device will be described in the order.


1. Aspect of Compound (1)

Compound (1) has a feature of having a single bond, in which at least one of Z1, Z2 and Z3 is a diatomic bonding group such as —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—. One of Z1, Z2 and Z3 may be —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—, and a remainder thereof may be a single bond. Compound (1) has features such that the compatibility is good, the dielectric anisotropy is large and the viscosity is small in comparison with a similar compound (see Comparative Examples 1 and 2).




embedded image


The compound is physically and chemically significantly stable under conditions in which the device is ordinarily used, and has good compatibility with other liquid crystal compounds. A composition containing the compound is stable under conditions in which the device is ordinarily used. When the composition is stored at low temperature, the compound has small tendency of precipitation as a crystal (or a smectic phase). The compound has general physical properties required for a component of the composition, suitable optical anisotropy and suitable dielectric anisotropy.


Preferred examples of terminal group R, ring A and bonding group Z in compound (1) are as described below. The examples described above are applied also to the subordinate formula of compound (1). In compound (1), physical properties can be arbitrarily adjusted by suitably combining the groups. Compound (1) may contain a larger amount of isotope such as 2H (deuterium) and 13C than the amount of natural abundance because no significant difference exists in the physical properties of the compound. In addition, definitions of symbols of compound (1) are as described in item 1.


In formula (1) , R1 is alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons.


An example of R1 is alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkenyl, alkenyloxy, alkenyloxyalkyl or alkoxyalkenyl. In the groups, a straight chain is preferred to a branched chain. However, if R1 has the branched chain, the group is preferred when the group has optical activity. Preferred R1 is alkyl, alkoxy, alkoxyalkyl, alkenyl or alkenyloxy. Further preferred is fluorine, alkyl, alkoxy or alkenyl. Particularly preferred R1 is alkenyl.


A preferred configuration of —CH═CH— in the alkenyl depends on a position of a double bond. A trans configuration is preferred in the alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl. A cis configuration is preferred in the alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.


Specific R1 is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, methoxymethyl, methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propoxymethyl, butoxymethyl, pentoxymethyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 1-propynyl or 1-pentenyl.


Preferred R1 is methyl, ethyl, propyl, butyl, pentyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, methoxymethyl, ethoxymethyl, propoxymethyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy or 2-pentenyloxy. Further preferred R1 is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl or 4-pentenyl. Particularly preferred R1 is vinyl, 1-propenyl, 2-propenyl, 1-butenyl or 3-butenyl.


Preferred R2 is alkyl or alkoxy. Further preferred R2 is alkoxy. Particularly preferred R2 is methyl or ethoxy. Most preferred R2 is ethoxy.


In formula (1), ring A1 and ring A2 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl, and ring A3 is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl.


Preferred ring A1 or ring A2 is 1,4-cyclohexylene, 1,4-phenylene or tetrahydropyran-2,5-diyl. Further preferred ring A1 is 1,4-cyclohexylene. Further preferred ring A2 is 1,4-cyclohexylene or 1,4-phenylene. Preferred ring A3 is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or tetrahydropyran-2,5-diyl. Further preferred ring A3 is 1,4-cyclohexylene, 1,4-phenylene or tetrahydropyran-2,5-diyl. Particularly preferred ring A3 is 1,4 -cyclohexylene or 1,4 -phenylene.


In formula (1) , Z1, Z2 and Z3 are independently a single bond, —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—. At least one of Z1, Z2 and Z3 is preferably —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—. Two of Z1, Z2 and Z3 are further preferably a single bond, and a remainder is —CH2O—, —OCH2—, —COO—, —OCO—, —CH2CH2— or —CH═CH—.


Preferred Z1, Z2 or Z3 is a single bond, —CH2O—, —OCH2—, —COO—, —OCO— or —CH2CH2—. Further preferred Z1, Z2 or Z3 is a single bond, —CH2O—, —COO— or —CH2CH2—. Particularly preferred Z1, Z2 or Z3 is a single bond, but at least one of Z1, Z2 and Z3 is not a single bond. In a most preferred aspect, two of Z1, Z2 and Z3 is a single bond.


Physical properties such as optical anisotropy and dielectric anisotropy can be arbitrarily adjusted by suitably selecting a terminal group, a ring and a bonding group in compound (1). An effect of kinds of terminal groups R, ring A, and bonding group Z on physical properties of compound (1) will be described below.


In compound (1) , when R1 or R2 has the straight chain, a temperature range of the liquid crystal phase is wide, and the viscosity is small. When R1 or R2 has the branched chain, the compatibility with other liquid crystal compounds is good. A compound in which R1 or R2 is an optically active group is useful as a chiral dopant. A reverse twisted domain to be generated in the device can be prevented by adding the compound to the composition. A compound in which R1 or R2 is not the optically active group is useful as a component of the composition. When R1 or R2 is alkenyl, a preferred configuration depends on a position of a double bond. An alkenyl compound having the preferred configuration has high maximum temperature or a wide temperature range of the liquid crystal phase. A detailed description is found in Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327.


When ring A1, ring A2 or ring A3 is 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, pyridine-2,5-diyl or pyrimidine-2,5-diyl, the optical anisotropy is large. When ring A1, ring A2 or ring A3 is 1,4-cyclohexylene or 1,3-dioxane-2,5-diyl, the optical anisotropy is small.


When at least two rings are 1,4-cyclohexylene, the maximum temperature is high, the optical anisotropy is small, and the viscosity is small. When at least one ring is 1,4-phenylene, the optical anisotropy is comparatively large and an orientational order parameter is large. When at least two rings are 1,4-phenylene, the optical anisotropy is large, the temperature range of the liquid crystal phase is wide, and the maximum temperature is high.


When bonding group Z1, Z2 or Z3 is a single bond, —CH2O—, —CH2CH2— or —CH═CH—, the viscosity is small. When the bonding group is a single bond, —CH2CH2— or —CH═CH—, the viscosity is further smaller. When the bonding group is —CH═CH—, the temperature range of the liquid crystal phase is wide, and an elastic constant ratio K33/K11(K33: a bend elastic constant, K11: a splay elastic constant) is large. When the bonding group is —C≡C—, the optical anisotropy is large.


2. Synthesis of Compound (1)

A synthetic method of compound (1) will be described. Compound (1) can be prepared by suitably combining methods in synthetic organic chemistry. A method for introducing a required terminal group, ring and bonding group into a starting material is described in books such as “Organic Syntheses” (John Wiley & Sons, Inc.), “Organic Reactions” (John Wiley & Sons, Inc.), “Comprehensive Organic Synthesis” (Pergamon Press) and “New Experimental Chemistry Course (Shin Jikken Kagaku Koza in Japanese)” (Maruzen Co., Ltd.).


2-1. Formation of Bonding Group Z

First, a scheme is shown with regard to a method for forming bonding groups Z1 to Z3. Next, reactions described in the scheme in methods (1) to (11) will be described. In the scheme, MSG1 (or MSG2) is a monovalent organic group having at least one ring. The monovalent organic groups represented by a plurality of MSG1 (or MSG2) used in the scheme may be identical or different. Compounds (1A) to (1J) correspond to compound (1).




embedded image


embedded image


(1) Formation of a Single Bond

Compound (1A) is prepared by allowing aryl boronic acid (21) prepared according to a publicly known method to react with halide (22) , in the presence of carbonate and a catalyst such as tetrakis(triphenylphosphine)palladium. Compound (1A) is also prepared by allowing halide (23) prepared according to a publicly known method to react with n-butyllithium and subsequently with zinc chloride, and further with halide (22) in the presence of a catalyst such as dichlorobis(triphenylphosphine) palladium.


(2) Formation of —COO—

Carboxylic acid (24) is obtained by allowing halide (23) to react with n-butyllithium and subsequently with carbon dioxide. Compound (1B) is prepared by dehydration of compound (25) prepared according to a publicly known method and carboxylic acid (24) in the presence of 1,3-dicyclohexylcarbodiimide (DDC) and 4-dimethylaminopyridine (DMAP).


(3) Formation of —CF2O—

Thionoester (26) is obtained by treating compound (1B) with a thiation reagent such as Lawesson' s reagent. Compound (1C) is prepared by fluorinating thionoester (26) with a hydrogen fluoride-pyridine complex and N-bromosuccinimide (NBS). Refer to M. Kuroboshi et al., Chem. Lett. , 1992, 827. Compound (1C) is also prepared by fluorinating thionoester (26) with (diethylamino) sulfur trifluoride (DAST). Refer to W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768. The bonding group can also be formed according to the method described in Peer. Kirsch et al., Angew. Chem. Int.. Ed. 2001, 40, 1480.


(4) Formation of —CH═CH—

Aldehyde (28) is obtained by treating halide (22) with n-butyllithium and then allowing the treated halide to react with N,N-dimethylformamide (DMF). Phosphorus ylide is generated by treating phosphonium salt (27) prepared according to a publicly known method with a base such as potassium t-butoxide. Compound (1D) is prepared by allowing the phosphorus ylide to react with aldehyde (28). A cis isomer may be formed depending on reaction conditions, and therefore the cis isomer is isomerized into a trans isomer according to a publicly known method when necessary.


(5) Formation of —CH2CH2


Compound (1E) is prepared by hydrogenating compound (1D) in the presence of a catalyst such as palladium on carbon.


(6) Formation of —(CH2)4


A compound having —(CH2)2—CH═CH—is obtained by using phosphonium salt (29) in place of phosphonium salt (27) according to the method in method (4). Compound (1F) is prepared by performing catalytic hydrogenation of the compound obtained.


(7) Formation of —CH2CH═CHCH2


Compound (1G) is prepared by using phosphonium salt (30) in place of phosphonium salt (27) and aldehyde (31) in place of aldehyde (28) according to the method of method (4). A trans isomer may be formed depending on reaction conditions, and therefore the trans isomer is isomerized into a cis isomer according to a publicly known method, when necessary.


(8) Formation of —C≡C—

Compound (32) is obtained by allowing halide (23) to react with 2-methyl-3-butyn-2-ol in the presence of a catalyst of dichloropalladium and copper halide, and then performing deprotection under basic conditions. Compound (1H) is prepared by allowing compound (32) to react with halide (22) in the presence of the catalyst of dichloropalladium and copper halide.


(9) Formation of —CF═CF—

Compound (33) is obtained by treating halide (23) with n-butyllithium and then allowing the treated halide to react with tetrafluoroethylene. Compound (1I) is prepared by treating halide (22) with n-butyllithium, and then allowing the treated halide to react with compound (33).


(10) Formation of —OCH2

Compound (34) is obtained by reducing aldehyde (28) with a reducing agent such as sodium borohydride. Bromide (35) is obtained by brominating compound (34) with hydrobromic acid or the like. Compound (1J) is prepared by allowing bromide (35) to react with compound (36) in the presence of a base such as potassium carbonate.


(11) Formation of —(CF2)2


A compound having —(CF2)2— is obtained by fluorinating diketone (—COCO—) with sulfur tetrafluoride, in the presence of a hydrogen fluoride catalyst, according to a method described in J. Am. Chem. Soc., 2001, 123, 5414.


3. Liquid Crystal Composition
3-1. Component Compound

A liquid crystal composition of the invention will be described. The composition contains at least one compound (1) as component (a). The composition may contain two, three or more compounds (1). A component in the composition may be only compound (1). The composition preferably contains at least one of compounds (1) in a range of 1% by weight to 99% by weight in order to develop good physical properties. In a composition having negative dielectric anisotropy, a preferred content of compound (1) is in a range of 5% by weight to 60% by weight. In a composition having positive dielectric anisotropy, a preferred content of compound (1) is 30% by weight or less.









