TETRALINE AND INDANE DERIVATIVES, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM, AND THEIR USE IN THERAPY

Abstract
The present invention relates to tetraline and indane derivatives of the formula (I)
Description
BACKGROUND OF THE INVENTION

The present invention relates to tetraline and indane derivatives, pharmaceutical compositions comprising such tetraline and indane derivatives, and the use of such tetraline and indane derivatives for therapeutic purposes. The tetraline and indane derivatives are GlyT1 inhibitors.


Dysfunction of glutamatergic pathways has been implicated in a number of disease states in the human central nervous system (CNS) including but not limited to schizophrenia, cognitive deficits, dementia, Parkinson disease, Alzheimer disease and bipolar disorder. A large number of studies in animal models lend support to the NMDA hypofunction hypothesis of schizophrenia.


NMDA receptor function can be modulated by altering the availability of the co-agonist glycine. This approach has the critical advantage of maintaining activity-dependent activation of the NMDA receptor because an increase in the synaptic concentration of glycine will not produce an activation of NMDA receptors in the absence of glutamate. Since synaptic glutamate levels are tightly maintained by high affinity transport mechanisms, an increased activation of the glycine site will only enhance the NMDA component of activated synapses.


Two specific glycine transporters, GlyT1 and GlyT2 have been identified and shown to belong to the Na/Cl-dependent family of neurotransmitter transporters which includes taurine, gamma-aminobutyric acid (GABA), proline, monoamines and orphan transporters. GlyT1 and GlyT2 have been isolated from different species and shown to have only 50% identity at the amino acid level. They also have a different pattern of expression in mammalian central nervous system, with GlyT2 being expressed in spinal cord, brainstem and cerebellum and GlyT1 present in these regions as well as forebrain areas such as cortex, hippocampus, septum and thalamus. At the cellular level, GlyT2 has been reported to be expressed by glycinergic nerve endings in rat spinal cord whereas GlyT1 appears to be preferentially expressed by glial cells. These expression studies have led to the suggestion that GlyT2 is predominantly responsible for glycine uptake at glycinergic synapses whereas GlyT1 is involved in monitoring glycine concentration in the vicinity of NMDA receptor expressing synapses. Recent functional studies in rat have shown that blockade of GlyT1 with the potent inhibitor (N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl])-sarcosine (NFPS) potentiates NMDA receptor activity and NMDA receptor-dependent long-term potentiation in rat.


Molecular cloning has further revealed the existence of three variants of GlyT1, termed GlyT-1a, GlyT-1b and GlyT-1c, each of which displays a unique distribution in the brain and peripheral tissues. The variants arise by differential splicing and exon usage, and differ in their N-terminal regions.


The physiological effects of GlyT1 in forebrain regions together with clinical reports showing the beneficial effects of GlyT1 inhibitor sarcosine in improving symptoms in schizophrenia patients suggest that selective GlyT1 inhibitors represent a new class of antipsychotic drugs.


Glycine transporter inhibitors are already known in the art, for example:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


(see also Hashimoto K., Recent Patents on CNS Drug Discovery, 2006, 1, 43-53; Harsing L. G. et al., Current Medicinal Chemistry, 2006, 13, 1017-1044; Javitt D. C., Molecular Psychiatry (2004) 9, 984-997; Lindsley, C. W. et al., Current Topics in Medicinal Chemistry, 2006, 6, 771-785; Lindsley C. W. et al., Current Topics in Medicinal Chemistry, 2006, 6, 1883-1896).


It was one object of the present invention to provide further glycine transporter inhibitors.


SUMMARY OF THE INVENTION

The present invention relates to tetraline and indane derivatives of the formula (I)




embedded image




    • wherein



  • A is a 5- or 6-membered ring;

  • R is R1—W-A1-Q-Y-A2-X1—;

  • R1 is hydrogen, alkyl, cycloalkylalkyl, halogenated alkyl, trialkylsilylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, alkylcarbonylaminoalkyl, alkyloxycarbonylaminoalkyl, alkylaminocarbonylaminoalkyl, dialkylaminocarbonyl-aminoalkyl, alkylsulfonylaminoalkyl, (optionally substituted arylalkyl)aminoalkyl, optionally substituted arylalkyl, optionally substituted heterocyclylalkyl, cycloalkyl, alkylcarbonyl, alkoxycarbonyl, halogenated alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, (halogenated alkyl)aminocarbonyl, arylaminocarbonyl, alkenyl, alkynyl, optionally substituted aryl, hydroxy, alkoxy, halogenated alkoxy, hydroxyalkoxy, alkoxyalkoxy, aminoalkoxy, alkylaminoalkoxy, dialkylaminoalkoxy, alkylcarbonylaminoalkoxy, arylcarbonylaminoalkoxy, alkoxycarbonylaminoalkoxy, arylalkoxy, alkylsulfonylaminoalkoxy, (halogenated alkyl)sulfonylaminoalkoxy, arylsulfonylaminoalkoxy, (arylalkyl)sulfonylaminoalkoxy, heterocyclylsulfonylaminoalkoxy, heterocyclylalkoxy, aryloxy, heterocyclyloxy, alkylthio, halogenated alkylthio, alkylamino, (halogenated alkyl)amino, dialkylamino, di-(halogenated alkyl)amino, alkylcarbonylamino, (halogenated alkyl)carbonylamino, arylcarbonylamino, alkylsulfonylamino, (halogenated alkyl)sulfonylamino, arylsulfonylamino or optionally substituted heterocyclyl;

  • W is —NR8— or a bond;

  • A1 is optionally substituted alkylene or a bond;

  • Q is —S(O)2— or —C(O)—;

  • Y is —NR9— or a bond;

  • A2 is optionally substituted alkylene, alkylene-CO—, —CO-alkylene, alkylene-O-alkylene, alkylene-NR10-alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted arylene, optionally substituted heteroarylene or a bond;

  • X1 is —O—, —NR11—, —S—, optionally substituted alkylene, optionally substituted alkenylen, optionally substituted alkynylene;

  • R2 is hydrogen, halogen, alkyl, halogenated alkyl, hydroxyalkyl, —CN, alkenyl, alkynyl, optionally substituted aryl, hydroxy, alkoxy, halogenated alkoxy, alkoxycarbonyl, alkenyloxy, arylalkoxy, alkylcarbonyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, aminosulfonyl, amino, alkylamino, alkenylamino, nitro or optionally substituted heterocyclyl, or two radicals R2 together with the ring atoms of A to which they are bound form a 5- or 6-membered ring;

  • R3 is hydrogen, halogen, alkyl or alkoxy, or two radicals R3 together with the carbon atom to which they are attached form a carbonyl group;

  • Y1 is optionally substituted alkylene;

  • R4a is hydrogen, alkyl, cycloalkylalkyl, halogenated alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, CH2CN, aralkyl, cycloalkyl, —CHO, alkylcarbonyl, (halogenated alkyl)carbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, alkylaminocarbonyl, alkenyl, —C(═NH)NH2, —C(═NH)NHCN, alkylsulfonyl, arylsulfonyl, amino, —NO or heterocyclyl; or

  • R4a is optionally substituted alkylene that is bound to a carbon atom in Y1;

  • R4b is hydrogen, alkyl, halogenated alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, CH2CN, —CHO, alkylcarbonyl, (halogenated alkyl)carbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, alkylaminocarbonyl, alkenyl, —C(═NH)NH2, —C(═NH)NHCN, alkylsulfonyl, arylsulfonyl, amino, —NO or heterocyclyl; or

  • R4a, R4b
    • together are optionally substituted alkylene, wherein one —CH2— of alkylene may be replaced by an oxygen atom or —NR16;

  • X2 is —O—, —NR6—, —S—, >CR12aR12b or a bond;

  • X3 is —O—, —S—, >CR13aR13b or a bond;

  • R5 is optionally substituted aryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

  • n is 0, 1 or 2;

  • R6 is hydrogen or alkyl;

  • R7 is hydrogen or alkyl;

  • R8 is hydrogen or alkyl;

  • R9 is hydrogen, alkyl, cycloalkyl, aminoalkyl, optionally substituted arylalkyl or heterocyclyl; or

  • R9, R1
    • together are alkylene; or

  • R9 is alkylene that is bound to a carbon atom in A2 and A2 is alkylene or to a carbon atom in X1 and X1 is alkylene;

  • R10 is hydrogen, alkyl or alkylsulfonyl;

  • R11 is hydrogen or alkyl, or

  • R9, R11
    • together are alkylene,

  • R12a is hydrogen, optionally substituted alkyl, alkylaminoalkyl, dialkylaminoalkyl, heterocyclylalkyl, optionally substituted aryl or hydroxy;

  • R12b is hydrogen or alkyl, or

  • R12a, R12b
    • together are carbonyl or optionally substituted alkylene, wherein one —CH2— of alkylene may be replaced by an oxygen atom or —NR14—;

  • R13a is hydrogen, optionally substituted alkyl, alkylaminoalkyl, dialkylaminoalkyl, heterocyclylalkyl, optionally substituted aryl or hydroxy;

  • R13b is hydrogen or alkyl, or

  • R13a, R13b
    • together are carbonyl or optionally substituted alkylene, wherein one —CH2— of alkylene may be replaced by an oxygen atom or —NR15—;

  • R14 is hydrogen or alkyl;

  • R15 is hydrogen or alkyl; and

  • R16 is hydrogen or alkyl,


    or a physiologically tolerated salt thereof.



According to a second aspect, the present invention relates to tetraline and indane derivatives of the formula (I) or a physiologically tolerated salt thereof, wherein the Y1 is a bond, R4a is cycloalkyl and A, R1, W, A1, Q, Y, A2, R2, R3, R4b, X2, X3, R5, n are as defined herein, provided that the tetraline and indane derivative is not propane-1-sulfonic acid (8-benzyl-7-cyclopropylamino-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl)-amide or a physiologically tolerated salt thereof such as the hydrochloride.

  • Thus, the present invention relates to tetraline and indane derivatives having the formula (Ia)




embedded image


wherein A, R1, W, A1, Q, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


Further, the present invention relates to tetraline and indane derivatives of formula (I) wherein R is —CN, i.e. tetraline and indane derivatives having the formula (Ib)




embedded image


wherein A, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


Thus, the term tetraline and indane derivative is used herein to denote in particular tetralines (n=1) and fused cyclohexanes (n=1) wherein the benzene ring is replaced by a 5- or 6-membered heterocyclic ring as well as homologous bicyclic compounds wherein n is 0 or 2.


Said compounds of formula (I), i.e., the tetraline and indane derivatives of formula (I) and their physiologically tolerated salts, are glycine transporter inhibitors and thus useful as pharmaceuticals.


The present invention thus further relates to the compounds of formula (I) for use in therapy.


The present invention also relates to pharmaceutical compositions which comprise a carrier and a compound of formula (I).


In particular, said compounds, i.e., the tetraline and indane derivatives and their physiologically tolerated salts, are inhibitors of the glycine transporter GlyT1.


The present invention thus further relates to the compounds of formula (I) for use in inhibiting the glycine transporter.


The present invention also relates to the use of the compounds of formula (I) in the manufacture of a medicament for inhibiting the glycine transporter GlyT1 and corresponding methods of inhibiting the glycine transporter GlyT1.


Glycine transport inhibitors and in particular inhibitors of the glycine transporter GlyT1 are known to be useful in treating a variety of neurologic and psychiatric disorders.


The present invention thus further relates to the compounds of formula (I) for use in treating a neurologic or psychiatric disorder.


The present invention further relates to the compounds of formula (I) for use in treating pain.


The present invention also relates to the use of the compounds of formula (I) in the manufacture of a medicament for treating a neurologic or psychiatric disorder and corresponding methods of treating said disorders. The present invention also relates to the use of the compounds of formula (I) in the manufacture of a medicament for treating pain and corresponding methods of treating pain.


The present invention further relates to tetraline and indane derivatives of formula (II)




embedded image


wherein L is an amino-protecting group, Y is NR9, and A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n and R9 are defined as above.


The tetraline and indane derivatives of formula (II) are useful as intermediates in the preparation of GlyT1 inhibitors, in particular those of formula (I).







DETAILED DESCRIPTION OF THE INVENTION

Provided that the tetraline and indane derivatives of the formula (I) or (II) of a given constitution may exist in different spatial arrangements, for example if they possess one or more centers of asymmetry, polysubstituted rings or double bonds, or as different tautomers, it is also possible to use enantiomeric mixtures, in particular racemates, diastereomeric mixtures and tautomeric mixtures, preferably, however, the respective essentially pure enantiomers, diastereomers and tautomers of the compounds of formula (I) or (II) and/or of their salts.


According to one embodiment, an enantiomer of the compounds of the present invention has the following formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


According to another embodiment, an enantiomer of the compounds of the present invention has the following formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


According to one embodiment, an enantiomer of the compounds of the present invention has the following formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


According to another embodiment, an enantiomer of the compounds of the present invention has the following formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


The physiologically tolerated salts of the tetraline and indane derivatives of the formula (I) or (II) are especially acid addition salts with physiologically tolerated acids. Examples of suitable physiologically tolerated organic and inorganic acids are hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, C1-C4-alkylsulfonic acids, such as methanesulfonic acid, cycloaliphatic sulfonic acids, such as S-(+)-10-camphor sulfonic acid, aromatic sulfonic acids, such as benzenesulfonic acid and toluenesulfonic acid, di- and tricarboxylic acids and hydroxycarboxylic acids having 2 to 10 carbon atoms, such as oxalic acid, malonic acid, maleic acid, fumaric acid, lactic acid, tartaric acid, citric acid, glycolic acid, adipic acid and benzoic acid. Other utilizable acids are described, e.g., in Fortschritte der Arzneimittelforschung [Advances in drug research], Volume 10, pages 224 ff., Birkhä user Verlag, Basel and Stuttgart, 1966. The physiologically tolerated salts of the tetraline and indane derivatives also include salts of a physiologically tolerated anion with tetraline and indane derivatives wherein one or more than one nitrogen atom is quaternized, e.g. with an alkyl residue (e.g. methyl or ethyl).


The present invention moreover relates to compounds of formula (I) or (II) as defined herein, wherein at least one of the atoms has been replaced by its stable, non-radioactive isotope (e.g., hydrogen by deuterium, 12C by 13C, 14N by 15N, 16O by 18O) and preferably wherein at least one hydrogen atom has been replaced by a deuterium atom.


Of course, such compounds contain more of the respective isotope than this naturally occurs and thus is anyway present in the compounds (I) or (II).


Stable isotopes (e.g., deuterium, 13O, 15N, 18O) are nonradioactive isotopes which contain one or more additional neutron than the normally abundant isotope of the respective atom. Deuterated compounds have been used in pharmaceutical research to investigate the in vivo metabolic fate of the compounds by evaluation of the mechanism of action and metabolic pathway of the non-deuterated parent compound (Blake et al. J. Pharm. Sci. 64, 3, 367-391 (1975)). Such metabolic studies are important in the design of safe, effective therapeutic drugs, either because the in vivo active compound administered to the patient or because the metabolites produced from the parent compound prove to be toxic or carcinogenic (Foster et al., Advances in Drug Research Vol. 14, pp. 2-36, Academic Press, London, 1985; Kato et al., J. Labelled Comp. Radiopharmaceut., 36(10):927-932 (1995); Kushner et al., Can. J. Physiol. Pharmacol., 77, 79-88 (1999).


Incorporation of a heavy atom particularly substitution of deuterium for hydrogen, can give rise to an isotope effect that could alter the pharmacokinetics of the drug. This effect is usually insignificant if the label is placed at a metabolically inert position of the molecule.


Stable isotope labeling of a drug can alter its physico-chemical properties such as pKa and lipid solubility. These changes may influence the fate of the drug at different steps along its passage through the body. Absorption, distribution, metabolism or excretion can be changed. Absorption and distribution are processes that depend primarily on the molecular size and the lipophilicity of the substance. These effects and alterations can affect the pharmacodynamic response of the drug molecule if the isotopic substitution affects a region involved in a ligand-receptor interaction.


Drug metabolism can give rise to large isotopic effect if the breaking of a chemical bond to a deuterium atom is the rate limiting step in the process. While some of the physical properties of a stable isotope-labeled molecule are different from those of the unlabeled one, the chemical and biological properties are the same, with one important exception: because of the increased mass of the heavy isotope, any bond involving the heavy isotope and another atom will be stronger than the same bond between the light isotope and that atom. In any reaction in which the breaking of this bond is the rate limiting step, the reaction will proceed slower for the molecule with the heavy isotope due to “kinetic isotope effect”. A reaction involving breaking a C-D bond can be up to 700 percent slower than a similar reaction involving breaking a C—H bond. If the C-D bond is not involved in any of the steps leading to the metabolite, there may not be any effect to alter the behavior of the drug. If a deuterium is placed at a site involved in the metabolism of a drug, an isotope effect will be observed only if breaking of the C-D bond is the rate limiting step. There is evidence to suggest that whenever cleavage of an aliphatic C—H bond occurs, usually by oxidation catalyzed by a mixed-function oxidase, replacement of the hydrogen by deuterium will lead to observable isotope effect. It is also important to understand that the incorporation of deuterium at the site of metabolism slows its rate to the point where another metabolite produced by attack at a carbon atom not substituted by deuterium becomes the major pathway a process called “metabolic switching”.


Deuterium tracers, such as deuterium-labeled drugs and doses, in some cases repeatedly, of thousands of milligrams of deuterated water, are also used in healthy humans of all ages, including neonates and pregnant women, without reported incident (e.g. Pons G and Rey E, Pediatrics 1999 104: 633; Coward W A et al., Lancet 1979 7: 13; Schwarcz H P, Control. Clin. Trials 1984 5(4 Suppl): 573; Rodewald L E et al., J. Pediatr. 1989 114: 885; Butte N F et al. Br. J. Nutr. 1991 65: 3; MacLennan A H et al. Am. J. Obstet. Gynecol. 1981 139: 948). Thus, it is clear that any deuterium released, for instance, during the metabolism of compounds of this invention poses no health risk.


The weight percentage of hydrogen in a mammal (approximately 9%) and natural abundance of deuterium (approximately 0.015%) indicates that a 70 kg human normally contains nearly a gram of deuterium. Furthermore, replacement of up to about 15% of normal hydrogen with deuterium has been effected and maintained for a period of days to weeks in mammals, including rodents and dogs, with minimal observed adverse effects (Czajka D M and Finkel A J, Ann. N.Y. Acad. Sci. 1960 84: 770; Thomson J F, Ann. New York Acad. Sci. 1960 84: 736; Czakja D M et al., Am. J. Physiol. 1961 201: 357). Higher deuterium concentrations, usually in excess of 20%, can be toxic in animals. However, acute replacement of as high as 15%-23% of the hydrogen in humans' fluids with deuterium was found not to cause toxicity (Blagojevic N et al. in “Dosimetry & Treatment Planning for Neutron Capture Therapy”, Zamenhof R, Solares G and Harling 0 Eds. 1994. Advanced Medical Publishing, Madison Wis. pp. 125-134; Diabetes Metab. 23: 251 (1997)).


Increasing the amount of deuterium present in a compound above its natural abundance is called enrichment or deuterium-enrichment. Examples of the amount of enrichment include from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %.


The hydrogens present on a particular organic compound have different capacities for exchange with deuterium. Certain hydrogen atoms are easily exchangeable under physiological conditions and, if replaced by deuterium atoms, it is expected that they will readily exchange for protons after administration to a patient. Certain hydrogen atoms may be exchanged for deuterium atoms by the action of a deuteric acid such as D2SO4/D2O. Alternatively, deuterium atoms may be incorporated in various combinations during the synthesis of compounds of the invention. Certain hydrogen atoms are not easily exchangeable for deuterium atoms. However, deuterium atoms at the remaining positions may be incorporated by the use of deuterated starting materials or intermediates during the construction of compounds of the invention.