TABLE 1







Component compounds in composition











Dielectric


Component
Component compound
anisotropy





Component (a)
Compound (1)
Negatively large


Component (b)
Compound (2) to Compound (4)
Small


Component (c)
Compound (5) to Compound (11)
Negatively large


Component (d)
Compound (12) to Compound (14)
Positively large


Component (e)
Compound (15)
Positively large









The composition contains compound (1) as component (a). The composition further preferably contains a liquid crystal compound selected from components (b) to (e) described in Table 1. When the composition is prepared, components (b) to (e) are preferably selected by taking into account the positive or negative dielectric anisotropy and magnitude of the dielectric anisotropy. The composition may contain a liquid crystal compound different from compounds (1) to (15). The composition may not contain such a liquid crystal compound.


Component (b) includes a compound in which two terminal groups are alkyl or the like. Specific examples of preferred component (b) include compounds (2-1) to (2-11), compounds (3-1) to (3-19) and compounds (4-1) to (4-7). In the compounds, R11 and R12 are independently, alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine.




embedded image


embedded image


embedded image


Component (b) has small dielectric anisotropy. Component (b) is close to neutrality. Compound (2) is effective in decreasing the viscosity or adjusting the optical anisotropy. Compounds (3) and (4) are effective in extending the temperature range of the nematic phase by increasing the maximum temperature, or in adjusting the optical anisotropy.


As a content of component (b) is increased, the viscosity of the composition is decreased, but the dielectric anisotropy is decreased. Thus, as long as a desired value of threshold voltage of a device is met, the content is preferably as large as possible. When a composition for the IPS mode, the VA mode or the like is prepared, the content of component (b) is preferably 30% by weight or more, and further preferably 40% by weight or more, based on the weight of the liquid crystal composition.


Component (c) includes compounds (5) to (11). The compounds have phenylene in which hydrogen in lateral positions are replaced by two halogens, such as 2,3-difluoro-1,4-phenylene. Preferred examples of component (c) include compounds (5-1) to (5-8), compounds (6-1) to (6-17), compound (7-1), compounds (8-1) to (8-3), compounds (9-1) to (9-11), compounds (10-i) to (10-3) and compounds (11-1) to (11-3). In the compounds, R13, R14 and R15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine, and R15 may be hydrogen or fluorine.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Component (c) has negatively large dielectric anisotropy. Component (c) is used when a composition for the IPS mode, the VA mode, the PSA mode or the like is prepared. As a content of component (c) is increased, the dielectric anisotropy of the composition is negatively increased, but the viscosity is increased. Thus, as long as a desired value of threshold voltage of the device is met, the content is preferably as small as possible. When the dielectric anisotropy at a degree of −5 is taken into account, the content is preferably 40% by weight or more in order to allow a sufficient voltage driving.


Among types of component (c) , compound (5) is a bicyclic compound, and therefore is effective in decreasing the viscosity, adjusting the optical anisotropy or increasing the dielectric anisotropy. Compounds (5) and (6) are a tricyclic compound, and therefore are effective in increasing the maximum temperature, the optical anisotropy or the dielectric anisotropy. Compounds (8) to (11) are effective in increasing the dielectric anisotropy.


When a composition for the IPS mode, the VA mode, the PSA mode or the like is prepared, the content of component (c) is preferably 40% by weight or more, and further preferably in the range of 50% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component (c) is added to the composition having positive dielectric anisotropy, the content of component (c) is preferably 30% by weight or less. Addition of component (c) allows adjustment of the elastic constant of the composition and adjustment of a voltage-transmittance curve of the device.


Component (d) is a compound having a halogen-containing group or a fluorine-containing group at a right terminal. Preferred examples of component (d) include compounds (12-1) to (12-16), compounds (13-1) to (13-113) and compounds (14-1) to (14-57). In the compounds, R16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine. X11 is fluorine, chlorine, —OCF3, —OCHF2, —CF3, —CHF2, —CH2F, —OCF2CHF2 or —OCF2CHFCF3.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Component (d) has positive dielectric anisotropy, and significantly satisfactory stability to heat or light, and therefore is used when a composition for the IPS mode, the FFS mode, the OCB mode or the like is prepared. A content of component (d) is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, and further preferably in the range of 40% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component (d) is added to the composition having negative dielectric anisotropy, the content of component (d) is preferably 30% by weight or less. Addition of component (d) allows adjustment of the elastic constant of the composition and adjustment of the voltage-transmittance curve of the device.


Component (e) is compound (15) in which a right-terminal group is —C≡N or —C≡C—C≡N. Specific examples of preferred component (e) include compounds (15-1) to (15-64). In the compounds, R17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and in the groups, at least one hydrogen may be replaced by fluorine. X12 is —C≡N or —C≡C—C≡N.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Component (e) has positive dielectric anisotropy and a value thereof is large, and therefore component (e) is used when a composition for the TN mode or the like is prepared. Addition of component (e) can increase the dielectric anisotropy of the composition. Component (e) is effective in extending the temperature range of the liquid crystal phase, adjusting the viscosity or adjusting the optical anisotropy. Component (e) is also useful for adjustment of the voltage-transmittance curve of the device.


When the composition for the TN mode or the like is prepared, a content of component (e) is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, and further preferably in the range of 40% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component (e) is added to a composition having negative dielectric anisotropy, the content of component (e) is preferably 30% by weight or less. Addition of component (e) allows adjustment of the elastic constant of the composition and adjustment of the voltage-transmittance curve of the device.


A liquid crystal composition satisfying at least one of physical properties such as high stability to heat or light, high maximum temperature, low minimum temperature, small viscosity, suitable optical anisotropy (more specifically, large optical anisotropy or small optical anisotropy), large positive or negative dielectric anisotropy, large specific resistance and a suitable elastic constant (more specifically, a large elastic constant or a small elastic constant) can be prepared by combining a compound suitably selected from components (b) to (e) described above with compound (1). A device including such a composition has a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio, a small flicker rate and a long service life.


If the device is used for a long period of time, a flicker may be occasionally generated on a display screen. A flicker rate (%) can be represented by a formula: (|luminance upon applying positive voltage—luminance upon applying negative voltage|/average luminance)×100. In a device having the flicker rate in the range of 0% to 1%, the flicker is hard to be generated on the display screen even if the device is used for a long period of time. The flicker is associated with image persistence, and is presumed to be generated according to a difference in electric potential between a positive frame and a negative frame in driving the device at an alternating current. The composition containing compound (1) is also useful for reducing generation of the flicker.


3-2. Additive

A liquid crystal composition is prepared according to a publicly known method. For example, the component compounds are mixed and dissolved in each other by heating. According to an application, an additive may be added to the composition. Specific examples of the additives include the polymerizable compound, the polymerization initiator, the polymerization inhibitor, the optically active compound, the antioxidant, the ultraviolet light absorber, the light stabilizer, the heat stabilizer, the dye and the antifoaming agent. Such additives are well known to those skilled in the art, and described in literature.


In a liquid crystal display device having the polymer sustained alignment (PSA) mode, the composition contains a polymer. The polymerizable compound is added for the purpose of forming the polymer in the composition. The polymerizable compound is polymerized by irradiation with ultraviolet light while voltage is applied between electrodes, and thus the polymer is formed in the composition. A suitable pretilt is achieved by the method, and therefore the device in which a response time is shortened and the image persistence is improved is prepared.


Preferred examples of the polymerizable compound include acrylate, methacrylate, a vinyl compound, a vinyloxy compound, propenyl ether, an epoxy compound (oxirane, oxetane) and vinyl ketone. Further preferred examples include a compound having at least one acryloyloxy, and a compound having at least one methacryloyloxy. Still further preferred examples also include a compound having both acryloyloxy and methacryloyloxy.


Still further preferred examples include compounds (M-1) to (M-18). In the compounds, R25 to R31 are independently hydrogen or methyl; R32, R33 and R34 are independently hydrogen or alkyl having 1 to 5 carbons, and at least one of R32, R33 and R34 is alkyl having 1 to 5 carbons; v, w and x are independently 0 or 1; and u and y are independently an integer from 1 to 10. L21 to L26 are independently hydrogen or fluorine; and L27 and L28 are independently hydrogen, fluorine or methyl.




embedded image


embedded image


embedded image


The polymerizable compound can be rapidly polymerized by adding the polymerization initiator. An amount of a remaining polymerizable compound can be reduced by optimizing reaction conditions. Examples of a photoradical polymerization initiator include TPO, 1173 and 4265 from Darocur series of BASF SE, and 184, 369, 500, 651, 784, 819, 907, 1300, 1700, 1800, 1850 and 2959 from Irgacure series thereof.


Additional examples of the photoradical polymerization initiator include 4-methoxyphenyl-2, 4-bis (trichloromethyl) triazine, 2-(4-butoxystyryl) -5-trichloromethyl-1,3,4-oxadiazole, 9-phenylacridine, 9,10-benzphenazine, a benzophenone-Michler' s ketone mixture, a hexaarylbiimidazole-mercaptobenzimidazole mixture, 1-(4-isopropylphenyl) -2-hydroxy-2-methylpropane-1-one, benzyl dimethyl ketal, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1-one, a mixture of 2,4-diethylxanthone and methyl p-dimethylaminobenzoate, and a mixture of benzophenone and methyltriethanolamine.


After the photoradical polymerization initiator is added to the liquid crystal composition, polymerization can be performed by irradiation with ultraviolet light while an electric field is applied. However, an unreacted polymerization initiator or a decomposition product of the polymerization initiator may cause poor display such as image persistence in the device. In order to prevent such an event, photopolymerization may be performed with no addition of the polymerization initiator. A preferred wavelength of irradiation light is in the range of 150 nanometers to 500 nanometers . A further preferred wavelength is in the range of 250 nanometers to 450 nanometers, and a most preferred wavelength is in the range of 300 nanometers to 400 nanometers.


Upon storing the polymerizable compound, the polymerization inhibitor may be added thereto for preventing polymerization. The polymerizable compound is ordinarily added to the composition without removing the polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone, a hydroquinone derivative such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol and phenothiazine.


The optically active compound is effective in inducing helical structure in liquid crystal molecules to give a required twist angle, thereby preventing a reverse twist. A helical pitch can be adjusted by adding the optically active compound thereto. Two or more optically active compounds may be added for the purpose of adjusting temperature dependence of the helical pitch. Specific examples of a preferred optically active compound include compounds (0p-1) to (Op-18) described below. In compound (Op-18), ring J is 1,4-cyclohexylene or 1,4-phenylene, and R28 is alkyl having 1 to 10 carbons. Asterisk mark (*) represents asymmetrical carbon.




embedded image


embedded image


The antioxidant is effective for maintaining the large voltage holding ratio. Preferred examples of the antioxidant include compounds (AO-1) and (AO-2) described below; and Irganox 415, Irganox 565, Irganox 1010, Irganox 1035, Irganox 3114 and Irganox 1098 (trade names; BASF SE). The ultraviolet light absorber is effective for preventing a decrease of the maximum temperature. Preferred examples of the ultraviolet light absorber include a benzophenone derivative, a benzoate derivative and a triazole derivative, and specific examples include compounds (AO-3) and (AO-4) described below; Tinuvin 329, Tinuvin P, Tinuvin 326, Tinuvin 234, Tinuvin 213, Tinuvin 400, Tinuvin 328 and Tinuvin 99-2 (trade names; BASF SE); and 1,4-diazabicyclo [2.2.2] octane (DABCO).


The light stabilizer such as an amine having steric hindrance is preferred for maintaining the large voltage holding ratio. Preferred examples of the light stabilizer include compounds (AO-5), (AO-6) and (AO-7) described below; Tinuvin 144, Tinuvin 765 and Tinuvin 770DF (trade names; BASF SE) ; and LA-77Y and LA-77G (trade names; ADEKA Corporation). The heat stabilizer is also effective for maintaining the large voltage holding ratio, and specific preferred examples include Irgafos 168 (trade name; BASF SE). A dichroic dye such as an azo dye or an anthraquinone dye is added to the composition to be adapted for a device having a guest host (GH) mode. The antifoaming agent is effective for preventing foam formation. Preferred examples of the antifoaming agent include dimethyl silicone oil and methylphenyl silicone oil.




embedded image


In compound (AO-1), R4° is alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, —COOR41 or —CH2CH2COOR41, in which R41 is alkyl having 1 to 20 carbons. In compounds (AO-2) and (AO-5), R42 is alkyl having 1 to 20 carbons. In compound (AO-5), R43 is hydrogen, methyl or O′ (oxygen radical); and ring G1 is 1,4-cyclohexylene or 1,4-phenylene; in compound (AO-7), ring G2 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; and in compounds (AO-5) and (AO-7), z is 1,2 or 3.


4. Liquid Crystal Display Device

The liquid crystal composition can be used in a liquid crystal display device having an operating mode such as the PC mode, the TN mode, the STN mode, the OCB mode and the PSA mode, and driven by an active matrix mode . The composition can also be used in a liquid crystal display device having the operating mode such as the PC mode, the TN mode, the STN mode, the OCB mode, the VA mode and the IPS mode, and driven by a passive matrix mode. The devices can be applied to any of a reflective type, a transmissive type and a transflective type.


The composition is also suitable for a nematic curvilinear aligned phase (NCAP) device, and the composition is microencapsulated herein. The composition can also be used in a polymer dispersed liquid crystal display device (PDLCD) or a polymer network liquid crystal display device (PNLCD). In the compositions, a large amount of polymerizable compound is added. On the other hand, when a proportion of the polymerizable compound is 10% by weight or less based on the weight of the liquid crystal composition, the liquid crystal display device having the PSA mode is prepared. A preferred proportion is in the range of 0.1% by weight to 2% by weight based thereon. A further preferred proportion is in the range of 0.2% by weight to 1.0% by weight based thereon. The device having the PSA mode can be driven by the driving mode such as the active matrix mode and the passive matrix mode. Such devices can be applied to any of the reflective type, the transmissive type and the transflective type.


EXAMPLES
1. Example of Compound (1)

The invention will be described in greater detail by way of Examples. The Examples each is a typical example, and therefore the invention is not limited by the Examples. Compound (1) was prepared according to procedures described below. The thus prepared compound was identified by methods such as an NMR analysis. Physical properties of a compound and a composition, and characteristics of a device were measured by methods described below.


NMR analysis: For measurement, DRX-500 made by Bruker BioSpin Corporation was used. In 1H-NMR measurement, a sample was dissolved in a deuterated solvent such as CDCl3, and measurement was carried out under conditions of room temperature, 500 MHz and 16 times of accumulation. Tetramethylsilane was used as an internal standard. In 19F-NMR measurement, CFCl3 was used as an internal standard, and measurement was carried out under conditions of 24 times of accumulation. In explaining nuclear magnetic resonance spectra obtained, s, d, t, q, quin, sex and m stand for a singlet, a doublet, a triplet, a quartet, a quintet, a sextet and a multiplet, and br being broad, respectively.


Gas chromatographic analysis: For measurement, GC-2010 Gas Chromatograph made by Shimadzu Corporation was used. As a column, a capillary column DB-1 (length 60 m, bore 0.25 mm, film thickness 0.25 μm) made by Agilent Technologies, Inc. was used. As a carrier gas, helium (1 mL/minute) was used. A temperature of a sample vaporizing chamber and a temperature of a detector (FID) were set to 300° C. and 300° C., respectively. A sample was dissolved in acetone and prepared to be a 1 weight % solution, and then 1 microliter of the solution obtained was injected into the sample vaporizing chamber. As a recorder, GC Solution System made by Shimadzu Corporation or the like was used.


HPLC analysis: For measurement, Prominence (LC-20AD; SPD-20A) made by Shimadzu Corporation was used. As a column, YMC-Pack ODS-A (length 150 mm, bore 4.6 mm, particle diameter 5 μm) made by YMC Co., Ltd. was used. As an eluate, acetonitrile and water were appropriately mixed and used. As a detector, a UV detector, an RI detector, a CORONA detector or the like was appropriately used. When the UV detector was used, a detection wavelength was set to 254 nanometers. A sample was dissolved in acetonitrile and prepared to be a 0.1 weight %; solution, and then 1 microliter of the solution was introduced into a sample chamber. As a recorder, C-R7Aplus made by Shimadzu Corporation was used.


Ultraviolet-Visible spectrophotometry: For measurement, PharmaSpec UV-1700 made by Shimadzu Corporation was used. A detection wavelength was adjusted in the range of 190 nanometers to 700 nanometers . A sample was dissolved in acetonitrile and prepared to be a 0.01 mmol/L solution, and measurement was carried out by putting the solution in a quartz cell (optical path length: 1 cm).


Sample for measurement: Upon measuring phase structure and a transition temperature (a clearing point, a melting point, a polymerization starting temperature or the like), the compound itself was used as a sample. Upon measuring physical properties such as maximum temperature of a nematic phase, viscosity, optical anisotropy and dielectric anisotropy, a mixture of the compound and a base liquid crystal was used as a sample.


Extrapolation method: When the sample prepared by mixing the compound with the base liquid crystal was used, measurement was carried out as described below. The sample was prepared by mixing 15% by weight of the compound and 85% by weight of the base liquid crystal. From a measured value of the sample, an extrapolated value was calculated according to the following equation, and the calculated value was described: [extrapolated value]=(100×[measured value of a sample]−[% by weight of a base liquid crystal]×[measured value of the base liquid crystal])/[% by weight of a compound].


When crystals (or a smectic phase) precipitated at 25° C. at the ratio, a ratio of the compound to the base liquid crystal was changed in the order of (10% by weight:90% by weight) , (5% by weight:95% by weight) , and (1% by weight:99% by weight) , and the physical properties of the sample were measured at a ratio at which no crystal (or no smectic phase) precipitated at 25° C. In addition, unless otherwise noted, the ratio of the compound to the base liquid crystal was (15% by weight:85% by weight).


When the dielectric anisotropy of the compound was zero or positive, base liquid crystal (A) described below was used. A proportion of each component was expressed in terms of weight percent (% by weight).




embedded image


When the dielectric anisotropy of the compound was zero or negative, base liquid crystal (B) described below was used. A proportion of each component was expressed in terms of weight percent (% by weight).




embedded image


Base liquid crystal (C): Base liquid crystal (C) containing a fluorine-based compound as a component may be occasionally used.




embedded image


Measuring method: Physical properties were measured according to methods described below. Most of the methods are described in the Standard of Japan Electronics and Information Technology Industries Association (JEITA) discussed and established in JEITA (JEITA ED-2521B). A modification of the methods were also used. No thin film transistor (TFT) was attached to a TN device used for measurement.


(1) Phase structure: A sample was placed on a hot plate in a melting point apparatus (FP-52 Hot Stage made by Mettler-Toledo International Inc.) equipped with a polarizing microscope. A state of phase and a change thereof were observed with the polarizing microscope while the sample was heated at a rate of 3° C. per minute, and a kind of the phase was specified.


(2) Transition temperature (° C.): For measurement, a differential scanning calorimeter, Diamond DSC System, made by PerkinElmer, Inc., or a high sensitivity differential scanning calorimeter, X-DSC7000, made by SII NanoTechnology Inc. was used. A sample was heated and then cooled at a rate of 3° C. per minute, and a starting point of an endothermic peak or an exothermic peak caused by a phase change of the sample was determined by extrapolation, and thus a transition temperature was determined. A melting point and a polymerization starting temperature of a compound were also measured using the apparatus. Temperature at which a compound undergoes transition from a solid to a liquid crystal phase such as the smectic phase and the nematic phase may be occasionally abbreviated as “minimum temperature of the liquid crystal phase.” Temperature at which the compound undergoes transition from the liquid crystal phase to liquid may be occasionally abbreviated as “clearing point.”


A crystal was expressed as C. When the crystals were distinguishable into two kinds, each of the crystals was expressed as C1 or C2. The smectic phase or the nematic phase was expressed as S or N. When a phase was distinguishable such as smectic A phase, smectic B phase, smectic C phase and smectic F, the phase was expressed as SA, SB, SC and SF, respectively. A liquid (isotropic) was expressed as I. A transition temperature was expressed as “C 50.0 N 100.0 I,” for example . The expression indicates that a transition temperature from the crystals to the nematic phase is 50.0° C., and a transition temperature from the nematic phase to the liquid is 100.0° C.


(3) Compatibility of compound: Samples in which the base liquid crystal and the compound were mixed for proportions of the compounds to be 20% by weight, 15% by weight, 10% by weight, 5% by weight, 3% by weight or 1% by weight were prepared. The samples were put in a glass vials, and kept in freezers at −10° C. or −20° C. for a predetermined period of time. Whether a nematic phase of the samples was maintained or crystals (or a smectic phase) precipitated was observed. Conditions on which the nematic phase was maintained were used as a measure of the compatibility. Proportions of the compounds and each temperature in the freezers may be occasionally changed when necessary.


(4) Maximum temperature of nematic phase (TNI or NI; ° C.): A sample was placed on a hot plate in a melting point apparatus equipped with a polarizing microscope, and heated at a rate of 1° C. per minute. Temperature when part of the sample began to change from a nematic phase to an isotropic liquid was measured. When the sample was a mixture of compound (1) and the base liquid crystal, the maximum temperature was expressed in terms of a symbol TNI. The value was calculated using the extrapolation method described above. When the sample was a mixture of compound (1) and a compound selected from compounds (2) to (15), the measured value was expressed in terms of a symbol NI. A maximum temperature of the nematic phase may be occasionally abbreviated as “maximum temperature.”


(5) Minimum temperature of nematic phase (TC; ° C.): Samples each having a nematic phase were put in glass vials and kept in freezers at temperatures of 0° C., −10° C., −20° C., −30° C. and −40° C. for 10 days, and then liquid crystal phases were observed. For example, when the sample was maintained in the nematic phase at −20° C. and changed to crystals or a smectic phase at −30° C., TC was expressed as TC<-20° C. A minimum temperature of the nematic phase may be occasionally abbreviated as “minimum temperature.”


(6) viscosity (bulk viscosity; η; measured at 20° C.; mPa·s): For measurement, a cone-plate (E type) rotational viscometer made by Tokyo Keiki Inc. was used.


(7) Optical anisotropy (refractive index anisotropy; measured at 25° C.; Δn): Measurement was carried out by an Abbe refractometer with a polarizing plate mounted on an ocular, using light at a wavelength of 589 nanometers . A surface of a main prism was rubbed in one direction, and then a sample was added dropwise onto the main prism. A refractive index (n∥) was measured when a direction of polarized light was parallel to a direction of rubbing. A refractive index (n⊥) was measured when the direction of polarized light was perpendicular to the direction of rubbing. A value of optical anisotropy (Δn) was calculated from an equation:





Δn=n∥−n⊥.


(8) Specific resistance (p; measured at 25° C.; Ωcm): Into a vessel equipped with electrodes, 1.0 milliliter of sample was injected. A direct current voltage (10 V) was applied to the vessel, and a direct current after 10 seconds was measured. Specific resistance was calculated from the following equation: (specific resistance)={(voltage)×(electric capacity of a vessel)}/{(direct current)×(dielectric constant of vacuum)}.