Deuterated and deuterium-enriched compounds of the invention can be prepared by using known methods described in the literature. Such methods can be carried out utilizing corresponding deuterated and optionally, other isotope-containing reagents and/or intermediates to synthesize the compounds delineated herein, or invoking standard synthetic protocols known in the art for introducing isotopic atoms to a chemical structure. Relevant procedures and intermediates are disclosed, for instance in Lizondo, J et al., Drugs Fut, 21(11), 1116 (1996); Brickner, S J et al., J Med Chem, 39(3), 673 (1996); Mallesham, B et al., Org Lett, 5(7), 963 (2003); PCT publications WO1997010223, WO2005099353, WO1995007271, WO2006008754; U.S. Pat. Nos. 7,538,189; 7,534,814; 7,531,685; 7,528,131; 7,521,421; 7,514,068; 7,511,013; and US Patent Application Publication Nos. 20090137457; 20090131485; 20090131363; 20090118238; 20090111840; 20090105338; 20090105307; 20090105147; 20090093422; 20090088416; 20090082471, the methods are hereby incorporated by reference.


The organic moieties mentioned in the above definitions of the variables are—like the term halogen—collective terms for individual listings of the individual group members. The prefix Cn—Cm indicates in each case the possible number of carbon atoms in the group.


Unless indicated otherwise, the term “substituted” means that a radical is substituted with 1, 2 or 3, especially 1, substituent which are in particular selected from the group consisting of halogen, C1-C4-alkyl, hydroxy-C1-C4-alkyl, C3-C12-heterocyclylalkyl, C1-C4-alkoxy-C1-C4-alkyl, amino-C1-C4-alkyl, C1-C4-alkenyl, OH, SH, CN, CF3, O—CF3, COOH, O—CH2—COOH, C1-C6-alkoxy, C1-C6-alkylthio, C3-C7-cycloalkyl, COO—C1-C6-alkyl, CONH2, CONH—C1-C6-alkyl, SO2NH—C1-C6-alkyl, CON—(C1-C6-alkyl)2, SO2N—(C1-C6-alkyl)2, NH2, NH—C1-C6-alkyl, N—(C1-C6-alkyl)2, NH—(C1-C4-alkyl-C6-C12-aryl), NH—CO—C1-C6-alkyl, NH—SO2—C1-C6-alkyl, SO2—C1-C6-alkyl, C6-C12-aryl, O—C6-C12-aryl, O—CH2—C6-C12-aryl, CONH—C6-C12-aryl, SO2NH—C6-C12-aryl, CONH—C3-C12-heterocyclyl, SO2NH—C3-C12-heterocyclyl, SO2—C6-C12-aryl, NH—SO2—C6-C12-aryl, NH—CO—C6-C12-aryl, NH—SO2—C3-C12-heterocyclyl, NH—CO—C3-C12-heterocyclyl and C3-C12-heterocyclyl, oxo (═O) being a further substituent, wherein aryl and heterocyclyl in turn may be unsubstituted or substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy.


The term halogen denotes in each case fluorine, bromine, chlorine or iodine, in particular fluorine or chlorine.


C1-C4-Alkyl is a straight-chain or branched alkyl group having from 1 to 4 carbon atoms. Examples of an alkyl group are methyl, C2-C4-alkyl such as ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl, iso-butyl or tert-butyl. C1-C2-Alkyl is methyl or ethyl, C1-C3-alkyl is additionally n-propyl or isopropyl.


C1-C6-Alkyl is a straight-chain or branched alkyl group having from 1 to 6 carbon atoms. Examples include methyl, C2-C4-alkyl as mentioned herein and also pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl.


Halogenated C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms, such as in halogenomethyl, dihalogenomethyl, trihalogenomethyl, (R)-1-halogenoethyl, (S)-1-halogenoethyl, 2-halogenoethyl, 1,1-dihalogenoethyl, 2,2-dihalogenoethyl, 2,2,2-trihalogenoethyl, (R)-1-halogenopropyl, (S)-1-halogenopropyl, 2-halogenopropyl, 3-halogenopropyl, 1,1-dihalogenopropyl, 2,2-dihalogenopropyl, 3,3-dihalogenopropyl, 3,3,3-trihalogenopropyl, (R)-2-halogeno-1-methylethyl, (S)-2-halogeno-1-methylethyl, (R)-2,2-dihalogeno-1-methylethyl, (S)-2,2-dihalogeno-1-methylethyl, (R)-1,2-dihalogeno-1-methylethyl, (S)-1,2-dihalogeno-1-methylethyl, (R)-2,2,2-trihalogeno-1-methylethyl, (S)-2,2,2-trihalogeno-1-methylethyl, 2-halogeno-1-(halogenomethyl)ethyl, 1-(dihalogenomethyl)-2,2-dihalogenoethyl, (R)-1-halogenobutyl, (S)-1-halogenobutyl, 2-halogenobutyl, 3-halogenobutyl, 4-halogenobutyl, 1,1-dihalogenobutyl, 2,2-dihalogenobutyl, 3,3-dihalogenobutyl, 4,4-dihalogenobutyl, 4,4,4-trihalogenobutyl, etc. Particular examples include the fluorinated C1-C4 alkyl groups as defined, such as trifluoromethyl.


C6-C12-Aryl-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by C6-C12-aryl, such as in benzyl.


Hydroxy-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, wherein one or two hydrogen atoms are replaced by one or two hydroxyl groups, such as in hydroxymethyl, (R)-1-hydroxyethyl, (S)-1-hydroxyethyl, 2-hydroxyethyl, (R)-1-hydroxypropyl, (S)-1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, (R)-2-hydroxy-1-methylethyl, (S)-2-hydroxy-1-methylethyl, 2-hydroxy-1-(hydroxymethyl)ethyl, (R)-1-hydroxybutyl, (S)-1-hydroxybutyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl.


C1-C6-Alkoxy-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, wherein one or two hydrogen atoms are replaced by one or two alkoxy groups having 1 to 6, preferably 1 to 4, in particular 1 or 2 carbon atoms, such as in methoxymethyl, (R)-1-methoxyethyl, (S)-1-methoxyethyl, 2-methoxyethyl, (R)-1-methoxypropyl, (S)-1-methoxypropyl, 2-methoxypropyl, 3-methoxypropyl, (R)-2-methoxy-1-methylethyl, (S)-2-methoxy-1-methylethyl, 2-methoxy-1-(methoxymethyl)ethyl, (R)-1-methoxybutyl, (S)-1-methoxybutyl, 2-methoxybutyl, 3-methoxybutyl, 4-methoxybutyl, ethoxymethyl, (R)-1-ethoxyethyl, (S)-1-ethoxyethyl, 2-ethoxyethyl, (R)-1-ethoxypropyl, (S)-1-ethoxypropyl, 2-ethoxypropyl, 3-ethoxypropyl, (R)-2-ethoxy-1-methylethyl, (S)-2-ethoxy-1-methylethyl, 2-ethoxy-1-(ethoxymethyl)ethyl, (R)-1-ethoxybutyl, (S)-1-ethoxybutyl, 2-ethoxybutyl, 3-ethoxybutyl, 4-ethoxybutyl.


Amino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by an amino group, such as in aminomethyl, 2-aminoethyl.


C1-C6-Alkylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a C1-C6-alkylamino group, in particular by a C1-C4-alkylamino group, such as in methylaminomethyl, ethylaminomethyl, n-propylaminomethyl, iso-propylaminomethyl, n-butylaminomethyl, 2-butylaminomethyl, iso-butylaminomethyl or tert-butylaminomethyl.


Di-C1-C6-Alkylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a di-C1-C6-Alkylamino group, in particular by a di-C1-C4-alkylamino group, such as in dimethylaminomethyl.


C1-C6-Alkylcarbonylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a C1-C6-alkylcarbonylamino group, in particular by a C1-C4-alkylcarbonylamino group, such as in methylcarbonylaminomethyl, ethylcarbonylaminomethyl, n-propylcarbonylaminomethyl, iso-propylcarbonylaminomethyl, n-butylcarbonylaminomethyl, 2-butylcarbonylaminomethyl, iso-butylcarbonylaminomethyl or tertbutylcarbonylaminomethyl.


C1-C6-Alkylaminocarbonylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a C1-C6-alkylaminocarbonylamino group, in particular by a C1-C4-alkylaminocarbonylamino group, such as in methylaminocarbonylaminomethyl, ethylaminocarbonylaminomethyl, n-propylaminocarbonylaminomethyl, iso-propylaminocarbonylaminomethyl, n-butylaminocarbonylaminomethyl, 2-butylaminocarbonylaminomethyl, isobutylaminocarbonylaminomethyl or tert-butylaminocarbonylaminomethyl.


Di-C1-C6-alkylaminocarbonylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a di-C1-C6-alkylaminocarbonylamino group, in particular by a di-C1-C4-alkylaminocarbonylamino group, such as in dimethylaminocarbonylaminomethyl, dimethylaminocarbonyl-aminoethyl, dimethylaminocarbonylaminon-propyl.


C1-C6-Alkylsulfonylamino-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a C1-C6-alkylsulfonylamino group, in particular by a C1-C4-alkylsulfonylamino group, such as in methylsulfonylaminomethyl, ethylsulfonylaminomethyl, n-propylsulfonylaminomethyl, isopropylsulfonylaminomethyl, n-butylsulfonylaminomethyl, 2-butylsulfonylaminomethyl, isobutylsulfonylaminomethyl or tert-butylsulfonylaminomethyl.


(C6-C12-Aryl-C1-C6-alkyl)amino-C1-C4 alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by a (C6-C12-aryl-C1-C6-alkyl)amino group, in particular a (C6-C12-aryl-C1-C2-alkyl)amino group, such as in benzylaminomethyl.


C3-C12-Heterocyclyl-C1-C4-alkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, in particular 1 or two carbon atoms, wherein one hydrogen atom is replaced by C3-C12-heterocyclyl, such as in N-pyrrolidinylmethyl, N-piperidinylmethyl, N-morpholinylmethyl.


C3-C12-Cycloalkyl is a cycloaliphatic radical having from 3 to 12 carbon atoms. In particular, 3 to 6 carbon atoms form the cyclic structure, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The cyclic structure may be unsubstituted or may carry 1, 2, 3 or 4 C1-C4 alkyl radicals, preferably one or more methyl radicals.


Carbonyl is >C═O.


C1-C6-Alkylcarbonyl is a radical of the formula R—C(O)—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4, in particular 1 or 2 carbon atoms as defined herein. Examples include acetyl, propionyl, n-butyryl, 2-methylpropionyl, pivaloyl.


Halogenated C1-C6-alkylcarbonyl is C1-C6-alkylcarbonyl as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms. Examples include fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl. Further examples are 1,1,1-trifluoroeth-2-ylcarbonyl, 1,1,1-trifluoroprop-3-ylcarbonyl.


C6-C12-Arylcarbonyl is a radical of the formula R—C(O)—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include benzoyl.


C1-C6-Alkoxycarbonyl is a radical of the formula R—O—C(O)—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4, in particular 1 or 2 carbon atoms as defined herein. Examples include methoxycarbonyl and tert-butyloxycarbonyl.


Halogenated C1-C6-alkoxycarbonyl is a C1-C6-alkoxycarbonyl as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


C6-C12-Aryloxycarbonyl is a radical of the formula R—O—C(O)—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include phenoxycarbonyl.


Cyano is —C≡N.


Aminocarbonyl is NH2C(O)—.


C1-C6-Alkylaminocarbonyl is a radical of the formula R—NH—C(O)—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4, in particular 1 or 2 carbon atoms as defined herein. Examples include methylaminocarbonyl.


(Halogenated C1-C4-alkyl)aminocarbonyl is a C1-C4-alkylaminocarbonyl as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different hydrogen atoms.


C6-C12-Arylaminocarbonyl is a radical of the formula R—NH—C(O)—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include phenylaminocarbonyl.


C2-C6-Alkenyl is a singly unsaturated hydrocarbon radical having 2, 3, 4, 5 or 6 carbon atoms, e.g. vinyl, allyl (2-propen-1-yl), 1-propen-1-yl, 2-propen-2-yl, methallyl(2-methylprop-2-en-1-yl) and the like. C3-C5-Alkenyl is, in particular, allyl, 1-methylprop-2-en-1-yl, 2-buten-1-yl, 3-buten-1-yl, methallyl, 2-penten-1-yl, 3-penten-1-yl, 4-penten-1-yl, 1-methylbut-2-en-1-yl or 2-ethylprop-2-en-1-yl.


C2-C6-Alkynyl is a singly unsaturated hydrocarbon radical having 2, 3, 4, 5 or 6 carbon atoms, e.g. ethynyl, 2-propyn-1-yl, 1-propyn-1-yl, 2-propyn-2-yl and the like. C3-C5-Alkynyl is, in particular, 2-propyn-1-yl, 2-butyn-1-yl, 3-butyn-1-yl, 2-pentyn-1-yl, 3-pentyn-1-yl, 4-pentyn-1-yl.


C1-C4-Alkylene is straight-chain or branched alkylene group having from 1 to 4 carbon atoms. Examples include methylene and ethylene. A further example is propylene.


C2-C4-Alkenylene is straight-chain or branched alkenylene group having from 2 to 4 carbon atoms.


C2-C4-Alkynylene is straight-chain or branched alkynylene group having from 2 to 4 carbon atoms. Examples include propynylene.


C6-C12-Aryl is a 6- to 12-membered, in particular 6- to 10-membered, aromatic cyclic radical. Examples include phenyl and naphthyl.


C3-C12-Arylene is an aryl diradical. Examples include phen-1,4-ylene and phen-1,3-ylene.


Hydroxy is —OH.


C1-C6-Alkoxy is a radical of the formula R—O—, wherein R is a straight-chain or branched alkyl group having from 1 to 6, in particular 1 to 4 carbon atoms. Examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, 2-butoxy, iso-butoxy (2-methylpropoxy), tert.-butoxy pentyloxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexyloxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentyloxy, 2-methylpentyloxy, 3-methylpentyloxy, 4-methylpentyloxy, 1,1-dimethylbutyloxy, 1,2-dimethylbutyloxy, 1,3-dimethylbutyloxy, 2,2-dimethylbutyloxy, 2,3-dimethylbutyloxy, 3,3-dimethylbutyloxy, 1-ethylbutyloxy, 2-ethylbutyloxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy.


Halogenated C1-C6-alkoxy is a straight-chain or branched alkoxy group having from 1 to 6, preferably from 1 to 4, in particular 1 or 2 carbon atoms, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms, such as in halogenomethoxy, dihalogenomethoxy, trihalogenomethoxy, (R)-1-halogenoethoxy, (S)-1-halogenoethoxy, 2-halogenoethoxy, 1,1-dihalogenoethoxy, 2,2-dihalogenoethoxy, 2,2,2-trihalogenoethoxy, (R)-1-halogenopropoxy, (S)-1-halogenopropoxy, 2-halogenopropoxy, 3-halogenopropoxy, 1,1-dihalogenopropoxy, 2,2-dihalogenopropoxy, 3,3-dihalogenopropoxy, 3,3,3-trihalogenopropoxy, (R)-2-halogeno-1-methylethoxy, (S)-2-halogeno-1-methylethoxy, (R)-2,2-dihalogeno-1-methylethoxy, (S)-2,2-dihalogeno-1-methylethoxy, (R)-1,2-dihalogeno-1-methylethoxy, (S)-1,2-dihalogeno-1-methylethoxy, (R)-2,2,2-trihalogeno-1-methylethoxy, (S)-2,2,2-trihalogeno-1-methylethoxy, 2-halogeno-1-(halogenomethyl)ethoxy, 1-(dihalogenomethyl)-2,2-dihalogenoethoxy, (R)-1-halogenobutoxy, (S)-1-halogenobutoxy, 2-halogenobutoxy, 3-halogenobutoxy, 4-halogenobutoxy, 1,1-dihalogenobutoxy, 2,2-dihalogenobutoxy, 3,3-dihalogenobutoxy, 4,4-dihalogenobutoxy, 4,4,4-trihalogenobutoxy, etc. Particular examples include the fluorinated C1-C4 alkoxy groups as defined, such as trifluoromethoxy.


C1-C6-Hydroxyalkoxy is an alkoxy radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein, wherein one or two hydrogen atoms are replaced by hydroxy. Examples include 2-hydroxyethoxy, 3-hydroxypropoxy, 2-hydroxypropoxy, 1-methyl-2-hydroxyethoxy and the like.


C1-C6-Alkoxy-C1-C4-alkoxy is an alkoxy radical having from 1 to 4 carbon atoms, preferably 1 or 2 carbon atoms as defined herein, wherein one or two hydrogen atoms are replaced by one or two alkoxy radicals having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methoxymethoxy, 2-methoxyethoxy, 1-methoxyethoxy, 3-methoxypropoxy, 2-methoxypropoxy, 1-methyl-1-methoxyethoxy, ethoxymethoxy, 2-ethoxyethoxy, 1-ethoxyethoxy, 3-ethoxypropoxy, 2-ethoxypropoxy, 1-methyl-1-ethoxyethoxy and the like.


Amino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an amino group. Examples include 2-aminoethoxy.


C1-C6-Alkylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an alkylamino group having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylaminomethoxy, ethylaminomethoxy, n-propylaminomethoxy, isopropylaminomethoxy, n-butylaminomethoxy, 2-butylaminomethoxy, isobutylaminomethoxy, tert-butylaminomethoxy, 2-(methylamino)ethoxy, 2-(ethylamino)ethoxy, 2-(n-propylamino)ethoxy, 2-(iso-propylamino)ethoxy, 2-(n-butylamino)ethoxy, 2-(2-butylamino)ethoxy, 2-(iso-butylamino)ethoxy, 2-(tert-butylamino)ethoxy.


Di-C1-C6-alkylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a dialkylamino group having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include dimethylaminomethoxy, diethylaminomethoxy, N-methyl-N-ethylamino)ethoxy, 2-(dimethylamino)ethoxy, 2-(diethylamino)ethoxy, 2-(N-methyl-N-ethylamino)ethoxy.


C1-C6-Alkylcarbonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an alkylcarbonylamino group wherein the alkyl group has from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylcarbonylaminomethoxy, ethylcarbonylaminomethoxy, n-propylcarbonylaminomethoxy, isopropylcarbonylaminomethoxy, n-butylcarbonylaminomethoxy, 2-butylcarbonylaminomethoxy, iso-butylcarbonylaminomethoxy, tert-butylcarbonylaminomethoxy, 2-(methylcarbonylamino)ethoxy, 2-(ethylcarbonylamino)ethoxy, 2-(n-propylcarbonylamino)ethoxy, 2-(iso-propylcarbohylamino)ethoxy, 2-(n-butylcarbonylamino)ethoxy, 2-(2-butylcarbonylamino)ethoxy, 2-(iso-butylcarbonylamino)ethoxy, 2-(tert-butylcarbonylamino)ethoxy.


C6-C12-Arylcarbonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a C6-C12-arylcarbonylamino group as defined herein. Examples include 2-(benzoylamino)ethoxy.


C1-C6-Alkoxycarbonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an alkoxycarbonylamino group wherein the alkoxy group has from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methoxycarbonylaminomethoxy, ethoxycarbonylaminomethoxy, n-propoxycarbonylaminomethoxy, isopropoxycarbonylaminomethoxy, n-butoxycarbonylaminomethoxy, 2-butoxycarbonylaminomethoxy, iso-butoxycarbonylaminomethoxy, tert-butoxycarbonylaminomethoxy, 2-(methoxycarbonylamino)ethoxy, 2-(ethoxycarbonylamino)ethoxy, 2-(n-propoxycarbonylamino)ethoxy, 2-(iso-propoxycarbonylamino)ethoxy, 2-(n-butoxycarbonylamino)ethoxy, 2-(2-butoxycarbonylamino)ethoxy, 2-(isobutoxycarbonylamino)ethoxy, 2-(tert-butoxycarbonylamino)ethoxy.