(9) Voltage holding ratio (VHR-1; measured at 25° C.; %): A TN device used for measurement had a polyimide alignment film, and a distance (cell gap) between two glass substrates was 5 micrometers. A sample was put in the device, and then the device was sealed with an ultraviolet-curable adhesive. The device was charged by applying a pulse voltage (60 microseconds at 5 V). A decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and area A between a voltage curve and a horizontal axis in a unit cycle was determined. Area B is an area without decay. A voltage holding ratio is expressed in terms of a percentage of area A to area B.


(10) Voltage holding ratio (VHR-2; measured at 80° C.; %): A voltage holding ratio was measured according to the method described above except that the voltage holding ratio was measured at 80° C. in place of 25° C. The results obtained were expressed in terms of a symbol VHR-2 .


(11) Flicker rate (measured at 25° C.; %): For measurement, 3298F Multimedia Display Tester made by Yokogawa Electric Corporation was used. A light source was LED. A sample was put in a normally black mode FFS device in which a distance (cell gap) between two glass substrates was 3.5 micrometers, and a rubbing direction was anti-parallel. The device was sealed with an ultraviolet-curable adhesive. Voltage was applied to the device, and a voltage having a maximum amount of light transmitted through the device was measured. A sensor part was brought close to the device while the voltage was applied, and a flicker rate displayed thereon was read.


(12) Viscosity (rotational viscosity; yl; measured at 25° C.; mPa·s): Measurement was carried out according to a method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, p. 37 (1995). A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 20 micrometers. Voltage was applied stepwise to the device from 39 V to 50 V at an increment of 1 V. After a period of 0.2 second with no voltage application, voltage was repeatedly applied under conditions of only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds). A peak current and a peak time of transient current generated by the applied voltage were measured. A value of rotational viscosity was obtained from the measured values and equation (8) on page 40 of the paper presented by M. Imai et al. Dielectric anisotropy required for the calculation was measured in a section of dielectric anisotropy described below.


(13) Dielectric anisotropy (Lc; measured at 25° C.): A value of dielectric anisotropy was calculated from an equation: Δε=ε∥−ε⊥. A dielectric constant (ε∥ and ε⊥) was measured as described below.


(1) Measurement of dielectric constant (ε∥): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. After rotating the glass substrate with a spinner, the glass substrate was heated at 150° C. for 1 hour. A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 4 micrometers, and the device was sealed with an ultraviolet-curable adhesive. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε∥) of liquid crystal molecules in a major axis direction was measured.


(2) Measurement of dielectric constant (ε⊥): A polyimide solution was applied to a well-cleaned glass substrate. After calcining the glass substrate, rubbing treatment was applied to the alignment film obtained. A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 micrometers and a twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε⊥) of liquid crystal molecules in a minor axis direction was measured.


(14) Elastic constant (K11 and K33; measured at 25° C.; pN): For measurement, Elastic Constant Measurement System Model EC-1 made by TOYO Corporation was used. A sample was put in a vertical alignment device in which a distance (cell gap) between two glass substrates was 20 micrometers. An electric charge from 20 V to 0 V was applied to the device, and electrostatic capacity (C) and applied voltage (V) were measured. The measured values were fitted to equation (2.98) and equation (2.101) on page 75 of “Liquid Crystal Device Handbook (Ekisho Debaisu Handobukku in Japanese; Nikkan Kogyo Shimbun, Ltd.),” and values of elastic constants were obtained from equation (2.100).


(15) Threshold voltage (Vth; measured at 25° C.; V): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. Alight source was a halogen lamp. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel, and the device was sealed with an ultraviolet-curable adhesive. A voltage (60 Hz, rectangular waves) to be applied to the device was stepwise increased from 0 V to 20 V at an increment of 0.02 V. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. A voltage-transmittance curve was prepared, in which the maximum amount of light corresponds to 100% transmittance and the minimum amount of light corresponds to 0% transmittance. A threshold voltage is expressed in terms of voltage at 10% transmittance.


(16) Response time (τ; measured at 25° C.; ms): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A low-pass filter was set to 5 kHz. A sample was put in a normally black mode PVA device in which a distance (cell gap) between two glass substrates was 3.2 micrometers, and a rubbing direction was anti-parallel. The device was sealed with an ultraviolet-curable adhesive. The device was applied with a voltage of a little exceeding a threshold voltage for 1 minute, and then was irradiated with ultraviolet light of 23.5 mW/cm2 for 8 minutes, while applying a voltage of 5.6 V. A voltage (rectangular waves; 60 Hz, 10 V, 0.5 second) was applied to the device. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. The maximum amount of light corresponds to 100% transmittance, and the minimum amount of light corresponds to 0% transmittance. A response time was expressed in terms of time required for a change from 90% transmittance to 10% transmittance (fall time; millisecond).


Synthesis Example 1
Synthesis of Compound (No. 121)



embedded image


First Step:

A THF (100 mL) solution of compound (T-2) (15.5 g, 27.5 mmol) prepared by a publicly known method was cooled to −60° C., and potassium t-butoxide (3.08 g, 27.5 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (100 mL) solution of compound (T-1) (6.7 g, 25 mmol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting solution was purified by silica gel chromatography. To the resulting purified material (8.3 g, 17.6 mmol; 70%) , solmix A-11 (100 mL) , toluene (50 mL and 6 N hydrochloric acid (20 mL) were added, and the resulting mixture was refluxed under heating for 4 days. An ordinary post-treatment was applied thereto, and the resulting material was purified by column chromatography and recrystallization to obtain compound (No. 121) (4.6 g, 9.75 mmol; 550).



1H-NMR (CDCl3; δ ppm): 6.84 (1H, dt, 7.5 Hz, 2 Hz), 6.66 (1H, t, 7.3 Hz), 5.34-5.33 (2H, m), 4.09 (2H, q, 7.1 Hz), 2.77-2.70 (1H, m), 1.87-1.68 (14H, m), 1.48-1.42 (5H, m), 1.32-1.22 (4H,m), 1.14-1.12 (3H, m), 1.00-0.95 (8H, m), 0.88-0.82(5H, m)


Phase transition temperature: C 33.7 SC 221.1 N 346.9 I. Maximum temperature (TNI)=269.3° C.; dielectric anisotropy (Δε)=−4.76; optical anisotropy (Δn)=0.131; viscosity (η)=40.8.


Synthesis Example 2
Synthesis of Compound (No. 122)



embedded image


embedded image


First Step:

A THF (2 L) solution of (methoxymethyl)triphenyl phosphonium chloride (482.08 g, 1.41 mol) was cooled to −60° C., and potassium t-butoxide (215.66 g, 1.92 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (900 mL) solution of compound (T-3) (300.67 g, 1.26 mol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-4) (293.17 g, 1.10 mol; 87%).


Second Step:

Then, 6 N hydrochloric acid (180 mL, 1.08 mol) was added dropwise to an acetone solution of compound (T-4) (293.17 g, 1.10 mol) and 2,2-dimethyl-1,3-propanediol (125.71 g, 1.21 mol), and the resulting mixture was stirred at room temperature for several days. An ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-5) (140.51 g, 0.48 mol; 43%).


Third Step:

A THF (700 mL) solution of (methoxymethyl) triphenyl phosphonium chloride (197.39 g, 0.58 mol) was cooled to −60° C., and potassium t-butoxide (59.29 g, 0.53 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (700 mL) solution of compound (T-5) (140 g, 0.48 mol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-6) (153.51 g, 0.48 mol; quantitative).


Fourth step:


Then, 6 N hydrochloric acid (380 mL, 1.14 mol) was added dropwise to a methylene chloride (600 mL) solution of compound (T-6) (153 g, 0.47 mol) and tetrabutylammonium bromide (TBAB; 9.28 g, 0.029 mol), and the resulting mixture was stirred for 22 hours. After an ordinary post-treatment was applied thereto, NaOH (1.13 g, 0.028 mol) and Solmix A-11 (1.1 L) were added to the post-treated solution, and the resulting mixture was stirred at room temperature for 18 hours. An ordinary post-treatment was applied thereto to obtain compound (T-7) (150.28 g, 0.49 mol, cis/trans=9/91; quantitative). Solmix (registered trade name) A-11 is a mixture of ethanol (85.5%) , methanol (13.4%) and isopropanol (1.1%), and was purchased from Japan Alcohol Trading Co., Ltd.


Fifth Step:

An ethanol (500 mL) solution of sodium borohydride (11.21 g, 0.30 mol) was ice-cooled, and an ethanol (600 mL) solution of compound (T-7) (146.21 g, 0.47 mol) was added dropwise thereto, and the resulting mixture was stirred at room temperature for 18 hours. An ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-8) (81.97 g, 0.26 mol; 560).


Sixth Step:

A toluene (200 mL) solution of compound (T-8) (30.54 g, 0.098 mol) , imidazole (8.82 g, 0.13 mol) and triphenyl phosphine (34.06 g, 0.13 mol) was ice-cooled, and a toluene (300 mL) solution of iodine (32.9 g, 0.13 mol) was added dropwise thereto, and the resulting mixture was stirred at room temperature for several days. An ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-9) (31.59 g, 0.075 mol; 77%).


Seventh Step:

To compound (T-9) (31.59 g, 0.075 mol) , triethylamine (0.8 g, 7.91 mmol), triphenyl phosphine (20.89 g, 0.080 mol) and 1,3 -dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (11 mL) were added, and the resulting mixture was stirred under heating for seven days. An ordinary treatment was applied thereto to obtain compound (T-10) (47.56 g, 0.07 mol; 93%).


Eighth Step:

A THF (100 mL) solution of compound (T-10) (15.61 g, 0.023 mol) was cooled to −60° C., and potassium t-butoxide (2.80 g, 0.025 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (40 mL) solution of compound (T-11) (5.37 g, 0.02 mol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-12) (10.10 g, 0.019 mol; 93%).


Ninth Step:

Compound (T-12) (10.10 g, 0.019 mol) was dissolved in toluene (100 mL) and 2-propanol (IPA; 100 mL), and Pd/C (0.24 g) was further added thereto, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature until hydrogen was not absorbed. After Pd/C was removed therefrom, the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-13) (6.21 g, 0.011 mol; 61%).


Tenth Step:

To a toluene (300 mL) solution of compound (T-13) (6.21 g, 0.011 mol) and tetrabutylammonium bromide (TBAB; 0.84 g, 2.61 mmol), 87% formic acid (40 mL) was added, and the resulting mixture was stirred under heating for 11 hours. An ordinary post-treatment was applied thereto to obtain compound (T-14) (6.47 g, 0.014 mol, cis/trans=24/76; quantitative).


Eleventh Step:

To compound (T-14) (5.23 g, 0.011 mol) , toluene (75 mL) , methanol (150 mL) and p-toluenesulfonic acid (PTSA; 0.71 g, 3.73 mmol) were added, and the resulting mixture was stirred under heating for 3 hours. An ordinary post-treatment was applied thereto to obtain compound (T-15) (5.40 g, 0.011 mol; quantitative).


Twelfth Step:

To a toluene (100 mL) solution of compound (T-15) (5.40 g, 0.011 mol) and tetrabutylammonium bromide (TBAB; 0.76 g, 2.36 mmol), 87% formic acid (20 mL) was added, and the resulting mixture was stirred at room temperature for several hours. An ordinary post-treatment was applied thereto to obtain compound (T-16) (3.72 g, 8.08 mmol; 77%).