C2-C6-Alkenyloxy is a radical of the formula R—O—, wherein R is a straight-chain or branched alkenyl group having from 2 to 6, in particular 2 to 4 carbon atoms. Examples include vinyloxy, allyloxy (2-propen-1-yloxy), 1-propen-1-yloxy, 2-propen-2-yloxy, methallyloxy (2-methylprop-2-en-1-yloxy) and the like. C3-C5-Alkenyloxy is, in particular, allyloxy, 1-methylprop-2-en-1-yloxy, 2-buten-1-yloxy, 3-buten-1-yloxy, methallyloxy, 2-penten-1-yloxy, 3-penten-1-yloxy, 4-penten-1-yloxy, 1-methylbut-2-en-1-yloxy or 2-ethylprop-2-en-1-yloxy.


C6-C12-Aryl-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a C6-C12-aryl group as defined herein. Examples include benzyloxy.


C1-C6-Alkylsulfonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an alkylsulfonylamino group having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include 2-(methylsulfonylamino)ethoxy, 2-(ethylsulfonylamino)ethoxy, 2-[(2-methylpropyl)sulfonylamino]ethoxy.


(Halogenated C1-C6-alkyl)sulfonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by an alkylsulfonylamino group having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein, wherein the alkyl group is halogenated. Examples include 2-(trifluoromethylsulfonylamino)ethoxy.


C6-C12-Arylsulfonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a C6-C12-arylsulfonylamino group as defined herein. Examples include 2-(phenylsulfonylamino)ethoxy, 2-(naphthylsulfonylamino)ethoxy.


(C6-C12-Aryl-C1-C6-alkyl)sulfonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a (C6-C12-aryl-C1-C6-alkyl)sulfonylamino group, preferably by a (C6-C12-aryl-C1-C2-alkyl)sulfonylamino group. Examples include 2-(benzylsulfonylamino)ethoxy.


C3-C12-Heterocyclylsulfonylamino-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a C3-C12-heterocyclylsulfonylamino group as defined herein. Examples include 2-(pyridin-3-yl-sulfonylamino)ethoxy.


C3-C12-Heterocyclyl-C1-C4-alkoxy is an alkoxy radical having from 1 to 4, preferably 1 or 2 carbon atoms as defined herein, wherein one hydrogen atom is replaced by a C3-C12-heterocyclyl group as defined herein. Examples include 2-(N-pyrrolidinyl)ethoxy, 2-(N-morpholinyl)ethoxy and 2-(N-imidazolyl)ethoxy.


C1-C2-Alkylenedioxo is a radical of the formula —O—R—O—, wherein R is a straight-chain or branched alkylene group having from 1 or 2 carbon atoms as defined herein. Examples include methylenedioxo.


C6-C12-Aryloxy is a radical of the formula R—O—, wherein R is an aryl group having from 6 to 12, in particular 6 carbon atoms as defined herein. Examples include phenoxy.


C3-C12-Heterocyclyloxy is a radical of the formula R—O—, wherein R is a C3-C12-heterocyclyl group having from 3 to 12, in particular from 3 to 7 carbon atoms as defined herein. Examples include pyridin-2-yloxy.


C1-C6-Alkylthio is a radical of the formula R—S—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylthio, ethylthio, propylthio, butylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl.


Halogenated C1-C5-alkylthio is a radical of the formula R—S—, wherein R is a halogenated alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include halogenomethylthio, dihalogenomethylthio, trihalogenomethylthio, (R)-1-halogenoethylthio, (S)-1-halogenoethylthio, 2-halogenoethylthio, 1,1-dihalogenoethylthio, 2,2-dihalogenoethylthio, 2,2,2-trihalogenoethylthio, (R)-1-halogenopropylthio, (S)-1-halogenopropylthio, 2-halogenopropylthio, 3-halogenopropylthio, 1,1-dihalogenopropylthio, 2,2-dihalogenopropylthio, 3,3-dihalogenopropylthio, 3,3,3-trihalogenopropylthio, (R)-2-halogeno-1-methylethylthio, (S)-2-halogeno-1-methylethylthio, (R)-2,2-dihalogeno-1-methylethylthio, (S)-2,2-dihalogeno-1-methylethylthio, (R)-1,2-dihalogeno-1-methylethylthio, (S)-1,2-dihalogeno-1-methylethylthio, (R)-2,2,2-trihalogeno-1-methylethylthio, (S)-2,2,2-trihalogeno-1-methylethylthio, 2-halogeno-1-(halogenomethyl)ethylthio, 1-(dihalogenomethyl)-2,2-dihalogenoethylthio, (R)-1-halogenobutylthio, (S)-1-halogenobutylthio, 2-halogenobutylthio, 3-halogenobutylthio, 4-halogenobutylthio, 1,1-dihalogenobutylthio, 2,2-dihalogenobutylthio, 3,3-dihalogenobutylthio, 4,4-dihalogenobutylthio, 4,4,4-trihalogeriobutylthio, etc. Particular examples include the fluorinated C1-C4 alkylthio groups as defined, such as trifluoromethylthio.


C1-C6-Alkylsulfinyl is a radical of the formula R—S(O)—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylsulfinyl, ethylsulfinyl, propylsulfinyl, butylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, hexylsulfinyl, 1,1-dimethylpropylsulfinyl, 1,2-dimethylpropylsulfinyl, 1-methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl, 1,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl, 1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl, 1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl.


C1-C6-Alkylsulfonyl is a radical of the formula R—S(O)2—, wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 2,2-dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, hexylsulfonyl, 1,1-dimethylpropylsulfonyl, 1,2-dimethylpropylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl.


(Halogenated C1-C6-alkyl)sulfonyl is a C1-C6-alkylsulfonyl as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


C6-C12-Arylsulfonyl is a radical of the formula R—S(O)2—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include phenylsulfonyl.


(C6-C12-Aryl-C1-C4-alkyl)sulfonyl is a radical of the formula R—S(O)2—, wherein R is a C6-C12-aryl-C1-C4-alkyl radical, in particular a C6-C12-aryl-C1-C2-alkyl radical as defined herein. Examples include benzylsulfonyl.


C3-C12-Heterocyclylsulfonyl is a radical of the formula R—S(O)2—, wherein R is C3-C12-heterocyclyl as defined herein.


Aminosulfonyl is NH2—S(O)2—.


C1-C6-Alkylaminosulfonyl is a radical of the formula R—NH—S(O)2— wherein R is an alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include methylaminosulfonyl, ethylaminosulfonyl, n-propylaminosulfonyl, isopropylaminosulfonyl, n-butylaminosulfonyl, 2-butylaminosulfonyl, iso-butylaminosulfonyl, tert-butylaminosulfonyl.


Di-C1-C6-alkylaminosulfonyl is a radical of the formula RR′N—S(O)2— wherein R and R′ are independently of each other an alkyl radical having from 1 to 6, preferably from 1 to 4 carbon atoms as defined herein. Examples include dimethylaminosulfonyl, diethylaminosulfonyl, N-methyl-N-ethylaminosulfonyl.


C6-C12-Arylaminosulfonyl is a radical of the formula R—NH—S(O)2— wherein R is an aryl radical having from 6 to 12, preferably 6 carbon atoms as defined herein.


Amino is NH2.


C1-C6-Alkylamino is a radical of the formula R—NH— wherein R is an alkyl radical having from 1 to 6, in particular from 1 to 4 carbon atoms as defined herein. Examples include methylamino, ethylamino, n-propylamino, iso-propylamino, n-butylamino, 2-butylamino, iso-butylamino, tert-butylamino.


(Halogenated C1-C6-alkyl)amino is a C1-C6-alkylamino as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


Di-C1-C6-alkylamino is a radical of the formula RR′N— wherein R and R′ are independently of each other an alkyl radical having from 1 to 6, in particular from 1 to 4 carbon atoms as defined herein. Examples include dimethylamino, diethylamino, N-methyl-N-ethylamino.


Di-(halogenated C1-C6-alkyl)amino is a di-C1-C6-alkylamino as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


C1-C6-Alkylcarbonylamino is a radical of the formula R—C(O)—NH—, wherein R is an alkyl radical having from 1 to 6, in particular from 1 to 4 carbon atoms as defined herein. Examples include acetamido (methylcarbonylamino), propionamido, n-butyramido, 2-methylpropionamido (isopropylcarbonylamino), 2,2-dimethylpropionamido and the like.


(Halogenated C1-C6-alkyl)carbonylamino is a C1-C6-alkylcarbonylamino as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


C6-C12-Arylcarbonylamino is a radical of the formula R—C(O)—NH—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include phenylcarbonylamino.


C2-C6-Alkenylamino is a radical of the formula R—NH—, wherein R is a straight-chain or branched alkenyl group having from 2 to 6, in particular 2 to 4 carbon atoms. Examples include vinylamino, allylamino (2-propen-1-ylamino), 1-propen-1-ylamino, 2-propen-2-ylamino, methallylamino (2-methylprop-2-en-1-ylamino) and the like. C3-C5-Alkenylamino is, in particular, allylamino, 1-methylprop-2-en-1-ylamino, 2-buten-1-ylamino, 3-buten-1-ylamino, methallylamino, 2-penten-1-ylamino, 3-penten-1-ylamino, 4-penten-1-ylamino, 1-methylbut-2-en-1-ylamino or 2-ethylprop-2-en-1-ylamino.


C1-C6-Alkylsulfonylamino is a radical of the formula R—S(O)2—NH—, wherein R is an alkyl radical having from 1 to 6, in particular from 1 to 4 carbon atoms as defined herein. Examples include methylsulfonylamino, ethylsulfonylamino, n-propylsulfonylamino, isopropylsulfonylamino, n-butylsulfonylamino, 2-butylsulfonylamino, iso-butylsulfonylamino, tert-butylsulfonylamino.


(Halogenated C1-C6 alkyl)sulfonylamino is a C1-C6-alkylsulfonylamino as defined herein, wherein at least one, e.g. 1, 2, 3, 4 or all of the hydrogen atoms are replaced by 1, 2, 3, 4 or a corresponding number of identical or different halogen atoms.


C6-C12-Arylsulfonylamino is a radical of the formula R—S(O)2—NH—, wherein R is an aryl radical having from 6 to 12 carbon atoms as defined herein. Examples include phenylsulfonylamino.


Nitro is —NO2.


C3-C12-Heterocyclyl is a 3- to 12-membered heterocyclic radical including a saturated heterocyclic radical, which generally has 3, 4, 5, 6, or 7 ring forming atoms (ring members), an unsaturated non-aromatic heterocyclic radical, which generally has 5, 6 or 7 ring forming atoms, and a heteroaromatic radical (hetaryl), which generally has 5, 6 or 7 ring forming atoms. The heterocyclic radicals may be bound via a carbon atom (C-bound) or a nitrogen atom (N-bound). Preferred heterocyclic radicals comprise 1 nitrogen atom as ring member atom and optionally 1, 2 or 3 further heteroatoms as ring members, which are selected, independently of each other from O, S and N. Likewise preferred heterocyclic radicals comprise 1 heteroatom as ring member, which is selected from O, S and N, and optionally 1, 2 or 3 further nitrogen atoms as ring members.


Examples of C3-C12-heterocyclyl include:


C- or N-bound 3-4-membered, saturated rings, such as 2-oxiranyl, 2-oxetanyl, 3-oxetanyl, 2-aziridinyl, 3-thiethanyl, 1-azetidinyl, 2-azetidinyl, 3-azetidinyl;


C-bound, 5-membered, saturated rings, such as tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, tetrahydropyrrol-2-yl, tetrahydropyrrol-3-yl, tetrahydropyrazol-3-yl, tetrahydro-pyrazol-4-yl, tetrahydroisoxazol-3-yl, tetrahydroisoxazol-4-yl, tetrahydroisoxazol-5-yl, 1,2-oxathiolan-3-yl, 1,2-oxathiolan-4-yl, 1,2-oxathiolan-5-yl, tetrahydroisothiazol-3-yl, tetrahydroisothiazol-4-yl, tetrahydroisothiazol-5-yl, 1,2-dithiolan-3-yl, 1,2-dithiolan-4-yl, tetrahydroimidazol-2-yl, tetrahydroimidazol-4-yl, tetrahydrooxazol-2-yl, tetrahydrooxazol-4-yl, tetrahydrooxazol-5-yl, tetrahydrothiazol-2-yl, tetrahydrothiazol-4-yl, tetrahydrothiazol-5-yl, 1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, 1,3-oxathiolan-2-yl, 1,3-oxathiolan-4-yl, 1,3-oxathiolan-5-yl, 1,3-dithiolan-2-yl, 1,3-dithiolan-4-yl, 1,3,2-dioxathiolan-4-yl;


C-bound, 6-membered, saturated rings, such as tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, tetrahydrothiopyran-2-yl, tetrahydrothiopyran-3-yl, tetrahydrothiopyran-4-yl, 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl, 1,4-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-dithian-4-yl, 1,3-dithian-5-yl, 1,4-dithian-2-yl, 1,3-oxathian-2-yl, 1,3-oxathian-4-yl, 1,3-oxathian-5-yl, 1,3-oxathian-6-yl, 1,4-oxathian-2-yl, 1,4-oxathian-3-yl, 1,2-dithian-3-yl, 1,2-dithian-4-yl, hexhydropyrimidin-2-yl, hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl, hexahydropyrazin-2-yl, hexahydropyridazin-3-yl, hexahydropyridazin-4-yl, tetrahydro-1,3-oxazin-2-yl, tetrahydro-1,3-oxazin-4-yl, tetrahydro-1,3-oxazin-5-yl, tetrahydro-1,3-oxazin-6-yl, tetrahydro-1,3-thiazin-2-yl, tetrahydro-1,3-thiazin-4-yl, tetrahydro-1,3-thiazin-5-yl, tetrahydro-1,3-thiazin-6-yl, tetrahydro-1,4-thiazin-2-yl, tetrahydro-1,4-thiazin-3-yl, tetrahydro-1,4-oxazin-2-yl, tetrahydro-1,4-oxazin-3-yl, tetrahydro-1,2-oxazin-3-yl, tetrahydro-1,2-oxazin-4-yl, tetrahydro-1,2-oxazin-5-yl, tetrahydro-1,2-oxazin-6-yl;


N-bound, 5-membered, saturated rings, such as tetrahydropyrrol-1-yl (pyrrolidin-1-yl), tetrahydropyrazol-1-yl, tetrahydroisoxazol-2-yl, tetrahydroisothiazol-2-yl, tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl, tetrahydrothiazol-3-yl;


N-bound, 6-membered, saturated rings, such as piperidin-1-yl, hexahydropyrimidin-1-yl, hexahydropyrazin-1-yl (piperazin-1-yl), hexahydropyridazin-1-yl, tetrahydro-1,3-oxazin-3-yl, tetrahydro-1,3-thiazin-3-yl, tetrahydro-1,4-thiazin-4-yl, tetrahydro-1,4-oxazin-4-yl (morpholin-1-yl), tetrahydro-1,2-oxazin-2-yl;


C-bound, 5-membered, partially unsaturated rings, such as 2,3-dihydrofuran-2-yl, 2,3-dihydrofuran-3-yl, 2,5-dihydrofuran-2-yl, 2,5-di-hydrofuran-3-yl, 4,5-dihydrofuran-2-yl, 4,5-dihydrofuran-3-yl, 2,3-dihydro-thien-2-yl, 2,3-dihydrothien-3-yl, 2,5-dihydrothien-2-yl, 2,5-dihydrothien-3-yl, 4,5-dihydrothien-2-yl, 4,5-dihydrothien-3-yl, 2,3-dihydro-1H-pyrrol-2-yl, 2,3-dihydro-1H-pyrrol-3-yl, 2,5-dihydro-1H-pyrrol-2-yl, 2,5-dihydro-1H-pyrrol-3-yl, 4,5-dihydro-1H-pyrrol-2-yl, 4,5-dihydro-1H-pyrrol-3-yl, 3,4-dihydro-2H-pyrrol-2-yl, 3,4-dihydro-2H-pyrrol-3-yl, 3,4-dihydro-5H-pyrrol-2-yl, 3,4-dihydro-5H-pyrrol-3-yl, 4,5-dihydro-1H-pyrazol-3-yl, 4,5-dihydro-1H-pyrazol-4-yl, 4,5-dihydro-1H-pyrazol-5-yl, 2,5-dihydro-1H-pyrazol-3-yl, 2,5-dihydro-1H-pyrazol-4-yl, 2,5-dihydro-1H-pyrazol-5-yl, 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol-5-yl, 2,5-dihydroisoxazol-3-yl, 2,5-dihydroisoxazol-4-yl, 2,5-dihydroisoxazol-5-yl, 2,3-dihydroisoxazol-3-yl, 2,3-dihydroisoxazol-4-yl, 2,3-dihydroisoxazol-5-yl, 4,5-dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl, 4,5-dihydroisothiazol-5-yl, 2,5-dihydroisothiazol-3-yl, 2,5-dihydroisothiazol-4-yl, 2,5-dihydroisothiazol-5-yl, 2,3-dihydroisothiazol-3-yl, 2,3-dihydroisothiazol-4-yl, 2,3-dihydroisothiazol-5-yl, 4,5-dihydro-1H-imidazol-2-yl, 4,5-dihydro-1H-imidazol-4-yl, 4,5-dihydro-1H-imidazol-5-yl, 2,5-dihydro-1H-imidazol-2-yl, 2,5-dihydro-1H-imidazol-4-yl, 2,5-dihydro-1H-imidazol-5-yl, 2,3-dihydro-1H-imidazol-2-yl, 2,3-dihydro-1H-imidazol-4-yl, 4,5-dihydro-oxazol-2-yl, 4,5-dihydrooxazol-4-yl, 4,5-dihydrooxazol-5-yl, 2,5-dihydrooxazol-2-yl, 2,5-dihydrooxazol-4-yl, 2,5-dihydrooxazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 4,5-dihydrothiazol-2-yl, 4,5-dihydrothiazol-4-yl, 4,5-dihydrothiazol-5-yl, 2,5-dihydrothiazol-2-yl, 2,5-dihydrothiazol-4-yl, 2,5-dihydrothiazol-5-yl, 2,3-dihydrothiazol-2-yl, 2,3-dihydrothiazol-4-yl, 2,3-dihydrothiazol-5-yl, 1,3-dioxol-2-yl, 1,3-dioxol-4-yl, 1,3-dithiol-2-yl, 1,3-dithiol-4-yl, 1,3-oxathiol-2-yl, 1,3-oxathiol-4-yl, 1,3-oxathiol-5-yl;


C-bound, 6-membered, partially unsaturated rings, such as 2H-3,4-dihydropyran-6-yl, 2H-3,4-dihydropyran-5-yl, 2H-3,4-dihydropyran-4-yl, 2H-3,4-dihydropyran-3-yl, 2H-3,4-dihydropyran-2-yl, 2H-3,4-dihydrothiopyran-6-yl, 2H-3,4-dihydrothiopyran-5-yl, 2H-3,4-dihydrothiopyran-4-yl, 2H-3,4-dihydrothiopyran-3-yl, 2H-3,4-dihydrothiopyran-2-yl, 1,2,3,4-tetrahydropyridin-6-yl, 1,2,3,4-tetrahydropyridin-5-yl, 1,2,3,4-tetrahydropyridin-4-yl, 1,2,3,4-tetra-hydropyridin-3-yl, 1,2,3,4-tetrahydropyridin-2-yl, 2H-5,6-dihydropyran-2-yl, 2H-5,6-dihydropyran-3-yl, 2H-5,6-dihydropyran-4-yl, 2H-5,6-dihydropyran-5-yl, 2H-5,6-dihydropyran-6-yl, 2H-5,6-dihydrothiopyran-2-yl, 2H-5,6-dihydrothiopyran-3-yl, 2H-5,6-dihydrothiopyran-4-yl, 2H-5,6-dihydrothiopyran-5-yl, 2H-5,6-dihydrothiopyran-6-yl, 1,2,5,6-tetrahydropyridin-2-yl, 1,2,5,6-tetrahydropyridin-3-yl, 1,2,5,6-tetrahydropyridin-4-yl, 1,2,5,6-tetrahydropyridin-5-yl, 1,2,5,6-tetrahydropyridin-6-yl, 2,3,4,5-tetrahydropyridin-2-yl, 2,3,4,5-tetrahydropyridin-3-yl, 2,3,4,5-tetrahydropyridin-4-yl, 2,3,4,5-tetrahydropyridin-5-yl, 2,3,4,5-tetrahydropyridin-6-yl, 4H-pyran-2-yl, 4H-pyran-3-yl-, 4H-pyran-4-yl, 4H-thiopyran-2-yl, 4H-thiopyran-3-yl, 4H-thiopyran-4-yl, 1,4-dihydropyridin-2-yl, 1,4-dihydropyridin-3-yl, 1,4-dihydropyridin-4-yl, 2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl, 2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl, 2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl, 1,2-dihydropyridin-2-yl, 1,2-dihydro-pyridin-3-yl, 1,2-dihydropyridin-4-yl, 1,2-dihydropyridin-5-yl, 1,2-dihydro-pyridin-6-yl, 3,4-dihydropyridin-2-yl, 3,4-dihydropyridin-3-yl, 3,4-dihydro-pyridin-4-yl, 3,4-dihydropyridin-5-yl, 3,4-dihydropyridin-6-yl, 2,5-dihydropyridin-2-yl, 2,5-dihydropyridin-3-yl, 2,5-dihydropyridin-4-yl, 2,5-dihydropyridin-5-yl, 2,5-dihydropyridin-6-yl, 2,3-dihydropyridin-2-yl, 2,3-dihydropyridin-3-yl, 2,3-dihydropyridin-4-yl, 2,3-dihydropyridin-5-yl, 2,3-dihydropyridin-6-yl, 2H-5,6-dihydro-1,2-oxazin-3-yl, 2H-5,6-dihydro-1,2-oxazin-4-yl, 2H-5,6-dihydro-1,2-oxazin-5-yl, 2H-5,6-dihydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-1,2-thiazin-3-yl, 2H-5,6-dihydro-1,2-thiazin-4-yl, 2H-5,6-dihydro-1,2-thiazin-5-yl, 2H-5,6-dihydro-1,2-thiazin-6-yl, 4H-5,6-dihydro-1,2-oxazin-3-yl, 4H-5,6-dihydro-1,2-oxazin-4-yl, 4H-5,6-dihydro-1,2-oxazin-5-yl, 4H-5,6-dihydro-1,2-oxazin-6-yl, 4H-5,6-dihydro-1,2-thiazin-3-yl, 4H-5,6-dihydro-1,2-thiazin-4-yl, 4H-5,6-dihydro-1,2-thiazin-5-yl, 4H-5,6-dihydro-1,2-thiazin-6-yl, 2H-3,6-dihydro-1,2-oxazin-3-yl, 2H-3,6-dihydro-1,2-oxazin-4-yl, 2H-3,6-dihydro-1,2-oxazin-5-yl, 2H-3,6-dihydro-1,2-oxazin-6-yl, 2H-3,6-dihydro-1,2-thiazin-3-yl, 2H-3,6-dihydro-1,2-thiazin-4-yl, 2H-3,6-dihydro-1,2-thiazin-5-yl, 2H-3,6-dihydro-1,2-thiazin-6-yl, 2H-3,4-dihydro-1,2-oxazin-3-yl, 2H-3,4-dihydro-1,2-oxazin-4-yl, 2H-3,4-dihydro-1,2-oxazin-5-yl, 2H-3,4-dihydro-1,2-oxazin-6-yl, 2H-3,4-dihydro-1,2-thiazin-3-yl, 2H-3,4-dihydro-1,2-thiazin-4-yl, 2H-3,4-dihydro-1,2-thiazin-5-yl, 2H-3,4-dihydro-1,2-thiazin-6-yl, 2,3,4,5-tetrahydropyridazin-3-yl, 2,3,4,5-tetrahydropyridazin-4-yl, 2,3,4,5-tetrahydropyridazin-5-yl, 2,3,4,5-tetrahydropyridazin-6-yl, 3,4,5,6-tetrahydropyridazin-3-yl, 3,4,5,6-tetrahydropyridazin-4-yl, 1,2,5,6-tetrahydropyridazin-3-yl, 1,2,5,6-tetrahydropyridazin-4-yl, 1,2,5,6-tetra-hydropyridazin-5-yl, 1,2,5,6-tetrahydropyridazin-6-yl, 1,2,3,6-tetrahydro-pyridazin-3-yl, 1,2,3,6-tetrahydropyridazin-4-yl, 4H-5,6-dihydro-1,3-oxazin-2-yl, 4H-5,6-dihydro-1,3-oxazin-4-yl, 4H-5,6-dihydro-1,3-oxazin-5-yl, 4H-5,6-dihydro-1,3-oxazin-6-yl, 4H-5,6-dihydro-1,3-thiazin-2-yl, 4H-5,6-dihydro-1,3-thiazin-4-yl, 4H-5,6-dihydro-1,3-thiazin-5-yl, 4H-5,6-dihydro-1,3-thiazin-6-yl, 3,4,5-6-tetrahydropyrimidin-2-yl, 3,4,5,6-tetrahydropyrimidin-4-yl, 3,4,5,6-tetrahydropyrimidin-5-yl, 3,4,5,6-tetrahydropyrimidin-6-yl, 1,2,3,4-tetrahydropyrazin-2-yl, 1,2,3,4-tetrahydropyrazin-5-yl, 1,2,3,4-tetrahydro-pyrimidin-2-yl, 1,2,3,4-tetrahydropyrimidin-4-yl, 1,2,3,4-tetrahydropyrimidin-5-yl, 1,2,3,4-tetrahydropyrimidin-6-yl, 2,3-dihydro-1,4-thiazin-2-yl, 2,3-dihydro-1,4-thiazin-3-yl, 2,3-dihydro-1,4-thiazin-5-yl, 2,3-dihydro-1,4-thiazin-6-yl, 2H-1,3-oxazin-2-yl, 2H-1,3-oxazin-4-yl, 2H-1,3-oxazin-5-yl, 2H-1,3-oxazin-6-yl, 2H-1,3-thiazin-2-yl, 2H-1,3-thiazin-4-yl, 2H-1,3-thiazin-5-yl, 2H-1,3-thiazin-6-yl, 4H-1,3-oxazin-2-yl, 4H-1,3-oxazin-4-yl, 4H-1,3-oxazin-5-yl, 4H-1,3-oxazin-6-yl, 4H-1,3-thiazin-2-yl, 4H-1,3-thiazin-4-yl, 4H-1,3-thiazin-5-yl, 4H-1,3-thiazin-6-yl, 6H-1,3-oxazin-2-yl, 6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl, 6H-1,3-oxazin-6-yl, 6H-1,3-thiazin-2-yl, 6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl, 6H-1,3-thiazin-6-yl, 2H-1,4-oxazin-2-yl, 2H-1,4-oxazin-3-yl, 2H-1,4-oxazin-5-yl, 2H-1,4-oxazin-6-yl, 2H-1,4-thiazin-2-yl, 2H-1,4-thiazin-3-yl, 2H-1,4-thiazin-5-yl, 2H-1,4-thiazin-6-yl, 4H-1,4-oxazin-2-yl, 4H-1,4-oxazin-3-yl, 4H-1,4-thiazin-2-yl, 4H-1,4-thiazin-3-yl, 1,4-dihydropyridazin-3-yl, 1,4-dihydropyridazin-4-yl, 1,4-dihydropyridazin-5-yl, 1,4-dihydropyridazin-6-yl, 1,4-dihydropyrazin-2-yl, 1,2-dihydropyrazin-2-yl, 1,2-dihydropyrazin-3-yl, 1,2-dihydropyrazin-5-yl, 1,2-dihydropyrazin-6-yl, 1,4-dihydropyrimidin-2-yl, 1,4-dihydropyrimidin-4-yl, 1,4-dihydropyrimidin-5-yl, 1,4-dihydropyrimidin-6-yl, 3,4-dihydropyrimidin-2-yl, 3,4-dihydropyrimidin-4-yl, 3,4-dihydropyrimidin-5-yl or 3,4-dihydropyrimidin-6-yl;


N-bound, 5-membered, partially unsaturated rings, such as 2,3-dihydro-1H-pyrrol-1-yl, 2,5-dihydro-1H-pyrrol-1-yl, 4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-1H-pyrazol-1-yl, 2,3-dihydro-1H-pyrazol-1-yl, 2,5-dihydroisoxazol-2-yl, 2,3-dihydroisoxazol-2-yl, 2,5-dihydroisothiazol-2-yl, 2,3-dihydroisoxazol-2-yl, 4,5-dihydro-1H-imidazol-1-yl, 2,5-dihydro-1H-imidazol-1-yl, 2,3-dihydro-1H-imidazol-1-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrothiazol-3-yl;


N-bound, 6-membered, partially unsaturated rings, such as 1,2,3,4-tetrahydropyridin-1-yl, 1,2,5,6-tetrahydropyridin-1-yl, 1,4-dihydro-pyridin-1-yl, 1,2-dihydropyridin-1-yl, 2H-5,6-dihydro-1,2-oxazin-2-yl, 2H-5,6-dihydro-1,2-thiazin-2-yl, 2H-3,6-dihydro-1,2-oxazin-2-yl, 2H-3,6-dihydro-1,2-thiazin-2-yl, 2H-3,4-dihydro-1,2-oxazin-2-yl, 2H-3,4-dihydro-1,2-thiazin-2-yl, 2,3,4,5-tetrahydropyridazin-2-yl, 1,2,5,6-tetrahydropyridazin-1-yl, 1,2,5,6-tetrahydropyridazin-2-yl, 1,2,3,6-tetrahydropyridazin-1-yl, 3,4,5,6-tetrahydropyrimidin-3-yl, 1,2,3,4-tetrahydropyrazin-1-yl, 1,2,3,4-tetrahydropyrimidin-1-yl, 1,2,3,4-tetrahydropyrimidin-3-yl, 2,3-dihdro-1,4-thiazin-4-yl, 2H-1,2-oxazin-2-yl, 2H-1,2-thiazin-2-yl, 4H-1,4-oxazin-4-yl, 4H-1,4-thiazin-4-yl, 1,4-dihydropyridazin-1-yl, 1,4-dihydropyrazin-1-yl, 1,2-dihydropyrazin-1-yl, 1,4-dihydropyrimidin-1-yl or 3,4-dihydropyrimidin-3-yl;


C-bound, 5-membered, heteroaromatic rings, such as 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, pyrrol-2-yl, pyrrol-3-yl, pyrazol-3-yl, pyrazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, imidazol-2-yl, imidazol-4-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4,-oxadiazol-5-yl, 1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazolyl-2-yl, 1,2,3-triazol-4-yl, 1,2,4-triazol-3-yl, tetrazol-5-yl;


C-bound, 6-membered, heteroaromatic rings, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl (4-pyridyl), pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, 1,2,4,5-tetrazin-3-yl;


N-bound, 5-membered, heteroaromatic rings, such as pyrrol-1-yl, pyrazol-1-yl, imidazol-1-yl, 1,2,3-triazol-1-yl, 1,2,4-triazol-1-yl, tetrazol-1-yl.


Heterocyclyl also includes bicyclic heterocycles, which comprise one of the described 5- or 6-membered heterocyclic rings and a further anellated, saturated or unsaturated or aromatic carbocycle, such as a benzene, cyclohexane, cyclohexene or cyclohexadiene ring, or a further anellated 5- or 6-membered heterocyclic ring, this heterocyclic ring being saturated or unsaturated or aromatic. These include quinolinyl, isoquinolinyl, indolyl, indolizinyl, isoindolyl, indazolyl, benzofuryl, benzthienyl, benzo[b]thiazolyl, benzoxazolyl, benzthiazolyl and benzimidazolyl. Examples of 5- or 6-membered heteroaromatic compounds comprising an anellated cycloalkenyl ring include dihydroindolyl, dihydroindolizinyl, dihydroisoindolyl, dihydroquinolinyl, dihydroisoquinolinyl, chromenyl and chromanyl.


C3-C12-Heteroarylene is a heteroaryl diradical. Examples include pyrid-2,5-ylene and pyrid-2,4-ylene.


With respect to the compounds' capability of inhibiting glycine transporter 1, the variables A, R, R1, W, A1, Q, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, n preferably have the following meanings which, when taken alone or in combination, represent particular embodiments of the compounds of the formula (I), (II) or any other formula disclosed herein.


In said formula (I) or (II), there may be one or more than one substituent R, R2 and/or R3. More particularly, there may be up to 3 substituents R2, and up to 6 substituents R3. Preferably there is one substituent R and 1, 2 or 3 substituents R2. Formula (I) may thus be depicted as follows:




embedded image


wherein a is 1, 2 or 3, b is 1, 2, 3, 4, 5 or 6 and c is 1. If there is more than one radical R2, these may be the same or different radicals. If there is more than one radical R3, these may be the same or different radicals.


A is a 5- or 6-membered ring which includes two carbon atoms from the cyclopentane, cyclohexane or cycloheptane moiety to which A is fused. A may be a homocyclic or heterocyclic ring. The ring may be saturated, unsaturated non-aromatic or aromatic. According to a particular embodiment, A is a benzene ring. As a heterocyclic ring, A may include 1, 2 or 3 heteroatoms as ring member atoms, which are selected, independently of each other from N, S and O. Preferred heterocyclic rings comprise 1 nitrogen atom as ring member atom and optionally 1 or 2 further heteroatoms as ring members, which are selected, independently of each other from O, S and N. Likewise preferred heterocyclic rings comprise 1 heteroatom as ring member atom, which is selected from O, S and N, and optionally 1 or 2 further nitrogen atoms as ring member atoms. According to a particular embodiment, A is a heterocyclic ring selected from the group consisting of the following 5- or 6-membered heterocyclic rings:




embedded image


In said formulae, hydrogen atoms are not depicted. This is meant to illustrate that the free valency of a carbon or nitrogen atom may be either bound to a hydrogen atom, to R or to R2. Accordingly, R and R2 may be C- or N-bound at any position of ring A.


The skilled person will appreciate that some of the rings depicted above may be represented with a different structure, e.g. with hydrogen atoms having other positions than those shown above, for instance as given in the following structures:




embedded image


Preferably, A is a heterocyclic ring selected from the group consisting of the following 5- or 6-membered heterocyclic rings:




embedded image


According to a further particular embodiment, A is a heterocyclic ring selected from the group consisting of the following 5- or 6-membered heterocyclic rings:




embedded image


According to a preferred embodiment, A is a heterocyclic ring selected from the group consisting of the following 5- or 6-membered heterocyclic rings:




embedded image


If ring A is a 5-membered heterocyclic ring it is preferred that R is bound to G1 or G2, in particular G2:




embedded image


In said formula, G1, G2 and G3 independently are —CH═, —CH2—, —N═, —NH—, S or O, at least one of G1, G2 and G3 is —CH═ or —CH2—, the dotted line represents a single or a double bond and R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


If ring A is 6-membered heterocyclic ring it is preferred that R is bound to G1 or G2, in particular G2:




embedded image


In said formula, G1, G2, G3 and G4 independently are —CH═, —CH2—, —N═, —NH—, S or O, at least one of G1, G2, G3 and G4 is —CH═ or —CH2—, the dotted line represents a single or a double bond and R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


Heterocyclic compounds having the following partial structures are preferred:




embedded image


embedded image


Heterocyclic compounds having the following partial structures are particularly preferred:




embedded image


In said formulae, R and R2 are as defined herein. If there is more than one radical R2, these may be the same or different radicals.


According to a particular embodiment, the partial structures depicted above are fused with a cyclohexane moiety (i.e., n is 1). The same applies to the preferred and particular embodiments disclosed for ring A.


According to one embodiment, R is cyano.


Preferably, R is R1—W-A1-Q-Y-A2-X1- and A, R1, W, A1, Q, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


R1 is hydrogen, C1-C6-alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl or n-pentyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl, cyclopentylmethyl or cyclohexylmethyl), halogenated C1-C6-alkyl (e.g. 3-fluoroprop-1-yl, 3-chloroprop-1-yl or 3,3,3-trifluoroprop-1-yl), tri-(C1-C4-alkyl)-silyl-C1-C4-alkyl (e.g. trimethylsilylethyl), hydroxy-C1-C4-alkyl C1-C6-alkoxy-C1-C4-alkyl (e.g. ethoxyethyl), amino-C1-C4-alkyl, C1-C6 alkylamino C1-C4 alkyl, di-C1-C6 alkylamino C1-C4 alkyl, C1-C6-alkylcarbonylamino-C1-C4-alkyl, C1-C6-alkyloxycarbonylamino-C1-C6-alkyl, C1-C6-alkylaminocarbonylamino-C1-C4-alkyl, di-C1-C6-alkylaminocarbonylamino-C1-C4-alkyl, C1-C6-alkylsulfonylamino-C1-C4-alkyl, (optionally substituted C6-C12-aryl-C1-C6-alkyl)amino-C1-C4-alkyl, optionally substituted C6-C12-aryl-C1-C4-alkyl, optionally substituted C3-C12-heterocyclyl-C1-C4-alkyl, C3-C12-cycloalkyl (e.g. cyclopropyl or cyclobutyl), C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, halogenated C1-C6-alkoxycarbonyl, C6-C12-aryloxycarbonyl, aminocarbonyl, C1-C6-alkylaminocarbonyl, (halogenated C1-C4-alkyl)aminocarbonyl, C6-C12-arylaminocarbonyl, C2-C6-alkenyl (e.g. prop-1,2-en-1-yl), C2-C6-alkynyl, optionally substituted C6-C12-aryl (e.g. phenyl, 2-methylphenyl), hydroxy, C1-C6-alkoxy (e.g. tert-butyloxy), halogenated C1-C6-alkoxy, C1-C6-hydroxyalkoxy, C1-C6-alkoxy-C1-C4-alkoxy, amino-C1-C4-alkoxy, C1-C6-alkylamino-C1-C4-alkoxy, di-C1-C6-alkylamino-C1-C4-alkoxy, C1-C6-alkylcarbonylamino-C1-C4-alkoxy, C6-C12-arylcarbonylamino-C1-C4-alkoxy, C1-C6-alkoxycarbonylamino-C1-C4-alkoxy, C6-C12-aryl-C1-C4-alkoxy, C1-C6-alkylsulfonylamino-C1-C4-alkoxy, (halogenated C1-C6-alkyl)sulfonylamino-C1-C4-alkoxy, C6-C12-arylsulfonylamino-C1-C4-alkoxy, (C6-C12-aryl-C1-C6-alkyl)sulfonylamino-C1-C4-alkoxy, C3-C12-heterocyclylsulfonylamino-C1-C4-alkoxy, C3-C12-heterocyclyl-C1-C4-alkoxy, C6-C12-aryloxy, C3-C12-heterocyclyloxy, C1-C6-alkylthio, halogenated C1-C6-alkylthio, C1-C6-alkylamino, (halogenated C1-C6-alkyl)amino, di-C1-C6-alkylamino (e.g. dimethylamino), di-(halogenated C1-C6-alkyl)amino, C1-C6-alkylcarbonylamino, (halogenated C1-C6-alkyl)carbonylamino, C6-C12-arylcarbonylamino, C1-C6-alkylsulfonylamino, (halogenated C1-C6-alkyl)sulfonylamino, C6-C12-arylsulfonylamino or optionally substituted C3-C12-heterocyclyl (e.g. 3-pyridyl, 2-thienyl, 4-methyl-2-thienyl, 5-methyl-2-thienyl, 5-chloro-2-thienyl, 2,5-dimethyl-3-thienyl, 1,2-diazol-4-yl, 1-methyl-1,2-diazol-4-yl, 1-ethyl-1,2-diazol-4-yl, 1-difluormethyl-1,2-diazol-4-yl, 2-methyl-1,3-diazol-4-yl, 1-methyl-1,3-diazol-4-yl, 2-methyl-1,3-thiazol-5-yl, 2,4-dimethyl-1,3-thiazol-5-yl, 3-pyrrolidinyl, 1-methyl-pyrrol-3-yl, 2-pyridyl, 1-methyl-1,2-diazol-3-yl, 1-methyl-3-trifluoromethyl-1,2-diazol-4-yl, 1,2-dimethyl-1,3-diazol-4-yl, 5-methylisoxazol-3-yl or 1-methyl-1,2,4-triazol-3-yl).