Thirteenth Step:

A THF (50 mL) solution of methyltriphenylphosphonium bromide (3.47 g, 10.47 mol) was cooled to −70° C., and potassium t-butoxide (1.21 g, 10.78 mmol) was added dropwise, and the resulting mixture was stirred for 1 hour. Thereto, a THF (50 mL) solution of compound (T-16) (3.72 g, 8.08 mmol) was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 122) (2.86 g, 6.24 mmol; 77%).



1H-NMR (CDCl3; δ ppm): 6.86-6.80 (1H, m), 6.66 (1H, dt, 7.5 Hz, 1.5 Hz), 5.81-5.73 (1H, m), 4.95 (1H, d, 16 Hz), 4.87 (1H, d, 10.5 Hz), 4.08 (2H, q, 7.5 Hz), 2.74 (1H, m), 1.85-1.69 (12H, m), 1.44-1.41 (6H, m), 1.21-1.19 (5H, m), 1.09-1.07 (10H, m), 1.04-1.02 (3H, m).


Phase transition temperature: C 4.8 SB 165.8 N 277.6 I. Maximum temperature (TNI) =234.6° C.; dielectric anisotropy (Δε)=−4.87; optical anisotropy (Δn)=0.127; viscosity (η)=56.5.


Synthesis Example 3
Synthesis of Compound (No. 159)



embedded image


First Step:

A THF (200 mL) solution of compound (T-17) (15.86 g, 0.023 mol) was cooled to −40° C., and potassium t-butoxide (2.72 g, 0.024 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (40 mL) solution of compound (T-18) (5.30 g, 0.02 mol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-19) (10.01 g, 0.018 mol; 92%).


Second Step:

Compound (T-19) (10.01 g, 0.019 mol) was dissolved in a mixture of toluene (500 mL) and 2-propanol (IPA; 100 mL), and Pd/C (0.98 g) was further added thereto, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature until hydrogen was not absorbed. After Pd/C was removed therefrom, the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-20) (8.55 g, 0.016 mol; 85%).


Third Step:

To a toluene (400 mL) solution of compound (T-20) (8.55 g, 0.016 mol) and tetrabutylammonium bromide (TBAB; 1.10 g, 3.41 mmol), 87% formic acid (40 mL) was added, and the resulting mixture was stirred for 17 hours under heating. An ordinary post-treatment was applied thereto to obtain compound (T-21) (7.02 g, 0.015 mol, cis/trans=28/72; quantitative).


Fourth Step:

To compound (T-21) (7.02 g, 0.015 mol) , toluene (200 mL) , methanol (500 mL) and p-toluenesulfonic acid (PISA; 0.93 g, 4.89 mmol) were added, and the resulting mixture was stirred under heating for 7 hours. An ordinary post-treatment was applied thereto, and the resulting material was purified by recrystallization to obtain compound (T-22) (7.04 g, 0.014 mol; 91%).


Fifth Step:

To a toluene (150 mL) solution of compound (T-22) (7.04 g, 0.014 mol) and tetrabutylammonium bromide (TBAB; 0.91 g, 2.82mmol), 87% formic acid (15 mL) was added, and the resulting mixture was stirred at room temperature for several hours. An ordinary post-treatment was applied thereto to obtain compound (T-23) (6.10 g, 13 mmol; 95%).


Sixth step:


A THF (100 mL) solution of methyltriphenylphosphonium bromide (6.01 g, 16.82 mmol) was cooled to −70° C., and potassium t-butoxide (1.82 g, 16.22 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (50 mL) solution of compound (T-23) (6.10 g, 13.42 mmol) was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 159) (4.72 g, 42 mmol: 78%).



1H-NMR (CDCl3; δ ppm): 7.42-7.40 (2 H, m), 7.26-7.23 (2H, m), 7.09 (1H, dt, 8.4 Hz, 2.0 Hz), 6.78 (1H, dt, 8.9 Hz, 1.9 Hz), 5.81-5.74 (1H, m), 4.95 (1H, d, 17.5 Hz), 4.87 (1H, d, 10.8 Hz), 4.15 (2H, q, 7.0 Hz), 2.67-2.63 (2H, m) , 1.88-1.83 (3H, m) , 1.78-1.72 (6H, m), 1.55-1.46 (5H, m), 1.28-1.22 (11H, m).


Phase transition temperature: C 104.2 SB 112.6 SA 135.1 N 262.1 I. Maximum temperature (TNI)=236.3° C.; dielectric anisotropy (Δε)=−4.85; optical anisotropy (Δn)=0.197.


Comparative Example 1
Comparison of Physical Properties

As a comparative compound, compound (S-1) described in the paragraph 0103 in JP 2002-193853 A was selected. The reason is that all bonding groups in compound (S-1) are a single bond, and compound (S-1) is different from a compound of the invention in the point. Compound (S-1) was prepared according to a publicly known method.




embedded image



1H-NMR (CDCl3, δ ppm): 6.83 (1H, dt, J=2.3 Hz, 8.9 Hz), 6.66 (1H, dt, J=1.8 Hz, 9.1 Hz), 4.08 (2H, q, J=7.0 Hz), 2.72 (1H, tt, J=2.9 Hz, 12.1 Hz), 1.87-1.68 (12H, m), 1.44-1.37 (5H, m), 1.33-1.20 (6H, m), 1.17-1.07 (6H, m), 0.98-0.92 (9H, m), 0.89-0.80 (5H, m).


Physical properties of compound (S-1) were as described below. Phase transition temperature: SB 164.8 N 169.1 I. Maximum temperature (TNI)=257.9° C.; dielectric anisotropy (Δε)=−4.4; optical anisotropy (Δn)=0.127; viscosity (η)=52.9.


The results obtained by measuring compatibility between compound (No. 121) , compound (No. 122) and compound (S-1) are summarized in Table 2. Samples for measurement were prepared according to the “extrapolation method” described above. Then, 15% by weight of compound (No. 121) and compound (No. 122) each was mixed with 85% by weight of liquid crystal (B), and dissolved therein by heating the mixture. The mixture was returned to room temperature, but no crystals precipitated. In contrast, when compound (S-1) was dissolved in liquid crystal (B) in an identical proportion and the resulting solution was returned to room temperature, crystals precipitated. A proportion of compound (S-1) was changed to 10% by weight or 5% by weight, but crystals precipitated. When a proportion was 1% by weight, no crystals precipitated. The results show that compound (No. 121) and compound (No. 122) are excellent in the compatibility. When dielectric anisotropy (Δε) of the sample was measured, compound (No. 121) and compound (No. 122) had a larger value. The results show that compound (No. 121) and compound (No. 122) are superior to comparative compound (S-1).









TABLE 2







Characteristics of compounds













Dielectric




Proportion of
anisotropy


Compound
Structural formula
compound
(Δε)





Compound (No. 121)


embedded image


15% by weight/ 85% by weight
−4.8





Compound (No. 122)


embedded image


15% by weight/ 85% by weight
−4.9





Compound (S-1)


embedded image


1% by weight/ 99% by weight
−4.4









Synthesis Example 4

Synthesis of compound (No. 76)




embedded image


First Step:

A THF (150 mL) solution of compound (T-25) (23.27 g, 42.56 mmol) prepared by a publicly known method was cooled to −60° C., and potassium t-butoxide (4.78 g, 42.56 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (50 mL) solution of compound (T-24) (12 g, 35.47 mmol) prepared by a publicly known method is added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-26) (16.84 g, 35.34 mmol; 100%).


Second Step:

Compound (T-26) (16.9 g, 35.46 mmol) was dissolved in a mixture of toluene (150 mL) and 2-propanol (IPA; 150 mL), and Pd/C (0.507 g) was further added thereto, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature until hydrogen was not absorbed. After Pd/C was removed, the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-27) (16.84 g, 35.19 mmol; 990).


Third Step:

To a toluene (160 mL) solution of compound (T-27) (16.84 g, 35.19 mmol) , 87% formic acid (13.5 mL) was added, and the resulting mixture was stirred under heating for 8 hours. An ordinary post-treatment was applied thereto to obtain compound (T-28) (15.5 g, 35.67 mmol; quantitative).


Fourth Step:

A THF (150 mL) solution of (methoxymethyl) triphenyl phosphonium chloride (13.49 g, 39.49 mmol) was cooled to −60° C., and potassium t-butoxide (4.42 g, 39.36 mol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. A THF (50 mL) solution of compound (T-28) (15.55 g) was added dropwise thereto, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography to obtain compound (T-29) (12 g, 25.94 mmol; 72%).


Fifth Step:

To compound (T-29) (11.45 g, 24.75 mmol) , toluene (300 mL) , methanol (200 mL) and p-toluenesulfonic acid (PTSA; 1.41 g, 7.43 mmol) were added, and the resulting mixture was stirred under heating for 3 hours. An ordinary post-treatment was applied thereto to obtain compound (T-30) (7.97 g, 16.11 mmol; 65%).


Sixth Step:

To a toluene (70 mL) solution of compound (T-30) (7.97 g, 16.11 mmol) and tetrabutylammonium bromide (TBAB; 1.56 g, 4.83 mmol), 87% formic acid (12.36 mL) was added, and the resulting mixture was stirred at room temperature for several hours. An ordinary post-treatment was applied thereto. On the other hand, a THF (50 mL) solution of methyltriphenylphosphonium bromide (3.47 g, 10.47 mol) was cooled to −70° C., and potassium t-butoxide (1.21 g, 10.78 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, the solution in which the post-treatment was applied earlier was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 76) (2.8 g, 6.27 mmol; 39%).



1H-NMR (CDCl3; δ ppm): 7.66 (2H, d, 8.4 Hz), 7.58-7.54 (4H, m), 7.27 (2H, d, 9.7 Hz), 7.14 (1H, dd, 8.5 Hz, 2.2 Hz), 6.81 (1H, dd, 7.4 Hz, 1.7 Hz), 5.82-5.75 (1H, m), 4.97 (1H, dt, 4.9 Hz, 1.4 Hz), 4.90-4.88 (1H, m), 4.17 (2H, q, 7Hz), 2.69-2.66 (2H, m), 1.95-1.77 (5H, m),1.59-1.48 (7H, m), 1.30-1.1.24 (1H, m), 1.15-0.97 (4H, m).


Phase transition temperature: C 4.8 SC 119.1 SA 187.1 N 277.9 I. Maximum temperature (TNI)=250.3° C.; dielectric anisotropy (Δε)=−5.16; optical anisotropy (Δn)=0.287; viscosity (η)=63.3.


Comparative Example 2
Comparison of Physical Properties

As a comparative compound, compound (S-2) described below was selected. The reason is that all bonding groups in compound (S-2) are a single bond, and compound (S-2) is different from a compound of the invention in the point. Compound (S-2) is included in the compound described in formula I in JP 2002-193853 A. Compound (S-2) was prepared by a publicly known method.




embedded image



1H-NMR (CDCl3; δ ppm): 7.65 (2H, d, 8.4 Hz), 7.57 (4H, d, 8.2 Hz), 7.31 (2H, d, 8.2 Hz), 7.15 (1H, dt, 8.4 Hz, 2.4 Hz), 6.81 (1H, dt, 7.4 Hz, 1.8 Hz), 5.88-5.81 (1H, m), 5.03 (1H, dt, 17.4 Hz, 1.1 Hz), 4.94 (1H, dt, 12.8 Hz, 1.4 Hz), 4.17 (2H, q, 7.0 Hz), 2.54 (1H, tt, 12 Hz, 3.3 Hz), 2.07-1.91 (5H, m), 1.60-1.48 (5H, m), 1.30 (2H, dq, 12.9 Hz, 3.1 Hz).