Preferably, R1 is C1-C6-alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, sec-butyl, n-butyl or n-pentyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl, cyclopentylmethyl or cyclohexylmethyl), halogenated C1-C6-alkyl (e.g. 3-fluoroprop-1-yl, 3-chloroprop-1-yl or 3,3,3-trifluoroprop-1-yl), tri-(C1-C4-alkyl)-silyl-C1-C4-alkyl (e.g. trimethylsilylethyl), C1-C6-alkoxy-C1-C4-alkyl (e.g. ethoxyethyl), amino-C1-C4-alkyl, C1-C6-alkylamino C1-C4 alkyl, di-C1-C6-alkylamino C1-C4 alkyl, C1-C6-alkyloxycarbonylamino-C1-C4-alkyl, C1-C6-alkylaminocarbonylamino-C1-C4-alkyl, C6-C12-aryl-C1-C4-alkyl, C3-C12-cycloalkyl (e.g. cyclopropyl or cyclobutyl), C2-C6-alkenyl (e.g. prop-1,2-en-1-yl), optionally substituted C6-C12-aryl (e.g. phenyl), hydroxy, C1-C6-alkylamino, (halogenated C1-C6-alkyl)amino, di-C1-C6-alkylamino or optionally substituted C3-C12-heterocyclyl (e.g. 3-pyridyl, 2-thienyl, 4-methyl-2-thienyl, 5-methyl-2-thienyl, 5-chloro-2-thienyl, 2,5-dimethyl-3-thienyl, 1,2-diazol-4-yl, 1-methyl-1,2-diazol-4-yl, 1-ethyl-1,2-diazol-4-yl, 1-difluormethyl-1,2-diazol-4-yl, 2-methyl-1,3-diazol-4-yl, 1-methyl-1,3-diazol-4-yl, 2-methyl-1,3-thiazol-5-yl, 2,4-dimethyl-1,3-thiazol-5-yl or 3-pyrrolidinyl).


In particular, R1 is C1-C6-alkyl (e.g. n-propyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl), C3-C12-cycloalkyl (e.g. cyclobutyl), or optionally substituted C3-C12-heterocyclyl, (e.g. 3-pyridyl, 1-methyl-1,2-diazol-4-yl, 1-methyl-1,3-diazol-4-yl, 3-oxetanyl, 1-methylpyrrol-3-yl).


In connection with R1, substituted C6-C12-aryl in particular includes C6-C12-aryl, such as phenyl or naphthyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, cyano, C1-C4-alkoxy, C1-C4-haloalkoxy, amino, C1-C4-alkylamino, C1-C4-dialkylamino, morpholino and piperidinyl. The same applies to substituted C6-C12-aryl in substituted C6-C12-aryl-C1-C4-alkyl.


In connection with R1, substituted C3-C12-heterocyclyl in particular includes C3-C12-heterocyclyl, such as pyridyl, thienyl, diazolyl, quinolinyl, piperidinyl, piperazinyl or morpholinyl, pyrrolyl, isoxazolyl and triazolyl being further examples of such C3-C12-heterocyclyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxycarbonyl, cyano, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfonyl, amino, C1-C4-alkylamino, C1-C4-dialkylamino, C6-C12-arylamino and C3-C12-heterocyclyl (e.g., morpholino or piperidinyl). The same applies to substituted C3-C12-heteroaryl in substituted C3-C12-heteroaryl-C1-C4-alkyl.


According to one embodiment, W is —NR8— and Y is a bond. According to an alternative embodiment, W is a bond and Y is —NR9—. According to a further alternative embodiment, W is a bond and Y is a bond, especially if R1 is a nitrogen-bound radical, e.g. nitrogen-bound heterocyclyl such as piperazinyl or morpholinyl.


According to one embodiment, Q is —S(O)2—. According to an alternative embodiment, Q is —C(O)—.


According to a particular embodiment, —W-A1-Q-Y— is —W-A1-S(O)2—NR9—, —NR8—S(O)2—, -A1-S(O)2— or —S(O)2—. According to a further particular embodiment, —W-A1-Q-Y— is —W-A1-CO—NR9— or —NR8—CO—.


A1 is optionally substituted C1-C4-alkylene or a bond. In connection with A1, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl and cyano. Preferably, A1 is a bond. If A1 is C1-C4-alkylene, W is preferably —NRB—.


A2 is optionally substituted C1-C4-alkylene (e.g. 1,2-ethylene or 1,3-propylene), C1-C4-alkylene-CO—, —CO—C1-C4-alkylene, C1-C4-alkylene-O—C1-C4-alkylene, C1-C4-alkylene-NR10—C1-C4-alkylene, optionally substituted C6-C12-arylene, optionally substituted C6-C12-heteroarylene or a bond. Additionally, A2 may be optionally substituted C2-C4-alkenylene or optionally substituted C2-C4-alkynylene. Preferably, A2 is optionally substituted C1-C4-alkylene (e.g. 1,2-ethylene or 1,3-propylene). More preferably, A2 is C1-C4-alkylene (e.g. 1,2-ethylene). Alternatively, it is preferred that A2 is optionally substituted C6-C12-arylene, in particular C6-C12-arylene selected from the group consisting of phen-1,4-ylene and phen-1,3-ylene, or optionally substituted C6-C12-heteroarylene, in particular C6-C12-heteroarylene selected from the group consisting of pyrid-2,5-ylene and pyrid-2,4-ylene. If A2 is a bond, X1 is preferably optionally substituted C1-C4-alkylene. Alternatively, if A2 is a bond, X1 is in particular optionally substituted C2-C4-alkenylene or optionally substituted C2-C4-alkynylene.


In connection with A2, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and cyano.


In connection with A2, substituted C2-C4-alkenylene or substituted C2-C4-alkynylene in particular includes C2-C4-alkenylene or C2-C4-alkynylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and cyano.


In connection with A2, substituted C6-C12-arylene in particular includes C6-C12-arylene substituted with 1, 2 or 3 substituents selected from the group consisting of C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxycarbonyl, cyano, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfonyl, amino, C1-C4-alkylamino, C1-C4 dialkylamino, C6-C12-arylamino and C3-C12-heterocyclyl (e.g., morpholino or piperidinyl).


In connection with A2, substituted C6-C12-heteroarylene in particular includes C6-C12-heteroarylene substituted with 1, 2 or 3 substituents selected from the group consisting of C1-C4 alkyl, C1-C4 haloalkyl, C1-C4-alkoxycarbonyl, cyano, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfonyl, amino, C1-C4-alkylamino, C1-C4 dialkylamino, C6-C12-arylamino and C3-C12-heterocyclyl (e.g., morpholino or piperidinyl).


X1 is —O—, —NR11—, —S— or optionally substituted C1-C4-alkylene (e.g. —CH2—, 1,2-ethylene and 1,3-propylene). In connection with X1, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and cyano. Additionally, X1 may be optionally substituted C2-C4-alkenylen or optionally substituted C2-C4-alkynylene (e.g. propynylene). In connection with X1, substituted C2-C4-alkenylene or substituted C2-C4-alkynylene in particular includes C2-C4-alkenylene or C2-C4-alkynylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and cyano. Preferably, X1 is —O—, —NR11, —S—. More preferably, X1 is —O—. Alternatively, it is preferred if X1 is optionally substituted C1-C4-alkylene (e.g. —CH2— or 1,2-ethylene).


According to a particular embodiment, A2 is a bond and X1 is optionally substituted C1-C4-alkylene, optionally substituted C2-C4-alkenylene or optionally substituted C2-C4-alkynylene.


According to a particular embodiment, R1—W-A1-Q-Y-A2-X1— is R1—S(O)2—NH-A2-X1—, R1—NH—S(O)2-A2-X1—, R1—C(O)—NH-A2-X1- or R1—NH—C(O)-A2-X1-.


According to a particular embodiment, the structural element —Y-A2-X1- comprises at least 2, 3 or 4 atoms in the main chain. According to further particular embodiments the structural element —Y-A2-X1- has up to 4, 5 or 6 atoms in the main chain, such as 2 to 6, 2 to 5 or 2 to 4 atoms in the main chain, especially 2, 3 or 4 atoms in the main chain.


According to a further particular embodiment, —Y-A2-X1— is —C1-C4-alkylene-O— or —NR9—C1-C4-alkylene-O—, with —Y-A2-X1- preferably having 2 to 6, 3 to 5 and especially 4 atoms in the main chain. Particular examples of —Y-A2-X1- include —(CH2)3—O— and —NR9—(CH2)2—O—. In this particular embodiment, R9 is as defined herein and preferably R9 is hydrogen, C1-C6-alkyl (e.g. methyl or ethyl) or C3-C12-cycloalkyl (e.g. cyclopropyl), or R9 is C1-C4-alkylene that is bound to a carbon atom in A2 which is C1-C4-alkylene.


According to a further particular embodiment, —Y-A2-X1- is —NR9—C1-C4-alkylene- (e.g. —NH—CH2—, —NH—(CH2)2— or —NH—(CH2)3—), with —Y-A2-X1- preferably having 2 to 6, 2 to 5, 2 to 4 and especially 2, 3 or 4 atoms in the main chain. In this particular embodiment, R9 is as defined herein and preferably R9 is hydrogen, C1-C6-alkyl (e.g. methyl or ethyl) or C3-C12-cycloalkyl (e.g. cyclopropyl); or R9 is C1-C4-alkylene that is bound to a carbon atom in X1 which is C1-C4-alkylene.


According to a further particular embodiment, —Y-A2-X1- is —NR9—C2-C4-alkenylene- or —NR9—C2-C4-alkynylene- (e.g. —NH—CH2—C≡C—), with —Y-A2-X1- preferably having 2 to 6, 3 to 5 and especially 4 atoms in the main chain. In this particular embodiment, R9 is as defined herein and preferably is R9 is hydrogen, C1-C6-alkyl (e.g. methyl or ethyl) or C3-C12-cycloalkyl (e.g. cyclopropyl or cyclobutyl). If A is a heterocyclic ring, this embodiment of —Y-A2-X1- is particularly suitable.


According to a further particular embodiment, —Y-A2-X1- is —C1-C4-alkylene- (e.g. —(CH2)2—), with —Y-A2-X1- preferably having 2 to 6, 2 to 5, 2 to 4 and especially 2 atoms in the main chain. If A is a heterocyclic ring, this embodiment of —Y-A2-X1- is particularly suitable.


According to a further particular embodiment, the structural motif —Y-A2-X1 as disclosed herein is bound to Q being —S(O)2— or —C(O)—. Particular examples for this embodiment include heterocyclic compounds of the invention wherein R is R1—S(O)2—Y-A2-X1 or R1—C(O)—Y-A2-X1.


The radical R and in particular the radical R1—W-A1-Q-Y-A2-X1— X1- may, in principle, be bound to the 5-, 6-, 7- or 8-position of the skeleton of the compounds of the invention:




embedded image


In said formulae, R1, W, A1, Q, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


Further particular examples include compounds of the above formulae wherein the radical R1—W-A1-Q-Y-A2-X1— is replaced by the radical —CN.


Compounds of the invention having the radical R1—W-A1-Q-Y-A2-X1- (or the radical —CN) in the 5-, 6-, 7-position are preferred.


Particularly preferred are compounds of the invention having the radical R1—W-A1-Q-Y-A2-X1— (or the radical —CN) in the 7-position.


In addition to the radical R1—W-A1-Q-Y-A2-X1— (or the radical —CN), the compounds of the invention may have one or more than one further substituent bound to the ring A. In these positions, the skeleton of the compounds of the invention may thus be substituted with one or more than one radical R2. If there is more than one radical R2, these may be the same or different radicals. In particular, in 5-, 6-, 7- and/or 8-position, the skeleton of the compounds of the invention may be substituted with one or more than one radical R2. The compounds of the invention may therefore be represented by one of the following formulae:




embedded image


or by corresponding formulae wherein the radical R1—W-A1-Q-Y-A2-X1- is replaced by the radical —CN,


wherein R2a, R2b, R2c, R2d independently have one of the meanings given for R2, and R1, W, A1, Q, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


R2 is hydrogen, halogen (e.g. fluorine), C1-C6-alkyl, halogenated C1-C4-alkyl, hydroxy-C1-C4-alkyl, —CN, C2-C6-alkenyl, C2-C6-alkynyl, optionally substituted C6-C12-aryl, hydroxy, C1-C6-alkoxy, halogenated C1-C6-alkoxy, C1-C6-alkoxycarbonyl, C2-C6-alkenyloxy, C6-C12-aryl-C1-C4-alkoxy, C1-C6-alkylcarbonyloxy, C1-C6-alkylthio, C1-C6-alkylsulfinyl, C1-C6-alkylsulfonyl, aminosulfonyl, amino, C1-C6-alkylamino, C2-C6-alkenylamino, nitro or optionally substituted C3-C12-heterocyclyl, or two radicals R2 together with the ring atoms to which they are bound form a 5- or 6 membered ring.


An optionally substituted 5- or 6-membered ring that is formed by two radicals R2 together with the ring atoms of A to which they are bound is, for instance, a benzene ring.


In connection with R2, substituted C6-C12-aryl in particular includes C6-C12-aryl, such as phenyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen and C1-C4-alkyl, C1-C4 haloalkyl, cyano, C1-C4-alkoxy and C1-C4-haloalkoxy.


In connection with R2, substituted C3-C12-heterocyclyl in particular includes C3-C12-heterocyclyl, such as morpholinyl, pyrrolidinyl and piperidinyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, cyano, C1-C4-alkoxy and C1-C4-haloalkoxy.


Preferably, R2 is hydrogen, halogen (e.g. fluorine) or C1-C6-alkoxy. In particular, R2 is hydrogen or halogen (e.g. fluorine).


According to a particular embodiment, the compounds of the invention have one of the following formulae:




embedded image


or by corresponding formulae wherein the radical R1—W-A1-Q-Y-A2-X1- is replaced by the radical —CN,


wherein W, A1, O, Y, A2, X1, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


In 1-, 2-, 3- and/or 4-position, the compounds of the invention may be substituted with one or more than one radical R3. If there is more than one radical R3, these may be the same or different radicals. The compounds of the invention may therefore be represented by the following formula:




embedded image


wherein R3a, R3b, R3c, R3d, R3e, R3f independently have one of the meanings given for R3, and A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


According to a particular embodiment, the compounds of the invention have one of the following formulae:




embedded image


wherein R3a, R3b, R3f independently have the meaning of R3 and A, R, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are as defined herein.


R3 is hydrogen, halogen, C1-C6-alkyl, C1-C6-alkoxy, or two radicals R3 together with the carbon atom to which they are attached form a carbonyl group.


Preferably, R3 is hydrogen or C1-C6-alkyl. In particular, R3 is hydrogen.


Y1 is optionally substituted C1-C4-alkylene (e.g. methylene or 1,2-ethylene). In connection with Y1, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C3-C12-cycloalkyl and cyano. In particular, Y1 is C1-C4-alkylene (e.g. methylene or 1,2-ethylene).


R4a is hydrogen, C1-C6-alkyl (e.g. methyl, ethyl, n-propyl or isopropyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl), halogenated C1-C4-alkyl (e.g. 2-fluoroethyl or 2,2,2-trifluoroethyl), hydroxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C4-alkyl, amino-C1-C4-alkyl, CH2CN, C6-C12-aryl-C1-C4-alkyl (e.g. benzyl), C3-C12-cycloalkyl (e.g. cyclopropyl), —CHO, C1-C4-alkylcarbonyl (e.g. methylcarbonyl, ethylcarbonyl or isopropylcarbonyl), (halogenated C1-C4-alkyl)carbonyl (e.g. fluoromethylcarbonyl, difluoromethylcarbonyl, trifluoromethylcarbonyl, 1,1,1-trifluoroeth-2-ylcarbonyl or 1,1,1-trifluoroprop-3-ylcarbonyl), C6-C12-arylcarbonyl (e.g. phenylcarbonyl), C1-C4-alkoxycarbonyl (e.g. ethoxycarbonyl or tertbutyloxycarbonyl), C6-C12-aryloxycarbonyl (e.g. phenoxycarbonyl), C1-C6-alkylaminocarbonyl, C2-C6-alkenyl, —C(═NH)NH2, —C(═NH)NHCN, C1-C6-alkylsulfonyl, C6-C12-arylsulfonyl, amino, —NO or C3-C12-heterocyclyl (e.g. 3-oxetanyl).


Preferably, R4a is hydrogen, C1-C6-alkyl (e.g. methyl, ethyl, n-propyl or isopropyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl), halogenated C1-C4-alkyl (e.g. 2-fluoroethyl or 2,2,2-trifluoroethyl), amino-C1-C4-alkyl, CH2CN,C6-C12-aryl-C1-C4-alkyl (e.g. benzyl), C3-C12-cycloalkyl (e.g. cyclopropyl), C1-C1-alkylcarbonyl (e.g. methylcarbonyl or isopropylcarbonyl), (halogenated C1-C4-alkyl)carbonyl (e.g. fluoromethylcarbonyl, difluoromethylcarbonyl or trifluoromethylcarbonyl), C6-C12-arylcarbonyl (e.g. phenylcarbonyl), C1-C4-alkoxycarbonyl (e.g. ethoxycarbonyl or tert-butyloxycarbonyl), C6-C12-aryloxycarbonyl (e.g. phenoxycarbonyl), —C(═NH)NH2, —C(═NH)NHCN, C1-C6-alkylsulfonyl, amino, —NO or C3-C12-heterocyclyl (e.g. 3-oxetanyl).


In particular, R4a is hydrogen, C1-C6-alkyl (e.g. methyl), C3-C12-cycloalkyl (e.g. cyclopropyl), or C3-C12-heterocyclyl (e.g. 3-oxetanyl).


Alternatively, R4a is optionally substituted C1-C4-alkylene (e.g. methylene or 1,2-ethylene) that is bound to a carbon atom in Y1. In connection with R4a, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, and cyano, with hydroxy and C1-C4-alkoxy being further substituents. In particular, R4a is C1-C4-alkylene (e.g. methylene or 1,2-ethylene) that is bound to a carbon atom in Y1 with Y1 being optionally substituted C1-C4-alkylene (e.g. 1,2-ethylene or 1,3-propylene) so that R4a and at least part of Y1 together with the nitrogen atom to which R4a and Y1 are bound form an N-containing heterocyclic ring having, in particular, 4, 5 or 6 ring member atoms (including the nitrogen atom). An alkylaminotetralin or indane derivative having such a ring may be represented by the following partial structure:




embedded image


wherein A, R, R2, R3, R4b, X2, X3, R5, n are as defined herein, s is 0, 1 or 2, and t is 0, 1, 2, or 3. Particular combinations of s and t include s=1, t=1; s=0, t=1; s=1, t=2; and s=0, t=2.


R4b is hydrogen, C1-C6-alkyl (e.g. methyl, ethyl), halogenated C1-C4-alkyl, hydroxy-C1-C4-alkyl, C1-C6-alkoxy-C1-C4-alkyl, amino-C1-C4-alkyl, CH2CN, —CHO, C1-C4-alkylcarbonyl, (halogenated C1-C4-alkyl)carbonyl, C6-C12-arylcarbonyl, C1-C4-alkoxycarbonyl, C6-C12-aryloxycarbonyl, C1-C6-alkylaminocarbonyl, C2-C6-alkenyl, —C(═NH)NH2, —C(═NH)NHCN, C1-C6-alkylsulfonyl, C6-C12-arylsulfonyl, amino, —NO or C3-C12-heterocyclyl.


Preferably, R4b is hydrogen, C1-C6-alkyl (e.g. methyl). In particular, R4b is hydrogen.


Alternatively, R4a, R4b together are optionally substituted C1-C6-alkylene (e.g. 1,4-butylene, 1,3-propylene, 2-fluoro-but-1,4-ylene or 1-oxo-but-1,4-ylene), wherein one —CH2— of C1-C6-alkylene may be replaced by an oxygen atom (e.g. —CH2—CH2—O—CH2—CH2—) or —NR16.


In connection with R4a and R4b, substituted C1-C6-alkylene in particular includes C1-C6-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen (e.g. fluoro or chloro), C1-C4-alkyl, cyano, hydroxy and C1-C4-alkoxy.


X2 is —O—, —NR6—, —S—, >CR12aR12b or a bond. Preferably, X2 is >CR12aR12b.


X3 is —O—, —S—, >CR13aR13b or a bond. Preferably, X3 is a bond.


Thus, it is preferred if X2 is >CR12aR12b and X3 is a bond.


R12a is hydrogen, optionally substituted C1-C6-alkyl, C1-C6-alkylamino-C1-C4-alkyl, di-C1-C6-alkylamino-C1-C4-alkyl, C3-C12-heterocyclyl-C1-C6-alkyl, optionally substituted C6-C12-aryl or hydroxy. Preferably, R12a is hydrogen or C1-C6-alkyl.


R13a is hydrogen, optionally substituted C1-C6-alkyl, C1-C6-alkylamino-C1-C4-alkyl, di-C1-C6-alkylamino-C1-C4-alkyl, C3-C12-heterocyclyl-C1-C6-alkyl, optionally substituted C6-C12-aryl or hydroxy. Preferably, R13a is hydrogen or C1-C6-alkyl.


In connection with R12a and R13a, substituted C1-C6-alkyl in particular includes C1-C6-alkyl substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, hydroxy, C1-C4-alkoxy and amino.


In connection with R12a and R13a, substituted C6-C12-aryl in particular includes C6-C12-aryl, such as phenyl, substituted with 1, 2 or 3 substituents selected from the group consisting of C1-C4-alkyl, C1-C4-haloalkyl, cyano, C1-C4-alkoxy and C1-C4-haloalkoxy.


R12b is hydrogen or C1-C6-alkyl. According to a particular embodiment, R12b is hydrogen.


R13b is hydrogen or C1-C6-alkyl. According to a particular embodiment, R13b is hydrogen.


Alternatively, R12a and R12b, or R13a and R13b, together are together are carbonyl or, preferably, optionally substituted C1-C4-alkylene (e.g. 1,3-propylene), wherein one —CH2— of C1-C4-alkylene may be replaced by an oxygen atom or —NR14—.


In connection with R12a and R12b, or R13a and R13b, substituted C1-C4-alkylene in particular includes C1-C4-alkylene substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, cyano, C1-C4-alkoxy and C1-C4-haloalkoxy.


According to a particular embodiment, R12a is C1-C6-alkyl and R12b is hydrogen or C1-C6-alkyl, or R13a is C1-C6-alkyl and R13b is hydrogen or C1-C6-alkyl.


According to a further particular embodiment, R12a is hydrogen and R12b is hydrogen, or R13a is hydrogen and R13b is hydrogen.


According to a further particular embodiment, R12a and R12b together are optionally substituted 1,3-propylene, or R13a and R13b together are optionally substituted 1,3-propylene.


R5 is optionally substituted C6-C12-aryl (e.g. phenyl, 2-fluorophenyl, 2-chlorophenyl, 3-fluorophenyl, 3-chlorophenyl; 3-cyanophenyl, 3-methylphenyl, 3-trifluoromethylphenyl, 3-methoxyphenyl, 4-fluorophenyl, 4-chlorophenyl, 4-methoxyphenyl, 3,4-difluorophenyl, 3,5-difluorophenyl, 3-fluoro-5-chlorophenyl, 3-chloro-4-fluorophenyl, 2,4-dichlorophenyl or 3,4-dichlorophenyl), optionally substituted C3-C12-cycloalkyl (e.g. cyclohexyl) or optionally substituted C3-C12-heterocyclyl.


In connection with R5, substituted C3-C12-cycloalkyl in particular includes C3-C12-cycloalkyl, such as cyclopropyl or cyclohexyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, optionally substituted C1-C6-alkyl, halogenated C1-C6-alkyl, CN, hydroxy, C1-C6-alkoxy, halogenated C1-C6-alkoxy, amino, C1-C6-alkylamino, di-C1-C6-alkylamino and C3-C12-heterocyclyl.


In connection with R5, substituted C6-C12-aryl in particular includes C6-C12-aryl, such as phenyl, substituted with 1, 2 or 3 substituents selected from the group consisting of halogen (e.g. F, Cl, Br), optionally substituted C1-C6-alkyl (e.g. methyl), halogenated C1-C6-alkyl (e.g. trifluoromethyl), CN, hydroxy, C1-C6-alkoxy (e.g. methoxy), halogenated C1-C6-alkoxy, amino, C1-C6-alkylamino, di-C1-C6-alkylamino and C3-C12-heterocyclyl.


In connection with R5, substituted C3-C12-heterocyclyl in particular includes C3-C12-heterocyclyl substituted with 1, 2 or 3 substituents selected from the group consisting of halogen, optionally substituted C1-C6-alkyl, halogenated C1-C6-alkyl, CN, hydroxy, C1-C6-alkoxy, halogenated C1-C6-alkoxy, amino, C1-C6-alkylamino, di-C1-C6-alkylamino and C3-C12-heterocyclyl.


In connection with R5, C3-C12-heterocyclyl in particular is C3-C12-heteroaryl.


Preferably, R5 is optionally substituted C6-C12-aryl, in particular as in the compounds of the formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, n are as defined herein, and R17a, R17b, R17c, R17d, R17e independently are hydrogen, halogen (e.g. F, Cl or Br), optionally substituted C1-C6-alkyl (e.g. methyl), halogenated C1-C6-alkyl (e.g. trifluoromethyl), CN, hydroxy, C1-C6-alkoxy (e.g. methoxy), amino, C1-C6-alkylamino, di-C1-C6-alkylamino or C3-C12-heterocyclyl.


It is also preferred if R5 is optionally substituted C6-C12-heteroaryl, in particular as in the aminoindane derivatives of the formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, X2, X3, n are as defined herein, and R17b, R17c, R17d, R17e independently are hydrogen, halogen (e.g. F, Cl or Br), optionally substituted C1-C6-alkyl (e.g. methyl), halogenated C1-C6-alkyl (e.g. trifluoromethyl), CN, hydroxy, C1-C6-alkoxy (e.g. methoxy), amino, C1-C6-alkylamino, di-C1-C6-alkylamino or C3-C12-heterocyclyl.


According to a particular embodiment, the invention relates to compounds of the formula:




embedded image


wherein A, R, R2, R3, Y1, R4a, R4b, R5, n are as defined herein, R5 preferably being optionally substituted aryl and in particular optionally substituted phenyl as disclosed herein.


In connection with R5 or R17a, R17b, R17c, R17d, R17e substituted C1-C6-alkyl in particular includes C1-C6-alkyl, especially C1-C4-alkyl, substituted with 1, 2 or 3 substituents selected from the group consisting of hydroxy, C1-C6-alkoxy, amino, C1-C6-alkylamino, di-C1-C6-alkylamino and C3-C12-heterocyclyl (e.g. morpholinyl or piperidinyl).


According to a particular embodiment, R17a, R17b, R17d, R17e are hydrogen and R17c is different from hydrogen (para-mono-substitution).


According to a further particular embodiment, R17a, R17c, R17d, R17e are hydrogen and R17b is different from hydrogen (meta-mono-substitution).


In connection with R17a, R17b, R17c, R17d, R17e, C3-C12-heterocyclyl in particular includes morpholinyl, imidazolyl and pyrazolyl.


R6 is hydrogen or C1-C6-alkyl. Preferably, R6 is hydrogen.


R7 is hydrogen or C1-C6-alkyl. Preferably, R7 is hydrogen.


R8 is hydrogen or C1-C6-alkyl. Preferably, R8 is hydrogen.


R9 is hydrogen, C1-C6-alkyl (e.g. methyl or ethyl), C3-C12-cycloalkyl (e.g. cyclopropyl), amino-C1-C6-alkyl, optionally substituted C6-C12-aryl-C1-C4-alkyl or C3-C12-heterocyclyl (e.g. 3-azetidinyl). Preferably, R9 is hydrogen or C1-C6-alkyl (e.g. methyl or ethyl).


According to a particular embodiment, R9 and R1 together are C1-C4-alkylene (e.g. 1, 3-1,2-ethylene or propylene) so as that R9 and R1 together with the atom in Q to which R1 is bound and the nitrogen atom to which R9 is bound form an heterocyclic ring having, in particular, 4, 5 or 6 ring member atoms (including the nitrogen atom and Q). With W and A1 both being a bond, such a ring may be represented by the following partial structure:




embedded image


wherein Q, A2, X1, are as defined herein (e.g. S(O)2) and n is 0, 1, 2, 3 or 4.


According to a further particular embodiment, R9 is C1-C4-alkylene (e.g. methylene or 1,3-propylene) that is bound to a carbon atom in A2 and A2 is C1-C4-alkylene so that R9 and at least part of A2 together with the nitrogen atom to which R9 is bound form an N-containing heterocyclic ring having, in particular, 4, 5, 6 or 7 ring member atoms (including the nitrogen atom). Such a ring may be represented by the following partial structure:




embedded image


wherein W, A1, Q and X1 are as defined herein, p is 1 or 2, r is 0, 1 or 2 and q is 0, 1 or 2. In this particular embodiment, X1 preferably is —O—. Particular combinations of p, r and q include p=1, r=0, q=1; and p=1, r=0, q=0. Alternatively, p is 0, r is 3 and q is 1, with X1 preferably being —O—.


According to a further particular embodiment, R9 is C1-C4-alkylene (e.g. methylene or 1,3-propylene) that is bound to a carbon atom in X1 and X1 is C1-C4-alkylene (e.g. 1,2-ethylene) so that R9 and at least part of X1 together with the nitrogen atom to which R9 is bound form an N-containing heterocyclic ring having, in particular, 4, 5, 6 or 7 ring member atoms (including the nitrogen atom). With A2 being a bond, such a ring may be represented by the following partial structure:




embedded image


wherein R1, W, A1 and Q are as defined herein, p is 1 or 2, r is 0, 1 or 2 and q is 0, 1 or 2. Particular combinations of p, r and q include p=1, r=0, q=0.


R10 is hydrogen, C1-C6-alkyl or C1-C6-alkylsulfonyl. Preferably, R10 is hydrogen.


R11 is hydrogen or C1-C6-alkyl. Preferably, R11 is hydrogen.


Alternatively, R9, R11 together are C1-C4-alkylene (e.g. ethylene).


R14 is hydrogen or C1-C6-alkyl. Preferably, R14 is hydrogen.


R15 is hydrogen or C1-C6-alkyl. Preferably, R15 is hydrogen.


R16 is hydrogen or C1-C6-alkyl. Preferably, R16 is hydrogen.


Particular embodiments of compounds of the invention result if

  • A is a benzene ring;
  • R is R1—W-A1-Q-Y-A2-X1-;
  • R1 is C1-C6-alkyl (e.g. n-propyl), C3-C12-cycloalkyl-C1-C4-alkyl (e.g. cyclopropylmethyl), C3-C12-cycloalkyl (e.g. cyclobutyl), or optionally substituted C3-C12-heterocyclyl (e.g. 3-pyridyl, 1-methyl-1,2-diazol-4-yl, 1-methyl-1,3-diazol-4-yl, 3-oxetanyl, 1-methylpyrrol-3-yl);
  • W is a bond;
  • A1 is a bond;
  • Q is —S(O)2—;
  • Y is —NR9— or a bond;
  • A2 is C1-C4-alkylene (e.g. 1,2-ethylene) or a bond;
  • X1 is —O— or optionally substituted C1-C4-alkylene (e.g. methylene, 1,2-ethylene);
  • R2 is hydrogen or halogen (e.g. fluorine);
  • R3 is hydrogen;
  • Y1 is optionally substituted C1-C4-alkylene (e.g. methylene, 1,2-ethylene);
  • R4a is hydrogen, C1-C6-alkyl (e.g. methyl), C3-C12-cycloalkyl (e.g. cyclopropyl) or optionally substituted C3-C12-heterocyclyl (e.g. 3-oxetanyl); or
  • R4a is C1-C4-alkylene (e.g. methylene, 1,2-ethylene) that is bound to a carbon atom in Y1 and Y1 is optionally substituted C1-C4-alkylene (e.g. 1,2-ethylene, 1,3-propylene);
  • R4b is hydrogen; or
  • R4a, R4b
    • together are C1-C6-alkylene (e.g. 1,3-propylene, 1,4-butylene), wherein one —CH2— of C1-C6-alkylene may be replaced by an oxygen atom (e.g. —CH2—CH2—O—CH2—CH2—);
  • X2 is >CR12aR12b;
  • X3 is a bond;
  • R5 is optionally substituted phenyl (e.g. phenyl, 2-fluorophenyl, 2-chlorophenyl, 3-fluorophenyl, 3-chlorophenyl, 3-trifluoromethylphenyl);
  • n is 0 or 1;
  • R9 is hydrogen, or
  • R9 is C1-C4-alkylene (e.g. methylene) that is bound to a carbon atom in X1 and X1 is C1-C4-alkylene (e.g. 1,2-ethylene);
  • R12a is hydrogen;
  • R12b is hydrogen; or
  • R12a, R12b
    • together are C1-C4-alkylene (e.g. 1,3-propylene).


Further particular compounds of the present invention are the individual derivatives (in particular tetraline and indane derivatives) of the formula (Id) as listed in the following tables 1 to 24 and physiologically tolerated salts thereof:




embedded image


Table 1


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 2


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 3


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(—CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 4


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 5


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 6


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 7


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 8


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 9


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 10


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 11


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 12


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 13


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 14


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 15


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 16


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 17


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 18


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or (CH2)2—, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 19


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 20


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 21


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 22


Compounds of the formula (Id) wherein —Y1— is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 23


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).


Table 24


Compounds of the formula (Id) wherein —Y1- is as defined herein and in particular represents —CH2— or —(CH2)2—, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-480).

















R1
—Y—A2—X1
>CR12aR12b
R4a, R4b







A-1.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-2.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-3.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-4.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-5.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-6.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-7.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-8.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3, H





A-9.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-10.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-11.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-12.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-13.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-14.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-15.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-16.


embedded image


—NH—(CH2)2
—CH2
—CH3, H





A-17.


embedded image


—NH—CH2
—CH2
—CH3, H





A-18.


embedded image


—NH—CH2
—CH2
—CH3, H





A-19.


embedded image


—NH—CH2
—CH2
—CH3, H





A-20.


embedded image


—NH—CH2
—CH2
—CH3, H





A-21.


embedded image


—NH—CH2
—CH2
—CH3, H





A-22.


embedded image


—NH—CH2
—CH2
—CH3, H





A-23.


embedded image


—NH—CH2
—CH2
—CH3, H





A-24.


embedded image


—NH—CH2
—CH2
—CH3, H





A-25.


embedded image




embedded image


—CH2
—CH3, H





A-26.


embedded image




embedded image


—CH2
—CH3, H





A-27.


embedded image




embedded image


—CH2
—CH3, H





A-28.


embedded image




embedded image


—CH2
—CH3, H





A-29.


embedded image




embedded image


—CH2
—CH3, H





A-30.


embedded image




embedded image


—CH2
—CH3, H





A-31.


embedded image




embedded image


—CH2
—CH3, H





A-32.


embedded image




embedded image


—CH2
—CH3, H





A-33.


embedded image


—(CH2)2
—CH2
—CH3, H





A-34.


embedded image


—(CH2)2
—CH2
—CH3, H





A-35.


embedded image


—(CH2)2
—CH2
—CH3, H





A-36.


embedded image


—(CH2)2
—CH2
—CH3, H





A-37.


embedded image


—(CH2)2
—CH2
—CH3, H





A-38.


embedded image


—(CH2)2
—CH2
—CH3, H





A-39.


embedded image


—(CH2)2
—CH2
—CH3, H





A-40.


embedded image


—(CH2)2
—CH2
—CH3, H





A-41.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-42.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-43.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-44.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-45.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-46.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-47.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-48.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3, H





A-49.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-50.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-51.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-52.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-53.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-54.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-55.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-56.


embedded image


—NH—(CH2)2


embedded image


—CH3, H





A-57.


embedded image


—NH—CH2


embedded image


—CH3, H





A-58.


embedded image


—NH—CH2


embedded image


—CH3, H





A-59.


embedded image


—NH—CH2


embedded image


—CH3, H





A-60.


embedded image


—NH—CH2


embedded image


—CH3, H





A-61.


embedded image


—NH—CH2


embedded image


—CH3, H





A-62.


embedded image


—NH—CH2


embedded image


—CH3, H





A-63.


embedded image


—NH—CH2


embedded image


—CH3, H





A-64.


embedded image


—NH—CH2


embedded image


—CH3, H





A-65.


embedded image




embedded image




embedded image


—CH3, H





A-66.


embedded image




embedded image




embedded image


—CH3, H





A-67.


embedded image




embedded image




embedded image


—CH3, H





A-68.


embedded image




embedded image




embedded image


—CH3, H





A-69.


embedded image




embedded image




embedded image


—CH3, H





A-70.


embedded image




embedded image




embedded image


—CH3, H





A-71.


embedded image




embedded image




embedded image


—CH3, H





A-72.


embedded image




embedded image




embedded image


—CH3, H





A-73.


embedded image


—(CH2)2


embedded image


—CH3, H





A-74.


embedded image


—(CH2)2


embedded image


—CH3, H





A-75.


embedded image


—(CH2)2


embedded image


—CH3, H





A-76.


embedded image


—(CH2)2


embedded image


—CH3, H





A-77.


embedded image


—(CH2)2


embedded image


—CH3, H





A-78.


embedded image


—(CH2)2


embedded image


—CH3, H





A-79.


embedded image


—(CH2)2


embedded image


—CH3, H





A-80.


embedded image


—(CH2)2


embedded image


—CH3, H





A-81.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-82.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-83.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-84.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-85.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-86.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-87.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-88.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-89.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-90.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-91.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-92.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-93.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-94.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-95.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-96.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-97.


embedded image


—NH—CH2
—CH2


embedded image







A-98.


embedded image


—NH—CH2
—CH2


embedded image







A-99.