Physical properties of compound (S-2) were as described below. Phase transition temperature: C 130 N 343.4 I. Maximum temperature (TNI)=266.6° C.; dielectric anisotropy (Δε)=−6.03; optical anisotropy (Δn)=0.287; viscosity (η)=69.9.


The results obtained by measuring compatibility between compound (No. 76) and compound (S-2) are summarized in Table 3. Samples for measurement were prepared according to the “extrapolation method” described above. Then, 10% by weight of compound (No. 76) was mixed with 90% by weight of liquid crystal (B), and dissolved therein by heating the mixture. The mixture was returned to room temperature, but no crystals precipitated. In contrast, when compound (S-2) was dissolved in liquid crystal (B) in an identical proportion and the resulting solution was returned to room temperature, crystals precipitated. When a proportion of compound (S-1) was changed to 5% by weight, no crystals precipitated. The results show that compound (No. 76) is excellent in the compatibility. When viscosity (η) of the samples was measured, compound (No. 76) showed a smaller value. The results show that compound (No. 76) is superior to comparative compound (S-2).









TABLE 3







Characteristics of compounds












Proportion of
Viscosity


Compound
Structural formula
compound
(n)





Compound (No. 76)


embedded image


10% by weight/ 90% by weight
63.3





Compound (S-2)


embedded image


5% by weight/ 95% by weight
69.9









Synthesis Example 5

Synthesis of compound (No. 1)




embedded image


First Step:

To a toluene (50 mL) solution of compound (T-31) (5 g, 12.61 mmol) prepared by a publicly known method, 87% formic acid (9.7 mL) was added, and the resulting mixture was stirred at room temperature for several hours. An ordinary post-treatment was applied thereto. On the other hand, a THF (50 mL) solution of compound (T-32) (6.7 g, 12.61 mmol) prepared by a publicly known method was cooled to −30° C., and potassium t-butoxide (1.56 g, 13.87 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, the solution in which the post-treatment was applied earlier was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-33) (5 g, 10.58 mmol; 84%).


Second Step:

Compound (T-33) (5 g, 10.58 mmol) was dissolved in a mixture of toluene (50 mL) and 2-propanol (IPA; 50 mL), and Pd/C (0.15 g) was further added thereto, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature until hydrogen was not absorbed. After Pd/C was removed, the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 1) (2.78 g, 5.86 mmol; 55%).



1H-NMR (CDCl3; δ ppm): 6.83 (1H, dt, 8.4 Hz, 2.3 Hz), 6.66 (1H, dt, 9.2 Hz, 1.9 Hz), 4.08 (2H, q, 7.0 Hz), 2.72 (1H, tt, 12.2 Hz, 3.2 Hz), 1.88-1.70 (12H, m), 1.44-1.26 (7H, m), 1.20-0.95 (15H, m), 0.91-0.82 (9H, m)


Phase transition temperature: C 21.8 SB 283.81 N 292.4 I. Maximum temperature (TNI)=256.3° C.; dielectric anisotropy (Δε)=−4.2; optical anisotropy (Δn)=0.147; viscosity (η)=49.5.


Synthesis Example 6


Synthesis of Compound (No. 161)




embedded image


First Step:

To a THF (85 mL) solution of compound (T-34) (6.5 g, 25.97 mmol) and compound (T-35) (5.69 g, 25.59 mmol), triphenyl phosphine (7.38 g, 28.15 mmol) was added, and the resulting mixture was cooled to 0° C. Diethyl azodicarboxylate (12.79 mL, 28.15 mmol) was added dropwise thereto, and the resulting mixture was stirred for 2 hours. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 161) (3 g, 6.59 mmol; 26%).



1H-NMR (CDCl3; δ ppm): 7.41 (2H, dd, 8.7 Hz, 1.5 Hz), 7.05 (1H, dt, 8.4 Hz, 2.1 Hz), 6.96-6.94 (2H, m), 6.77 (1H, dt, 9.0 Hz, 1.6 Hz), 5.81-5.74 (1H, m), 4.98-4.87 (2H, m), 4.15 (2H, q, 7.0 Hz), 3.79 (2H, d, 6.4 Hz), 1.95-1.78 (10H, m), 1.47 (3H, t, 7.0 Hz), 1.12-1.05 (10H, m).


Phase transition temperature: C 141.1 N 260.4 I. Maximum temperature (TNI)=237.6° C.; dielectric anisotropy (Δε)=−5.03; optical anisotropy (Δn)=0.2203; viscosity (η)=76.


Synthesis Example 7
Synthesis of Compound (No. 452)



embedded image


First Step:

A toluene (100 mL) solution of compound (T-36) (14.6 g, 78.7 mmol) was cooled to 0° C., and a 70% toluene solution of sodium bis (2-methoxyethoxy) aluminum hydride (Red-Al; 25 g, 86.56 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. The reaction mixture was poured into 1 N hydrochloric acid solution, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-37) (10 g, 63.13 mmol; 80%).


Second Step:

A toluene (30 mL) solution of compound (T-37) (3 g, 18.96 mmol), imidazole (1.68 g, 24.65 mmol) and triphenyl phosphine (6.46 g, 24.65 mmol) was ice-cooled, and a toluene (30 mL) solution of iodine (6.26 g, 24.65 mmol) was added dropwise thereto, and the resulting mixture was stirred at room temperature for several days. An ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (T-38) (3.85 g, 14.36 mmol; 700).


Third step:


To compound (T-38) (3.85 g, 14.36 mmol), triethylamine (0.15 g, 1.44 mmol), triphenylphosphine (3.95 g, 15.08 mol) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H) -pyrimidinone (1.93 mL) were added, and the resulting mixture was stirred under heating for 7 days. An ordinary treatment was applied thereto to obtain compound (T-39) (3.15 g, 5.94 mmol; 41%).


Fourth Step:

A THF (20 mL) solution of compound (T-39) (3.15 g, 5.94 mmol) was cooled to −30° C., and potassium t-butoxide (0.67 g, 5.94 mmol) was added dropwise thereto, and the resulting mixture was stirred for 1 hour. Thereto, a THF (10 mL) solution of compound (T-40) (1.67 g, 4.95 mmol) prepared by a publicly known method was added dropwise, and the resulting mixture was returned to room temperature while stirring. The resulting reaction mixture was poured into water, and an ordinary post-treatment was applied thereto, and the resulting material was purified by silica gel chromatography and recrystallization. Thereto, toluene (7 mL) and THF (15 mL) were added, and Pd/C (0.13 g) was further added thereto, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature until hydrogen was not absorbed. After Pd/C was removed therefrom, the resulting material was purified by silica gel chromatography and recrystallization to obtain compound (No. 452) (0.95 g, 2.04 mmol; 720).



1H-NMR (CDCl3; δ ppm): 7.66 (2H, dd, 8.3 Hz, 1.8 Hz), 7.58-7.54 (4H, m) , 7.26-7.25 (2H, m) , 7.14 (1H, dt, 8.4 Hz, 2.2 Hz), 6.81 (1H, dt, 7.3 Hz, 1.7 Hz), 4.98-4.87 (2H, m), 4.01-3.98 (1H, m), 3.23-3.18 (1H, m) , 3.08 (1H, t, 11.2 Hz), 2.71-2.60 (2H, m) , 1.97-1.94 (1H, m), 1.66-1.59 (2H, m), 1.50-1.14 (1H, m), 0.91 (3H, t, 7.2 Hz).


Phase transition temperature: C 113.5 N 221.3 I. Maximum temperature (TNI)=238.3° C.; dielectric anisotropy (Δε)=−5.00; optical anisotropy (Δn)=0.267; viscosity (η)=83.3.


Compound (No. 45) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.44-7.42 (2H, m), 7.28-7.27 (2H, m), 7.08 (1H, dt, 8.4 Hz, 2.3 Hz), 6.78 (1H, dt, 7.3 Hz, 1.8 Hz), 5.82-5.75 (1H, m), 4.98-4.94 (1H, m), 4.89-4.87 (1H, m), 4.15 (2H, q, 7.0 Hz), 2.50 (1H, tt, 12.1 Hz, 3.2 Hz), 1.94-1.87 (5H, m), 1.80-1.75 (4H, m), 1.52-1.44 (5H, m), 1.24-0.89 (12H, m)


Phase transition temperature: C 82 SE 134.6 SA 138.2 N 276.8 I. Maximum temperature (TNI)=241.6° C.; dielectric anisotropy (Δε)=−4.9; optical anisotropy (Δn)=0.187; viscosity (η)=59.4.


Compound (No. 71) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.66-7.53 (6H, m), 7.27-7.25 (2H, m), 7.14 (1H, dt, 8.4 Hz, 2.1 Hz) , 6.80 (1H, dt, 7.5 Hz, 1.6 Hz), 4.16 (2H, q, 7.0 Hz), 2.68-2.65 (2H, m), 1.83-1.73 (4H, m), 1.56-1.47 (5H, m), 1.34-1.13 (6H, m), 0.99-0.94 (7H, m).


Phase transition temperature: C 100.2 SBA 116.3 N 282.7 I. Maximum temperature (TNI)=257.3° C.; dielectric anisotropy (Δε)=−4.9; optical anisotropy (Δn)=0.277; viscosity (η)=64.4.


Compound (No. 157) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.40 (2H, d, 6.7 Hz) , 7.24 (2H, d, 8.1 Hz) , 7.08 (1H, dt, 8.4 Hz, 2.3 Hz), 6.78 (1H, dt, 7.3 Hz, 1.7 Hz), 4.16 (2H, q, 7.0 Hz), 2.67-2.63 (2H, m),1.85-1.69 (8H, m), 1.53-1.46 (5H, m), 1.24-1.16 (3H, m), 1.05-0.91 (9H, m) , 0.89-0.80 (5H, m)


Phase transition temperature: C 85.8 Sc 135 SA 156.2 N 245 I. Maximum temperature (TNI)=229° C.; dielectric anisotropy (Δε)=-4.84; optical anisotropy (Δn)=0.180; viscosity (η)=66.6.


Compound (No. 160) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3, δ ppm): 7.41 (2H, d, 7.8 Hz), 7.24 (2H, d, 8.1 Hz), 7.08 (1H, dt, 8.7 Hz, 2.1 Hz), 6.78 (1H, dt, 9.1 Hz, 1.6 Hz), 5.81-5.74 (1H, m), 4.97-4.93 (1H, m), 4.88-4.86 (1H, m), 4.08 (2H, t, 6.5 Hz), 2.67-2.64 (2H, m), 1.85-1.72 (10H, m), 1.56-1.49 (6H, m), 1.25-1.20 (1H, m), 1.10-0.90 (12H, m).


Phase transition temperature: C 75.6 SC 112.6 SA 181.9 N 250.7 I. Maximum temperature (TNI)=229.6° C.; dielectric anisotropy (Δε)=−4.69; optical anisotropy (Δn)=0.180; viscosity (η)=51.4.


Compound (No. 163) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.41 (2H, dd, 8.1 Hz), 7.26-7.23 (2H, m), 7.08 (1H, dt, 8.5 Hz, 2.4 Hz), 6.78 (1H, dt, 9.0 Hz, 1.7 Hz), 5.85-5.77 (1H, m) , 5.01-4.91 (2H, m) and 4.15 (2H, q, 7.0 Hz), 2.66-2.63 (2H, m), 2.08-2.03 (2H, m), 1.85-1.69 (8H, m), 1.55-1.46 (5H, m), 1.28-1.13 (4H, m), 1.01-0.82 (10H, m).


Phase transition temperature: C 85.1 SA 170.8 N 268.7 I. Maximum temperature (TNI)=250.3° C.; dielectric anisotropy (Δε)=−4.43; optical anisotropy (Δn)=0.187; viscosity (η)=41.5.


Compound (No. 181) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.43 (2H, dd, 7.1 Hz, 1.3 Hz), 7.30-7.26 (4H, m), 7.17-7.14 (2H, m), 7.09 (1H, dt, 8.5 Hz, 2.2 Hz), 6.79 (1H, dt, 7.4 Hz, 1.7 Hz), 4.16 (2H, q, 7.0 Hz), 2.97-2.90 (4H, m), 2.48-2.42 (1H, m), 1.91-1.84 (4H, m), 1.54-1.40 (5H, m), 1.37-1.19 (5H, m), 1.09-1.00 (2H, m), 0.90 (3H, t, 7.1 Hz).


Phase transition temperature: C 68.1 SB 76.6 SA 103 N 228 I. Maximum temperature (TNI)=220.3° C.; dielectric anisotropy (Δε)=−4.9; optical anisotropy (Δn)=0.217; viscosity (η)=53.6.


Compound (No. 350) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.51-7.49 (4H, m), 7.28-7.21 (4H, m), 6.75 (1H, dt, 8.0 Hz, 2.0 HZ), 6.62 (1H, dt, 8.8 Hz, 1.7Hz), 4.08 (2H, q, 7.0 Hz), 2.91 (4H, s), 2.50 (1H, tt, 12.2 Hz, 3.2 Hz), 1.94-1.87 (4H, m), 1.51-1.42 (5H, m), 1.40-1.20 (5H, m), 1.10-1.02 (2H, m), 0.91 (3H, t, 7.4 Hz).


Phase transition temperature: C 72.1 SB 119.3 N 247.3 I. Maximum temperature (TNI)=231.3° C.; dielectric anisotropy (Δε)=−5.1; optical anisotropy (Δn)=0.237; viscosity (η)=51.5.


Compound (No. 453) was obtained in a manner similar to the synthesis method described in Synthesis Examples.



1H-NMR (CDCl3; δ ppm): 7.53 (2H, d, 8.1 Hz), 7.43-7.38 (3H, m), 7.27 (2H, d, 8.1 Hz), 7.09-7.01 (2H, m), 2.71-2.65 (4H, m), 1.83-1.68 (6H, m), 1.57-1.52 (3H, m), 1.34-1.29 (6H, m), 1.02-0.86 (9H, m).


Phase transition temperature: C 84.9.1 SA 150. 8 N 220.7 I. Maximum temperature (TNI)=193.6° C.; dielectric anisotropy (Δε)=−2.2; optical anisotropy (Δn)=0.227; viscosity (η)=80.0.


Compounds (No. 1) to (No. 454) described below are synthesized in a manner similar to the method described in Synthesis Examples.













No.

















1


embedded image







2


embedded image







3


embedded image







4


embedded image







5


embedded image







6


embedded image







7


embedded image







8


embedded image







9


embedded image







10


embedded image







11


embedded image







12


embedded image







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image







18


embedded image







19


embedded image







20


embedded image







21


embedded image







22


embedded image







23


embedded image







24


embedded image







25


embedded image







26


embedded image







27


embedded image







28


embedded image







29


embedded image







30


embedded image







31


embedded image







32


embedded image







33


embedded image







34


embedded image







35


embedded image







36


embedded image







37


embedded image







38


embedded image







39


embedded image







40


embedded image







41


embedded image







42


embedded image







43


embedded image







44


embedded image







45


embedded image







46


embedded image







47


embedded image







48


embedded image







49


embedded image







50


embedded image







51


embedded image







52


embedded image







53


embedded image







54


embedded image







55


embedded image







56


embedded image







57


embedded image







58


embedded image







59


embedded image







60


embedded image







61


embedded image







62


embedded image







63


embedded image







64


embedded image







65


embedded image







66


embedded image







67


embedded image







68


embedded image







69


embedded image







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image







83


embedded image







84


embedded image







85


embedded image







86


embedded image







87


embedded image







88


embedded image







89


embedded image







90


embedded image







91


embedded image







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







97


embedded image







98


embedded image







99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image







158


embedded image







159


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image







171


embedded image







172


embedded image







173


embedded image







174


embedded image







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image







180


embedded image







181


embedded image







182


embedded image







183


embedded image







184


embedded image







185


embedded image







186


embedded image







187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194


embedded image







195


embedded image







196


embedded image







197


embedded image







198


embedded image







199


embedded image







200


embedded image







201


embedded image







202


embedded image







203


embedded image







204


embedded image







205


embedded image







206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image







212


embedded image







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image







220


embedded image







221


embedded image







222


embedded image







223


embedded image







224


embedded image







225


embedded image







226


embedded image







227


embedded image







228


embedded image







229


embedded image







230


embedded image







231


embedded image







232


embedded image







233


embedded image







234


embedded image







235


embedded image







236


embedded image







237


embedded image







238


embedded image







239


embedded image







240


embedded image







241


embedded image







242


embedded image







243


embedded image







245


embedded image







246


embedded image







247


embedded image







248


embedded image







249


embedded image







250


embedded image







251


embedded image







252


embedded image







253


embedded image







254


embedded image







255


embedded image







256


embedded image







257


embedded image







258


embedded image







259


embedded image







260


embedded image







261


embedded image







262


embedded image







263


embedded image







264


embedded image







265


embedded image







266


embedded image







267


embedded image







268


embedded image







269


embedded image







270


embedded image







271


embedded image







272


embedded image







273


embedded image







274


embedded image







275


embedded image







276


embedded image







277


embedded image







278


embedded image







279


embedded image







280


embedded image







281


embedded image







282


embedded image







283


embedded image







284


embedded image







285


embedded image







286


embedded image







287


embedded image







288


embedded image







289


embedded image







290


embedded image







291


embedded image







292


embedded image







293


embedded image







294


embedded image







295


embedded image







296


embedded image







297


embedded image







298


embedded image







299


embedded image







300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







396


embedded image







397


embedded image







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image







434


embedded image







435


embedded image







436


embedded image







437


embedded image







438


embedded image







439


embedded image







440


embedded image







441


embedded image







442


embedded image







443


embedded image







444


embedded image







445


embedded image







446


embedded image







447


embedded image







448


embedded image







449


embedded image







450


embedded image







451


embedded image







452


embedded image







453


embedded image







454


embedded image











The invention will be described in greater detail by way of Examples. The Examples each is a typical example, and therefore the invention is not limited by the Examples. For example, in addition to compositions in Use Examples, the invention includes a mixture of a composition in Use Example 1 and a composition in Use Example 2. The invention also includes a mixture prepared by mixing at least two of the compositions in Use Examples. Compounds in Use Examples were represented using symbols according to definitions in Table 2 described below. In Table 2, the configuration of 1,4-cyclohexylene is trans. A parenthesized number next to a symbolized compound represents a chemical formula to which the compound belongs. A symbol (-) means a liquid crystal compound different from compounds (1) to (15). A proportion (percentage) of the liquid crystal compound is expressed in terms of weight percent (%) by weight) based on the weight of the liquid crystal composition containing no additives. Values of physical properties of the composition are summarized in a last part. The physical properties were measured according to the methods described above, and measured values are directly described (without extrapolation).









TABLE 1





Method for description of compounds using symbols


R-(A1)-Z1- . . . -Zn-(An)-R′
















1) Left-terminal group R-
Symbol





FCnH2n
Fn-


CnH2n+1
n-


CnH2n+1O—
nO-


CmH2m+1OCnH2n
mOn-


CH2═CH—
V—


CnH2n+1—CH═CH—
nV-


CH2═CH—CnH2n
Vn-


CmH2m+1—CH═CH—CnH2n
mVn-


CF2═CH—
VFF-


CF2═CH—CnH2n
VFFn-





2) Right-terminal group -R′
Symbol





—CnH2n+1
-n


—OCnH2n+1
-On


—COOCH3
-EMe


—CH═CH2
—V


—CH═CH—CnH2n+1
-Vn


—CnH2n—CH═CH2
-nV


—CmH2m—CH═CH—CnH2n+1
-mVn


—CH═CF2
-VFF


—F
—F


—Cl
—CL


—OCF3
—OCF3


—OCF2H
—OCF2H


—CF3
—CF3


—C≡N
—C





3) Bonding group -Zn-
Symbol





—CnH2n
n


—COO—
E


—CH═CH—
V


—CH2O—
1O


—OCH2
O1


—CF2O—
X


—C≡C—
T





4) Ring structure -An-
Symbol







embedded image


H







embedded image


B







embedded image


B(F)







embedded image


B(2F)







embedded image


B(F,F)







embedded image


B(2F,5F)







embedded image


B(2F,3F)







embedded image


G







embedded image


dh







embedded image


Dh







embedded image


Cro(7F,8F)







embedded image


B(2F,3CL)










5) Examples of description





Example 1 V-HH2HB(2F,3F)-O2







embedded image







Example 2 3-HBB(F,F)-F







embedded image











Use Example 1



















V-HH2HB(2F,3F)-O2
(No. 122)
2%



V-HH2BB(2F,3F)-O2
(No. 159)
3%



2-HB-C
(15-1)
5%



3-HB-C
(15-1)
10% 



3-HB-O2
 (2-5)
15% 



2-BTB-1
 (2-10)
3%



3-HHB-F
(13-1)
4%



3-HHB-1
 (3-1)
7%



3-HHB-O1
 (3-1)
5%



3-HHB-3
 (3-1)
12% 



3-HHEB-F
 (13-10)
4%



5-HHEB-F
 (13-10)
4%



2-HHB(F)-F
(13-2)
7%



3-HHB(F)-F
(13-2)
7%



5-HHB(F)-F
(13-2)
7%



3-HHB(F,F)-F
(13-3)
5%










NI =106.9° C.; η=19.6 mPa·s; Δn=0.103; Δε=4.1.