embedded image


—NH—CH2
—CH2


embedded image







A-100.


embedded image


—NH—CH2
—CH2


embedded image







A-101.


embedded image


—NH—CH2
—CH2


embedded image







A-102.


embedded image


—NH—CH2
—CH2


embedded image







A-103.


embedded image


—NH—CH2
—CH2


embedded image







A-104.


embedded image


—NH—CH2
—CH2


embedded image







A-105.


embedded image




embedded image


—CH2


embedded image







A-106.


embedded image




embedded image


—CH2


embedded image







A-107.


embedded image




embedded image


—CH2


embedded image







A-108.


embedded image




embedded image


—CH2


embedded image







A-109.


embedded image




embedded image


—CH2


embedded image







A-110.


embedded image




embedded image


—CH2


embedded image







A-111.


embedded image




embedded image


—CH2


embedded image







A-112.


embedded image




embedded image


—CH2


embedded image







A-113.


embedded image


—(CH2)2
—CH2


embedded image







A-114.


embedded image


—(CH2)2
—CH2


embedded image







A-115.


embedded image


—(CH2)2
—CH2


embedded image







A-116.


embedded image


—(CH2)2
—CH2


embedded image







A-117.


embedded image


—(CH2)2
—CH2


embedded image







A-118.


embedded image


—(CH2)2
—CH2


embedded image







A-119.


embedded image


—(CH2)2
—CH2


embedded image







A-120.


embedded image


—(CH2)2
—CH2


embedded image







A-121.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-122.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-123.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-124.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-125.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-126.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-127.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-128.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-129.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-130.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-131.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-132.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-133.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-134.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-135.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-136.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-137.


embedded image


—NH—CH2


embedded image




embedded image







A-138.


embedded image


—NH—CH2


embedded image




embedded image







A-139.


embedded image


—NH—CH2


embedded image




embedded image







A-140.


embedded image


—NH—CH2


embedded image




embedded image







A-141.


embedded image


—NH—CH2


embedded image




embedded image







A-142.


embedded image


—NH—CH2


embedded image




embedded image







A-143.


embedded image


—NH—CH2


embedded image




embedded image







A-144.


embedded image


—NH—CH2


embedded image




embedded image







A-145.


embedded image




embedded image




embedded image




embedded image







A-146.


embedded image




embedded image




embedded image




embedded image







A-147.


embedded image




embedded image




embedded image




embedded image







A-148.


embedded image




embedded image




embedded image




embedded image







A-149.


embedded image




embedded image




embedded image




embedded image







A-150.


embedded image




embedded image




embedded image




embedded image







A-151.


embedded image




embedded image




embedded image




embedded image







A-152.


embedded image




embedded image




embedded image




embedded image







A-153.


embedded image


—(CH2)2


embedded image




embedded image







A-154.


embedded image


—(CH2)2


embedded image




embedded image







A-155.


embedded image


—(CH2)2


embedded image




embedded image







A-156.


embedded image


—(CH2)2


embedded image




embedded image







A-157.


embedded image


—(CH2)2


embedded image




embedded image







A-158.


embedded image


—(CH2)2


embedded image




embedded image







A-159.


embedded image


—(CH2)2


embedded image




embedded image







A-160.


embedded image


—(CH2)2


embedded image




embedded image







A-161.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-162.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-163.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-164.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-165.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-166.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-167.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-168.


embedded image


—NH—(CH2)2—O—
—CH2


embedded image







A-169.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-170.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-171.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-172.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-173.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-174.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-175.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-176.


embedded image


—NH—(CH2)2
—CH2


embedded image







A-177.


embedded image


—NH—CH2
—CH2


embedded image







A-178.


embedded image


—NH—CH2
—CH2


embedded image







A-179.


embedded image


—NH—CH2
—CH2


embedded image







A-180.


embedded image


—NH—CH2
—CH2


embedded image







A-181.


embedded image


—NH—CH2
—CH2


embedded image







A-182.


embedded image


—NH—CH2
—CH2


embedded image







A-183.


embedded image


—NH—CH2
—CH2


embedded image







A-184.


embedded image


—NH—CH2
—CH2


embedded image







A-185.


embedded image




embedded image


—CH2


embedded image







A-186.


embedded image




embedded image


—CH2


embedded image







A-187.


embedded image




embedded image


—CH2


embedded image







A-188.


embedded image




embedded image


—CH2


embedded image







A-189.


embedded image




embedded image


—CH2


embedded image







A-190.


embedded image




embedded image


—CH2


embedded image







A-191.


embedded image




embedded image


—CH2


embedded image







A-192.


embedded image




embedded image


—CH2


embedded image







A-193.


embedded image


—(CH2)2
—CH2


embedded image







A-194.


embedded image


—(CH2)2
—CH2


embedded image







A-195.


embedded image


—(CH2)2
—CH2


embedded image







A-196.


embedded image


—(CH2)2
—CH2


embedded image







A-197.


embedded image


—(CH2)2
—CH2


embedded image







A-198.


embedded image


—(CH2)2
—CH2


embedded image







A-199.


embedded image


—(CH2)2
—CH2


embedded image







A-200.


embedded image


—(CH2)2
—CH2


embedded image







A-201.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-202.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-203.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-204.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-205.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-206.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-207.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-208.


embedded image


—NH—(CH2)2—O—


embedded image




embedded image







A-209.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-210.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-211.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-212.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-213.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-214.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-215.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-216.


embedded image


—NH—(CH2)2


embedded image




embedded image







A-217.


embedded image


—NH—CH2


embedded image




embedded image







A-218.


embedded image


—NH—CH2


embedded image




embedded image







A-219.


embedded image


—NH—CH2


embedded image




embedded image







A-220.


embedded image


—NH—CH2


embedded image




embedded image







A-221.


embedded image


—NH—CH2


embedded image




embedded image







A-222.


embedded image


—NH—CH2


embedded image




embedded image







A-223.


embedded image


—NH—CH2


embedded image




embedded image







A-224.


embedded image


—NH—CH2


embedded image




embedded image







A-225.


embedded image




embedded image




embedded image




embedded image







A-226.


embedded image




embedded image




embedded image




embedded image







A-227.


embedded image




embedded image




embedded image




embedded image







A-228.


embedded image




embedded image




embedded image




embedded image







A-229.


embedded image




embedded image




embedded image




embedded image







A-230.


embedded image




embedded image




embedded image




embedded image







A-231.


embedded image




embedded image




embedded image




embedded image







A-232.


embedded image




embedded image




embedded image




embedded image







A-233.


embedded image


—(CH2)2


embedded image




embedded image







A-234.


embedded image


—(CH2)2


embedded image




embedded image







A-235.


embedded image


—(CH2)2


embedded image




embedded image







A-236.


embedded image


—(CH2)2


embedded image




embedded image







A-237.


embedded image


—(CH2)2


embedded image




embedded image







A-238.


embedded image


—(CH2)2


embedded image




embedded image







A-239.


embedded image


—(CH2)2


embedded image




embedded image







A-240.


embedded image


—(CH2)2


embedded image




embedded image







A-241.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-242.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-243.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-244.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-245.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-246.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-247.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-248.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)3





A-249.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-250.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-251.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-252.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-253.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-254.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-255.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-256.


embedded image


—NH—(CH2)2
—CH2
—(CH2)3





A-257.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-258.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-259.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-260.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-261.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-262.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-263.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-264.


embedded image


—NH—CH2
—CH2
—(CH2)3





A-265.


embedded image




embedded image


—CH2
—(CH2)3





A-266.


embedded image




embedded image


—CH2
—(CH2)3





A-267.


embedded image




embedded image


—CH2
—(CH2)3





A-268.


embedded image




embedded image


—CH2
—(CH2)3





A-269.


embedded image




embedded image


—CH2
—(CH2)3





A-270.


embedded image




embedded image


—CH2
—(CH2)3





A-271.


embedded image




embedded image


—CH2
—(CH2)3





A-272.


embedded image




embedded image


—CH2
—(CH2)3





A-273.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-274.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-275.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-276.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-277.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-278.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-279.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-280.


embedded image


—(CH2)2
—CH2
—(CH2)3





A-281.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-282.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-283.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-284.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-285.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-286.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-287.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-288.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)3





A-289.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-290.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-291.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-292.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-293.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-294.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-295.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-296.


embedded image


—NH—(CH2)2


embedded image


—(CH2)3





A-297.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-298.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-299.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-300.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-301.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-302.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-303.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-304.


embedded image


—NH—CH2


embedded image


—(CH2)3





A-305.


embedded image




embedded image




embedded image


—(CH2)3





A-306.


embedded image




embedded image




embedded image


—(CH2)3





A-307.


embedded image




embedded image




embedded image


—(CH2)3





A-308.


embedded image




embedded image




embedded image


—(CH2)3





A-309.


embedded image




embedded image




embedded image


—(CH2)3





A-310.


embedded image




embedded image




embedded image


—(CH2)3





A-311.


embedded image




embedded image




embedded image


—(CH2)3





A-312.


embedded image




embedded image




embedded image


—(CH2)3





A-313.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-314.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-315.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-316.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-317.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-318.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-319.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-320.


embedded image


—(CH2)2


embedded image


—(CH2)3





A-321.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-322.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-323.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-324.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-325.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-326.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-327.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-328.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)4





A-329.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-330.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-331.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-332.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-333.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-334.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-335.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-336.


embedded image


—NH—(CH2)2
—CH2
—(CH2)4





A-337.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-338.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-339.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-340.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-341.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-342.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-343.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-344.


embedded image


—NH—CH2
—CH2
—(CH2)4





A-345.


embedded image




embedded image


—CH2
—(CH2)4





A-346.


embedded image




embedded image


—CH2
—(CH2)4





A-347.


embedded image




embedded image


—CH2
—(CH2)4





A-348.


embedded image




embedded image


—CH2
—(CH2)4





A-349.


embedded image




embedded image


—CH2
—(CH2)4





A-350.


embedded image




embedded image


—CH2
—(CH2)4





A-351.


embedded image




embedded image


—CH2
—(CH2)4





A-352.


embedded image




embedded image


—CH2
—(CH2)4





A-353.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-354.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-355.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-356.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-357.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-358.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-359.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-360.


embedded image


—(CH2)2
—CH2
—(CH2)4





A-361.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-362.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-363.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-364.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-365.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-366.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-367.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-368.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)4





A-369.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-370.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-371.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-372.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-373.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-374.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-375.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-376.


embedded image


—NH—(CH2)2


embedded image


—(CH2)4





A-377.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-378.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-379.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-380.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-381.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-382.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-383.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-384.


embedded image


—NH—CH2


embedded image


—(CH2)4





A-385.


embedded image




embedded image




embedded image


—(CH2)4





A-386.


embedded image




embedded image




embedded image


—(CH2)4





A-387.


embedded image




embedded image




embedded image


—(CH2)4





A-388.


embedded image




embedded image




embedded image


—(CH2)4





A-389.


embedded image




embedded image




embedded image


—(CH2)4





A-390.


embedded image




embedded image




embedded image


—(CH2)4





A-391.


embedded image




embedded image




embedded image


—(CH2)4





A-392.


embedded image




embedded image




embedded image


—(CH2)4





A-393.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-394.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-395.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-396.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-397.


embedded image


—(CH2)2


embedded image


—(CH2)47





A-398.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-399.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-400.


embedded image


—(CH2)2


embedded image


—(CH2)4





A-401.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-402.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-403.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-404.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-405.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-406.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-407.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-408.


embedded image


—NH—(CH2)2—O—
—CH2
—(CH2)2—O—(CH2)2





A-409.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-410.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-411.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-412.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-413.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-414.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-415.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-416.


embedded image


—NH—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-417.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-418.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-419.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-420.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-421.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-422.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-423.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-424.


embedded image


—NH—CH2
—CH2
—(CH2)2—O—(CH2)2





A-425.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-426.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-427.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-428.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-429.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-430.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-431.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-432.


embedded image




embedded image


—CH2
—(CH2)2—O—(CH2)2





A-433.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-434.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-435.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-436.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-437.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-438.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-439.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-440.


embedded image


—(CH2)2
—CH2
—(CH2)2—O—(CH2)2





A-441.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-442.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-443.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-444.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-445.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-446.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-447.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-448.


embedded image


—NH—(CH2)2—O—


embedded image


—(CH2)2—O—(CH2)2





A-449.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-450.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-451.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-452.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-453.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-454.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-455.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-456.


embedded image


—NH—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-457.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-458.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-459.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-460.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-461.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-462.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-463.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-464.


embedded image


—NH—CH2


embedded image


—(CH2)2—O—(CH2)2





A-465.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-466.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-467.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-468.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-469.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-470.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-471.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-472.


embedded image




embedded image




embedded image


—(CH2)2—O—(CH2)2





A-473.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-474.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-475.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-476.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-477.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-478.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-479.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2





A-480.


embedded image


—(CH2)2


embedded image


—(CH2)2—O—(CH2)2









Further particular compounds of the present invention are the individual derivatives (in particular tetraline and indane derivatives) of the formula (Id) as listed in the following tables 25 to 48 and physiologically tolerated salts thereof:




embedded image


Table 25


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 26


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 27


Compounds of the formula (Id) wherein —Y1NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4-, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-1 to A-512).


Table 28


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2—X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 29


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 30


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is hydrogen, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2—X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 31


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 32


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 33


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 34


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 35


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 36


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 5-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 37


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 38


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 39


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 40


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1—, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 41


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 42


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 6-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 43


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is hydrogen and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 44


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4a, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 45


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 46


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 3-CF3 and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 47


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-F and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Table 48


Compounds of the formula (Id) wherein —Y1—NR4aR4b is as defined herein and in particular represents one of the partial structures P1, P2, P3 or P4, R2 is 8-F, R3 is as defined herein and in particular represents hydrogen, R17 is 2-Cl and the combination of R1, —Y-A2-X1-, >CR12aR12b, R4b for a compound in each case corresponds to one line of Table A (A-481 to A-640).


Partial structures P1, P2, P3, and P4:
















P1




embedded image









P2




embedded image









P3




embedded image









P4




embedded image


















R1
—Y—A2—X1
>CR12aR12b
R4b





A-481.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-482.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-483.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-484.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-485.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-486.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-487.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-488.


embedded image


—NH—(CH2)2—O—
—CH2
—H





A-489.


embedded image


—NH—(CH2)2
—CH2
—H





A-490.


embedded image


—NH—(CH2)2
—CH2
—H





A-491.


embedded image


—NH—(CH2)2
—CH2
—H





A-492.


embedded image


—NH—(CH2)2
—CH2
—H





A-493.


embedded image


—NH—(CH2)2
—CH2
—H





A-494.


embedded image


—NH—(CH2)2
—CH2
—H





A-495.


embedded image


—NH—(CH2)2
—CH2
—H





A-496.


embedded image


—NH—(CH2)2
—CH2
—H





A-497.


embedded image


—NH—CH2
—CH2
—H





A-498.


embedded image


—NH—CH2
—CH2
—H





A-499.


embedded image


—NH—CH2
—CH2
—H





A-500.


embedded image


—NH—CH2
—CH2
—H





A-501.


embedded image


—NH—CH2
—CH2
—H





A-502.


embedded image


—NH—CH2
—CH2
—H





A-503.


embedded image


—NH—CH2
—CH2
—H





A-504.


embedded image


—NH—CH2
—CH2
—H





A-505.


embedded image




embedded image


—CH2
—H





A-506.


embedded image




embedded image


—CH2
—H





A-507.


embedded image




embedded image


—CH2
—H





A-508.


embedded image




embedded image


—CH2
—H





A-509.


embedded image




embedded image


—CH2
—H





A-510.


embedded image




embedded image


—CH2
—H





A-511.


embedded image




embedded image


—CH2
—H





A-512.


embedded image




embedded image


—CH2
—H





A-513.


embedded image


—(CH2)2
—CH2
—H





A-514.


embedded image


—(CH2)2
—CH2
—H





A-515.


embedded image


—(CH2)2
—CH2
—H





A-516.


embedded image


—(CH2)2
—CH2
—H





A-517.


embedded image


—(CH2)2
—CH2
—H





A-518.


embedded image


—(CH2)2
—CH2
—H





A-519.


embedded image


—(CH2)2
—CH2
—H





A-520.


embedded image


—(CH2)2
—CH2
—H





A-521.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-522.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-523.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-524.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-525.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-526.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-527.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-528.


embedded image


—NH—(CH2)2—O—


embedded image


—H





A-529.


embedded image


—NH—(CH2)2


embedded image


—H





A-530.


embedded image


—NH—(CH2)2


embedded image


—H





A-531.


embedded image


—NH—(CH2)2


embedded image


—H





A-532.


embedded image


—NH—(CH2)2


embedded image


—H





A-533.


embedded image


—NH—(CH2)2


embedded image


—H





A-534.


embedded image


—NH—(CH2)2


embedded image


—H





A-535.


embedded image


—NH—(CH2)2


embedded image


—H





A-536.


embedded image


—NH—(CH2)2


embedded image


—H





A-537.


embedded image


—NH—CH2


embedded image


—H





A-538.


embedded image


—NH—CH2


embedded image


—H





A-539.


embedded image


—NH—CH2


embedded image


—H





A-540.


embedded image


—NH—CH2


embedded image


—H





A-541.


embedded image


—NH—CH2


embedded image


—H





A-542.


embedded image


—NH—CH2


embedded image


—H





A-543.


embedded image


—NH—CH2


embedded image


—H





A-544.


embedded image


—NH—CH2


embedded image


—H





A-545.


embedded image




embedded image




embedded image


—H





A-546.


embedded image




embedded image




embedded image


—H





A-547.


embedded image




embedded image




embedded image


—H





A-548.


embedded image




embedded image




embedded image


—H





A-549.


embedded image




embedded image




embedded image


—H





A-550.


embedded image




embedded image




embedded image


—H





A-551.


embedded image




embedded image




embedded image


—H





A-552.


embedded image




embedded image




embedded image


—H





A-553.


embedded image


—(CH2)2


embedded image


—H





A-554.


embedded image


—(CH2)2


embedded image


—H





A-555.


embedded image


—(CH2)2


embedded image


—H





A-556.


embedded image


—(CH2)2


embedded image


—H





A-557.


embedded image


—(CH2)2


embedded image


—H





A-558.


embedded image


—(CH2)2


embedded image


—H





A-559.


embedded image


—(CH2)2


embedded image


—H





A-560.


embedded image


—(CH2)2


embedded image


—H





A-561.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-562.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-563.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-564.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-565.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-566.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-567.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-568.


embedded image


—NH—(CH2)2—O—
—CH2
—CH3





A-569.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-570.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-571.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-572.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-573.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-574.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-575.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-576.


embedded image


—NH—(CH2)2
—CH2
—CH3





A-577.


embedded image


—NH—CH2
—CH2
—CH3





A-578.


embedded image


—NH—CH2
—CH2
—CH3





A-579.


embedded image


—NH —CH2
—CH2
—CH3





A-580.


embedded image


—NH—CH2
—CH2
—CH3





A-581.


embedded image


—NH—CH2
—CH2
—CH3





A-582.


embedded image


—NH—CH2
—CH2
—CH3





A-583.


embedded image


—NH—CH2
—CH2
—CH3





A-584.


embedded image


—NH—CH2
—CH2
—CH3





A-585.


embedded image




embedded image


—CH2
—CH3





A-586.


embedded image




embedded image


—CH2
—CH3





A-587.


embedded image




embedded image


—CH2
—CH3





A-588.


embedded image




embedded image


—CH2
—CH3





A-589.


embedded image




embedded image


—CH2
—CH3





A-590.


embedded image




embedded image


—CH2
—CH3





A-591.


embedded image




embedded image


—CH2
—CH3





A-592.


embedded image




embedded image


—CH2
—CH3





A-593.


embedded image


—(CH2)2
—CH2
—CH3





A-594.


embedded image


—(CH2)2
—CH2
—CH3





A-595.


embedded image


—(CH2)2
—CH2
—CH3





A-596.


embedded image


—(CH2)2
—CH2
—CH3





A-597.


embedded image


—(CH2)2
—CH2
—CH3





A-598.


embedded image


—(CH2)2
—CH2
—CH3





A-599.


embedded image


—(CH2)2
—CH2
—CH3





A-600.


embedded image


—(CH2)2
—CH2
—CH3





A-601.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-602.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-603.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-604.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-605.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-606.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-607.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-608.


embedded image


—NH—(CH2)2—O—


embedded image


—CH3





A-609.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-610.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-611.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-612.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-613.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-614.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-615.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-616.


embedded image


—NH—(CH2)2


embedded image


—CH3





A-617.


embedded image


—NH—CH2


embedded image


—CH3





A-618.


embedded image


—NH—CH2


embedded image


—CH3





A-619.


embedded image


—NH—CH2


embedded image


—CH3





A-620.


embedded image


—NH—CH2


embedded image


—CH3





A-621.


embedded image


—NH—CH2


embedded image


—CH3





A-622.


embedded image


—NH—CH2


embedded image


—CH3





A-623.


embedded image


—NH—CH2


embedded image


—CH3





A-624.


embedded image


—NH—CH2


embedded image


—CH3





A-625.


embedded image




embedded image




embedded image


—CH3





A-626.


embedded image




embedded image




embedded image


—CH3





A-627.


embedded image




embedded image




embedded image


—CH3





A-628.


embedded image




embedded image




embedded image


—CH3





A-629.


embedded image




embedded image




embedded image


—CH3





A-630.


embedded image




embedded image




embedded image


—CH3





A-631.


embedded image




embedded image




embedded image


—CH3





A-632.


embedded image




embedded image




embedded image


—CH3





A-633.


embedded image


—(CH2)2


embedded image


—CH3





A-634.


embedded image


—(CH2)2


embedded image


—CH3





A-635.


embedded image


—(CH2)2


embedded image


—CH3





A-636.


embedded image


—(CH2)2


embedded image


—CH3





A-637.


embedded image


—(CH2)2


embedded image


—CH3





A-638.


embedded image


—(CH2)2


embedded image


—CH3





A-639.


embedded image


—(CH2)2


embedded image


—CH3





A-640.


embedded image


—(CH2)2


embedded image


—CH3









Still further particular compounds of the present invention are the compounds disclosed in preparation examples and physiologically tolerated salts thereof. These include for each preparation example the exemplified compound as well as the corresponding free base and any other physiologically tolerated salts of the free base (if the exemplified compound is a salt), or any physiologically tolerated salt of the free base (if the exemplified compound is a free base). These further include enantiomers, diastereomers, tautomers and any other isomeric forms of said compounds, be they explicitly or implicitly disclosed.