Use Example 2



















V-HH2BB(2F,3F)-O4
(No. 160)
3%



V2-HH2BB(2F,3F)-O2
(No. 163)
3%



3-HB-CL
(12-2) 
10% 



3-HH-4
(2-1)
12% 



3-HB-O2
(2-5)
8%



3-HHB(F,F)-F
(13-3) 
3%



3-HBB(F,F)-F
(13-24)
28% 



5-HBB(F,F)-F
(13-24)
24% 



5-HBB(F)B-2
(4-5)
4%



5-HBB(F)B-3
(4-5)
5%










Use Example 3



















V-H2BBB(2F,3F)-O2
(No. 76)
2%



V-H2HBB(2F,3F)-O2
(No. 45)
3%



7-HB(F,F)-F
(12-4) 
3%



3-HB-O2
(2-5)
7%



2-HHB(F)-F
(13-2) 
8%



3-HHB(F)-F
(13-2) 
9%



5-HHB(F)-F
(13-2) 
10% 



2-HBB(F)-F
(13-23)
9%



3-HBB(F)-F
(13-23)
9%



5-HBB(F)-F
(13-23)
14% 



2-HBB-F
(13-22)
4%



3-HBB-F
(13-22)
4%



5-HBB-F
(13-22)
3%



3-HBB(F,F)-F
(13-24)
5%



5-HBB(F,F)-F
(13-24)
10% 










Use Example 4



















4-HH2BB(2F,3F)-O2
(No. 158)
3%



V-HH1OBB(2F,3F)-O2
(No. 161)
5%



5-HB-CL
(15-2)
14% 



3-HH-4
 (2-1)
10% 



3-HH-5
 (2-1)
4%



3-HHB-F
(13-1)
3%



3-HHB-CL
(13-1)
3%



4-HHB-CL
(13-1)
3%



3-HHB(F)-F
(13-2)
10% 



4-HHB(F)-F
(13-2)
9%



5-HHB(F)-F
(13-2)
8%



7-HHB(F)-F
(13-2)
8%



5-HBB(F)-F
 (13-23)
3%



1O1-HBBH-5
 (4-1)
3%



3-HHBB(F,F)-F
(14-6)
2%



4-HHBB(F,F)-F
(14-6)
3%



5-HHBB(F,F)-F
(14-6)
3%



3-HH2BB(F,F)-F
 (14-15)
3%



4-HH2BB(F,F)-F
 (14-15)
3%










Use Example 5



















V-HH1OBB(2F,3F)-3
(No. 161)
3%



3-HHVHB(2F,3F)-O2
(No. 121)
3%



3-HHB(F,F)-F
(13-3) 
8%



3-H2HB(F,F)-F
(13-15)
8%



4-H2HB(F,F)-F
(13-15)
8%



5-H2HB(F,F)-F
(13-15)
7%



3-HBB(F,F)-F
(13-24)
20% 



5-HBB(F,F)-F
(13-24)
18% 



3-H2BB(F,F)-F
(13-27)
10% 



5-HHBB(F,F)-F
(14-6) 
3%



5-HHEBB-F
(14-17)
2%



3-HH2BB(F,F)-F
(14-15)
3%



1O1-HBBH-4
(4-1)
4%



1O1-HBBH-5
(4-1)
3%










Use Example 6



















3-BB2HB(2F,3F)-O2
(No. 202)
3%



V-HVHBB(2F,3F)-3
(No. 67)
3%



5-HB-F
(12-2)
10% 



6-HB-F
(12-2)
9%



7-HB-F
(12-2)
6%



2-HHB-OCF3
(13-1)
6%



3-HHB-OCF3
(13-1)
7%



4-HHB-OCF3
(13-1)
6%



5-HHB-OCF3
(13-1)
5%



3-HH2B-OCF3
(13-4)
4%



5-HH2B-OCF3
(13-4)
4%



3-HHB(F,F)-OCF2H
(13-3)
4%



3-HHB(F,F)-OCF3
(13-3)
5%



3-HH2B(F)-F
(13-5)
3%



3-HBB(F)-F
 (13-23)
9%



5-HBB(F)-F
 (13-23)
10% 



5-HBBH-3
 (4-1)
3%



3-HB(F)BH-3
 (4-2)
3%










Use Example 7



















3-HBH1OB(2F,3F)-3
(No. 422)
3%



V-HHH2B(2F,3F)-O2
(No. 302)
5%



5-HB-CL
(12-2) 
9%



3-HH-4
(2-1)
8%



3-HHB-1
(3-1)
5%



3-HHB(F,F)-F
(13-3) 
7%



3-HBB(F,F)-F
(13-24)
17% 



5-HBB(F,F)-F
(13-24)
15% 



3-HHEB(F,F)-F
(13-12)
9%



4-HHEB(F,F)-F
(13-12)
3%



5-HHEB(F,F)-F
(13-12)
3%



2-HBEB(F,F)-F
(13-39)
3%



3-HBEB(F,F)-F
(13-39)
5%



5-HBEB(F,F)-F
(13-39)
3%



3-HHBB(F,F)-F
(14-6) 
5%










Use Example 8



















3-BH1OB(2F)B(2F,3F)-O2
(No. 237)
3%



3-B2HB(F)B(2F,3F)-3
(No. 108)
4%



3-HB-CL
(12-2) 
6%



5-HB-CL
(12-2) 
4%



3-HHB-OCF3
(13-1) 
5%



3-H2HB-OCF3
(13-13)
4%



5-H4HB-OCF3
(13-19)
14% 



V-HHB(F)-F
(13-2) 
4%



3-HHB(F)-F
(13-2) 
5%



5-HHB(F)-F
(13-2) 
5%



3-H4HB(F,F)-CF3
(13-21)
7%



5-H4HB(F,F)-CF3
(13-21)
9%



5-H2HB(F,F)-F
(13-15)
5%



5-H4HB(F,F)-F
(13-21)
6%



2-H2BB(F)-F
(13-26)
4%



3-H2BB(F)-F
(13-26)
10% 



3-HBEB(F,F)-F
(13-39)
5%










Use Example 9



















V-HHDh1OB(2F,3F)-O2
(No. 446)
5%



5-HB-CL
(12-2) 
17% 



7-HB(F,F)-F
(12-4) 
3%



3-HH-4
(2-1)
8%



3-HH-5
(2-1)
5%



3-HB-O2
(2-5)
15% 



3-HHB-1
(3-1)
7%



3-HHB-O1
(3-1)
5%



2-HHB(F)-F
(13-2) 
6%



3-HHB(F)-F
(13-2) 
6%



5-HHB(F)-F
(13-2) 
7%



3-HHB(F,F)-F
(13-3) 
6%



3-H2HB(F,F)-F
(13-15)
5%



4-H2HB(F,F)-F
(13-15)
5%










Use Example 10



















V-HH2HB(2F,3F)-O2
(No. 122)
3%



5-HB-CL
(12-2) 
3%



7-HB(F)-F
(12-3) 
7%



3-HH-4
(2-1)
9%



3-HH-5
(2-1)
10% 



3-HB-O2
(2-5)
13% 



3-HHEB-F
(13-10)
7%



5-HHEB-F
(13-10)
7%



3-HHEB(F,F)-F
(13-12)
10% 



4-HHEB(F,F)-F
(13-12)
5%



3-GHB(F,F)-F
 (13-109)
5%



4-GHB(F,F)-F
 (13-109)
5%



5-GHB(F,F)-F
 (13-109)
7%



2-HHB(F,F)-F
(13-3) 
4%



3-HHB(F,F)-F
(13-3) 
5%










NI=74.5° C.; η=19.1 mPa·s; Δn=0.069; Δε=5.4.


Use Example 11



















V-HH2BB(2F,3F)-O2
(No. 159)
3%



1V2-BEB(F,F)-C
(15-13)
6%



3-HB-C
(15-1) 
18% 



2-BTB-1
 (2-10)
10% 



5-HH-VFF
(2-1)
27% 



3-HHB-1
(3-1)
4%



VFF-HHB-1
(3-1)
7%



VFF2-HHB-1
(3-1)
11% 



3-H2BTB-2
 (3-17)
6%



3-H2BTB-3
 (3-17)
4%



3-H2BTB-4
 (3-17)
4%










NI=87.3° C.; η=13.6 mPa·s; Δn=0.136; Δε=6.3.


Use Example 12



















V-HH2BB(2F,3F)-O4
(No. 160)
5%



5-HB(F)B(F,F)XB(F,F)-F
(14-41)
5%



3-BB(F)B(F,F)XB(F,F)-F
(14-47)
3%



4-BB(F)B(F,F)XB(F,F)-F
(14-47)
5%



5-BB(F)B(F,F)XB(F,F)-F
(14-47)
3%



3-HH-V
(2-1)
41% 



3-HH-V1
(2-1)
6%



3-HHEH-5
 (3-13)
3%



3-HHB-1
(3-1)
4%



V-HHB-1
(3-1)
5%



V2-BB(F)B-1
(3-6)
4%



1V2-BB-F
(12-1) 
3%



3-BB(F,F)XB(F,F)-F
(13-97)
10% 



3-HHBB(F,F)-F
(14-6) 
3%










Use Example 13



















V2-HH2BB(2F,3F)-O2
(No. 163)
3%



V-H2BBB(2F,3F)-O2
(No. 76)
3%



3-GB(F)B(F,F)XB(F,F)-F
(14-57)
5%



3-BB(F)B(F,F)XB(F,F)-F
(14-47)
3%



4-BB(F)B(F,F)XB(F,F)-F
(14-47)
7%



5-BB(F)B(F,F)XB(F,F)-F
(14-47)
3%



3-HH-V
(2-1)
38% 



3-HH-V1
(2-1)
7%



3-HHEH-5
 (3-13)
3%



3-HHB-1
(3-1)
3%



V-HHB-1
(3-1)
3%



V2-BB(F)B-1
(3-6)
5%



1V2-BB-F
(12-1) 
3%



3-BB(F,F)XB(F,F)-F
(13-97)
6%



3-GB(F,F)XB(F,F)-F
 (13-113)
5%



3-HHBB(F,F)-F
(14-6) 
3%










INDUSTRIAL APPLICABILITY

A liquid crystal compound of the invention has good physical properties. A liquid crystal composition containing the compound can be widely applied to a liquid crystal display device used in a personal computer, a television and so forth.

Claims
  • 1. A compound, represented by formula (1):
  • 2. The compound according to claim 1, wherein, in formula (1), R1 is alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons; ring A1 is 1,4-cyclohexylene, and ring A2 and ring A3 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and Z1, Z2 and Z3 are independently a single bond, —COO—, —OCO— or —CH2CH2—, and at least one of Z1, Z2 and Z3 is —COO—, —OCO— or —CH2CH2—.
  • 3. The compound according to claim 1, wherein, in formula (1), R1 is alkenyl having 2 to 10 carbons, and R2 is alkyl having 1 to 15 carbons, alkoxy having 1 to 15 carbons or alkenyl having 2 to 15 carbons; ring A1 is 1,4-cyclohexylene, and ring A2 and ring A3 are independently 1,4-cyclohexylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl or pyrimidine-2,5-diyl; and Z1, Z2 and Z3 are independently a single bond, —COO—, —OCO— or —CH2CH2—, and at least one of Z1, Z2 and Z3 is —COO—, —OCO— or —CH2CH2—.
  • 4. The compound according to claim 1, represented by formula (1-1), formula (1-2) or formula (1-3):
  • 5. The compound according to claim 1, represented by any one of formula (1-4) to formula (1-7):
  • 6. The compound according to claim 1, represented by any one of formula (1-8) to formula (1-10):
  • 7. The compound according to claim 1, represented by any one of formula (1-11) or formula (1-12):
  • 8. The compound according to claim 1, represented by any one of formulas (1-13) to formula (1-15), formula (1-19) to formula (1-22) or formula (1-24):
  • 9. The compound according to claim 1, represented by any one of formula (1-25) to formula (1-26), formula (1-29) to formula (1-31):
  • 10. The compound according to claim 1, represented by any one of formulas (1-32), formula (1-34) or formula (1-36):
  • 11. The compound according to claim 8, wherein, in formula (1-13) to formula (1-15), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.
  • 12. The compound according to claim 9, wherein, in formula (1-25) and formula (1-26), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.
  • 13. The compound according to claim 10, wherein, in formula (1-32), R1 is alkenyl having 2 to 5 carbons, and R2 is alkyl having 1 to 5 carbons or alkoxy having 1 to 5 carbons.
  • 14. A liquid crystal composition, containing at least one compound according to claim 1.
  • 15. The liquid crystal composition according to claim 14, further containing at least one compound selected from the group of compounds represented by formulas (2) to (4):
  • 16. The liquid crystal composition according to claim 15, further containing at least one compound selected from the group of compounds represented by formulas (5) to (11):
  • 17. The liquid crystal composition according to claim 15, further containing at least one compound selected from the group of compounds represented by formulas (12) to (14):
  • 18. The liquid crystal composition according to claim 15, further containing at least one compound selected from the group of compounds represented by formula (15):
  • 19. A liquid crystal display device, including the liquid crystal composition according to claim 14.
Priority Claims (1)
Number Date Country Kind
2016-008895 Jan 2016 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2016/087798 12/19/2016 WO 00