The compounds of the formula (I) can be prepared by analogy to methods which are well known in the art. Suitable methods for the preparation of compounds of formula (I) are outlined in the following schemes.




embedded image


As shown in scheme 1, the compound of general formula I readily undergoes enamine alkylation to give the compound of general formula 3.


In scheme 1, the variables X1, R2, X2, X3, R5 are as defined herein and L is a suitable protecting group (e.g. L=Me). The process depicted in scheme 1 is also useful for obtaining tetralines, wherein X1 is optionally substituted alkylene or oxygen. In this case, L is a group that represents, or can be converted into, the desired side chain R1—W-A1-Q-Y-A2-.


Alternatively, compounds of formula 3 can be prepared as described in scheme 2.




embedded image


As shown in scheme 2a, the compound of general formula 4 readily undergoes alkylation, to give the compound of general formula 5. Conversion to the acid chloride and subsequent ring closure with ethylene in the presence of a Lewis acid (e.g. AlCl3) affords compound 3 (e.g. J. Het. Chem., 23 (2), 343, 1986 and Bioorg. Med. Chem. Let, 17 (22), 6160, 2007).


In scheme 2a, the variables X1, R2, X2, X3, R5 are as defined herein and L, 12 are a suitable protecting group (e.g. L, L1=Me). Compounds 3 can be further converted to compounds of the general formula (I).




embedded image


Scheme 2b depicts the general synthesis of indanones 3 using transition metal-catalyzed C,C-bond formation to synthesize the indanone from a diazoprecursor (cf. Tetrahedron Letters (2009), 50, 3568). Lx is an ester moiety. The side chain containing X2, X3 and R5 could be introduced by an alkylation of the 1,3-dicarbonyl intermediate. Saponification of the ester moiety and decarboxylation could yield indanone 3.


In scheme 2b, the variables X1, R2, X2, X3, R3, R5 are as defined herein and L is a suitable protecting group (e.g. L=Me). Compounds 3 can be further converted to compounds of the general formula (I).




embedded image


embedded image


In scheme 2c, an alternative route to compounds 14 where n=0 is depicted. A substituted 1-indanone can be functionalized in the 2-position after deprotonation next to the carbonyl followed by alkylation with an electrophile bearing a protected nitrogen (PG=protective group; this includes N(PG)2 being nitro and the adjacent carbon in Y1 and N(PG)2 being nitrile). Addition of a functionalized nucleophile (e.g. Li-organyl or Grignard reagent) to the carbonyl of the 1-indanone followed by elimination and hydrogenation can yield compound 8. Standard protective group chemistry followed by alkylation, deprotection of the amine attached to A2 and reaction with a substituted sulfonyl chloride can yield intermediate 12.


When N(PG)2 is a nitro group or when N(PG)2 and the carbon in Y1 adjacent to N(PG)2 form a nitrile group the activated C—H bond next to the nitro or nitrile can be used for alkylation reactions with suitably functionalized electrophiles to yield compounds 14 in which R4a is an optionally substituted alkylene that is bound to a carbon atom in Y1. Alternatively the nitrogen attached to Y1 in compound 12 can be deprotected and substituted to yield compound 14.


In scheme 2c, the variables R1, W, A1, R9, A2, X1, X2, X3, R3, R5, Y1, R4a, R4b are as defined herein and L is a suitable protecting group (e.g.: L=Me).


The process depicted in scheme 3 is useful for obtaining tetralines and indanes, wherein X1 is —O— or —S—, A2 is optionally substituted alkylene, Y is —NR9—, and Q is —S(O)2. Y1 is optionally substituted methylene or ethylene.




embedded image


In scheme 3, the variables L, R1, W, A1, R2, R3, R4a, R4b, R5, R9, X2, X3 and n are as defined herein and L2 is a suitable protecting group (e.g. L2═COOEt).


Compounds 7 in which Y1 is ethylene can be obtained from compounds 3 in analogy to the protocol described in Helv. Chim. Acta (1989), 72, 1463-70 or J. Med. Chem. (2000), 43, 4051-62 followed by reduction of the corresponding nitrile (e.g. with lithium aluminum hydride or borane tetrahydrofuran complex in tetrahydrofuran).


Compounds 7 in which Y1 is methylene can be obtained from compounds 3 by Henry reaction in analogy to the protocol described in DE3901814 followed by reduction of the corresponding nitro group (e.g. catalytic hydrogenation with palladium on charcoal). Alternatively compounds 7 in which Y1 is methylene can be obtained from compounds 3 in analogy to the protocol described in J. Med. Chem. (2000), 43, 4051-62 followed by Curtius rearrangement of the corresponding carboxylic acid to the amine 7.


Side chains containing R1, W, A1, A2, X1 and R9 and R5, X2 and X3 as well as the substituents R2, R3, R4a and R4b can be introduced analog to the protocols described in WO2009121872.


The process depicted in scheme 3a is useful for obtaining tetralines, wherein X1 is —O— or —S—, and Y is a bond.




embedded image


In scheme 3a, the variables L, L2, R1, W, A1, Q, A2, R2, R3, R4a, R4b, R5, X2, X3, Y1, r n are as defined herein. One example for compound R1—W-A1-Q-A2-Br could be CH3—SO2—CH2—CH2—Br.


Further protocols for the synthesis of compounds in which Y is a bond and W is NR8 are described in WO 2009/121872.




embedded image


In scheme 3b, an alternative route to compound 9 is depicted. Starting from a functionalized beta-keto ester the hydroxymethyl intermediate can be obtained in analogy to the protocols described in Bioorg. Med. Chem. Lett. 2005, 15, 1375. Compound 8 wherein Y1 is a linker containing one carbon atom can be obtained in analogy to the protocols described in Bioorg. Med. Chem. Lett. 2005, 15, 1375. To obtain longer linkers Y1 with two or three carbon atoms the hydroxyl group in the hydroxymethyl intermediate can either be converted to a leaving group which then can be substituted by a cyanide or the hydroxymethyl intermediate can be oxidized to an aldehyde which can be converted in a Henry reaction to the corresponding nitro compound. Reduction (e.g. hydrogenation) of the above nitriles or nitro compounds followed by protection of the corresponding amine can give the compounds 9.




embedded image


In scheme 3c, an alternative route to the hydroxymethyl intermediate described above is depicted. Analog to the protocols described in Journal of Organic Chemistry (1981), 46(26), 5371, U.S. Pat. No. 4,927,838 or http://www3.interscience.wiley.com/cgi-bin/mrwhome/107610747/HOME the aldehyde can be obtained which upon reduction (e.g. hydrogenation) can yield the hydroxymethyl intermediate.


The process depicted in scheme 4 is useful for obtaining tetralines and indanes, wherein X1 is methylene, A2 is a bond, Y is —NR9—, and Q is —S(O)2.




embedded image


embedded image


Alternatively to triflate 19, the corresponding bromide or iodide can be used to prepare compound 20.


In scheme 4, the variables R1, W, A1, R2, R3, R4a, R4b, R5, R9, X2, X3 and n are as defined herein, and L3 is a suitable protecting group (e.g. L3═COOtBu). Y1 is optionally substituted methylene or ethylene.


Compounds 16 with Y1 methylene or ethylene can be obtained from compound 15 in a similar fashion as compounds 7 from compounds 3.


Side chains containing R1, W, A1, X1 and R9 and R5, X2 and X3 as well as the substituents R2, R3, R4a and R4b can be introduced in analogy to the protocols described in WO2009/121872.


The process depicted in scheme 5 is useful for obtaining tetralines and indanes, wherein X1 is optionally substituted alkylene, A2 is optionally substituted alkylene or a bond, Y is —NR3—, and Q is —S(O)2.




embedded image


Instead of the trifluoroborate 66, the corresponding 9-borabicyclo[3.3.1]non-9-yl derivative can be used to prepare compound 26.


In scheme 5, the variables R1, W, A1, R2, R3, R4a, R4b, R5, R9, X2, X3, A2 and n are as defined herein, and L3 is a suitable protecting group (e.g. L3═COOtBu). Y1 is optionally substituted methylene or ethylene.


The process depicted in scheme 6 is useful for obtaining tetralines and indanes, wherein X is —NR11-, A2 is optionally substituted alkylene, Y is —NR9—, and Q is —S(O)2. Y1 is optionally substituted methylene or ethylene.




embedded image


In scheme 6, the variables R1, W, A1, R2, R3, R4a, R4b, R5, R9, X2, X3, A2 and n are as defined herein, and L4 is a suitable protecting group. Y1 is optionally substituted methylene or ethylene.


Compounds 33, wherein R4a is alkylene that is bound to a carbon atom in Y1 can be synthesized by the processes depicted in Scheme 7 and Scheme 8.




embedded image




embedded image


Compounds 8a and 17a can be obtained from compounds 3 and 15, respectively, in analogy to the following protocols: Wittig reagent 7a and 16a: c.f. J. Org. Chem. 2009, 74, 9191-9194, Organic Reactions 1990, 38 (http://www3.interscience.wiley.com/cgi-bin/mrwhome/107610747/HOME; CAN 149:555087); Olefination followed by hydrogenation introducing the heterocyclyl moiety yielding 8a and 17a: WO2007/143823 and WO2006/102760.




embedded image




embedded image


Compounds 8b and 17a can be obtained from compounds 3 and 15, respectively, in analogy to the following protocols: J. Org. Chem. (2006), 71, 7885-7887 and Organic Process Research & Development 2004, 8, 389-395.




embedded image




embedded image


Compounds 8c and 17c can be obtained from compounds 3 and 15, respectively, in analogy to the following protocols: Pyrrolidinone synthesis: c.f. J. Med. Chem. 2005, 48, 2294-2307; reduction to pyrrolidine with lithium aluminium hydride: c.f. Tetrahedron Letters (2010), 51(11), 1459-1461.


The process depicted in the following schemes is useful for obtaining compounds of the general formula (I) in which A is a heterocycle.




embedded image


As shown in scheme 13, the compound of general formula 34 readily undergoes condensation with dimethylformamide dimethyl acetal to give the compound of general formula 35.




embedded image


As shown in the above scheme 8, the intermediate of general formula 35 reacts with various nucleophiles of general formula H2N—NH—R in an alcoholic solvent preferably methanol or ethanol at a temperature of about 20° to 80° C. to obtain the compounds of general formulae 36 and 37. In case of monosubstituted hydrazines regioisomeric products are formed. Compounds 36 and 37 can be transformed to compounds of the general formula (I) as depicted in Scheme 15.


In schemes 14 the variable R is as defined herein.




embedded image


Alkylation of 38 can proceed via an enamine as described in scheme 1, or via an enolate. Compound 39 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 15, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 16, the reaction of compound of general formula 34 with hydroxyl(tosyloxy)iodobenzene gives the compound of formula 42. Reaction of compound of general formula 42 with 1,3-nucleophiles under appropriate conditions yield the compound of general formula 43. Compound 45 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 16, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 17, the condensation of compound of general formula 35 with reagent of general formula 49 and ammonia acetate in refluxing acetic acid give compound of general formula 47, which can be further transformed to compounds of general formula 48.


Compound 48 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 17, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 18, the cyclocondensation of intermediate of general formula 35 with the 1,3-nucleophiles of general formula 50 in the presence of suitable organic or inorganic bases such as KOH, NaOH, NaHCO3, sodium ethoxide, sodium methoxide, triethyl amine and diisopropyl ethyl amine in an alcoholic solvent, preferably ethanol or methanol, at a temperature of about 20° to 80° C. yield the compound of general formula 51, which can be transformed further to give compounds of general formula 52. Compound 52 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 18, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 19, the intermediate of general formula 53 readily can undergo condensation with dimethylformamide dimethyl acetal to give the compound of general formula 54, which reacts with various nucleophiles of general formula H2N—NH—R in an alcoholic solvent, preferably methanol or ethanol, at a temperature of about 20° to 80° C. to afford the compound of general formula 55 and 56. Compounds 57 and 58 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 19, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 20, the reaction of compound of general formula 53 with hydroxyl(tosyloxy)iodobenzene gives the compound of formula 59, which reacts with 1,3-nucleophiles under appropriate conditions to yield the compound of general formula 60. Further transformation results in compounds of general formula 61. Compound 61 can be used analogous to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 20, the variables R, R5, X2, X3 are as defined herein.




embedded image


As shown in scheme 21, the cyclocondensation of intermediate of general formula 54 with the 1,3-nucleophiles of general formula 50 in the presence of suitable organic or inorganic bases such as KOH, NaOH, NaHCO3, sodium ethoxide, sodium methoxide, triethyl amine and diisopropyl ethyl amine in an alcoholic solvent, preferably ethanol or methanol, at a temperature of about 20° to 80° C. yields the compound of general formula 63, which can be transformed further to give compounds of general formula 64. Compound 64 can be used in analogy to compound 3 to prepare heterocyclic analogs of formula (I) depicted in Schemes 3 to 12. In scheme 21, the variables R, R5, X2, X3 are as defined herein.


The acid addition salts of the compounds of formula (I) are prepared in a customary manner by mixing the free base with a corresponding acid, optionally in solution in an organic solvent, for example a lower alcohol, such as methanol, ethanol or propanol, an ether, such as methyl tert-butyl ether or diisopropyl ether, a ketone, such as acetone or methyl ethyl ketone, or an ester, such as ethyl acetate.


The compounds of formula (II)




embedded image


wherein L is an amino-protecting group, Y is NR9, and A2, X1, A, R2, R3, Y1, R4a, R4b, X2, X3, R5, n are defined as above are useful as intermediates in the preparation of GlyT1 inhibitors, in particular those of formula (I).


Suitable amino-protecting groups are well known in the art such as those described in Protective Groups in Organic Chemistry, ed. J. F. W. McOmie, Plenum Press, 1973; and T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991.


According to a particular embodiment, L is optionally substituted alkylcarbonyl (e.g., tert-butylcarbonyl), optionally substituted arylcarbonyl, optionally substituted arylalkycarbonyl (e.g., benzylcarbonyl), optionally substituted alkoxycarbonyl (e.g., methoxycarbonyl or tert-butyloxycarbonyl), optionally substituted aryloxycarbonyl (e.g. phenoxycarbonyl) or optionally substituted arylalkoxycarbonyl.


The compounds of the formula (I) are capable of inhibiting the activity of glycine transporter, in particular glycine transporter 1 (GlyT1).


The utility of the compounds in accordance with the present invention as inhibiting the glycine transporter activity, in particular GlyT1 activity, may be demonstrated by methodology known in the art. For instance, human GlyT1c expressing recombinant hGlyT1c5_CHO cells can be used for measuring glycine uptake and its inhibition (IC50) by a compound of formula (I).


Amongst the compounds of the formula (I) those are preferred which achieve effective inhibition at low concentrations. In particular, compounds of the formula (I) are preferred which inhibit glycine transporter 1 (GlyT1) at a level of IC50<1 μMol, more preferably at a level of IC50<0.5 μMol, particularly preferably at a level of IC50<0.2 μMol and most preferably at a level of IC50<0.1 μMol.


The compounds of the formula (I) according to the present invention are thus useful as pharmaceuticals.


The present invention therefore also relates to pharmaceutical compositions which comprise an inert carrier and a compound of the formula (I).


The present invention also relates to the use of the compounds of the formula (I) in the manufacture of a medicament for inhibiting the glycine transporter GlyT1, and to corresponding methods of inhibiting the glycine transporter GlyT1.


The NMDA receptor is central to a wide range of CNS processes, and its role in a variety of diseases in humans or other species has been described. GlyT1 inhibitors slow the removal of glycine from the synapse, causing the level of synaptic glycine to rise. This in turn increases the occupancy of the glycine binding site on the NMDA receptor, which increases activation of the NMDA receptor following glutamate release from the presynaptic terminal. Glycine transport inhibitors and in particular inhibitors of the glycine transporter GlyT1 are thus known to be useful in treating a variety of neurologic and psychiatric disorders. Further, glycine A receptors play a role in a variety of diseases in humans or other species. Increasing extracellular glycine concentrations by inhibiting glycine trans-port may enhance the activity of glycine A receptors. Glycine transport inhibitors and in particular inhibitors of the glycine transporter GlyT1 are thus useful in treating a variety of neurologic and psychiatric disorders.


The present invention thus further relates to the use of the compounds of the formula (I) for the manufacture of a medicament for treating a neurologic or psychiatric disorder, and to corresponding methods of treating said disorders.


According to a particular embodiment, the disorder is associated with glycinergic or glutamatergic neurotransmission dysfunction.


According to a further particular embodiment, the disorder is one or more of the following conditions or diseases: schizophrenia or a psychotic disorder including schizophrenia (paranoid, disorganized, catatonic or undifferentiated), schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, shared psychotic disorder, psychotic disorder due to a general medical condition and substance-induced psychotic disorder, including both the positive and the negative symptoms of schizophrenia and other psychoses; cognitive disorders including dementia (associated with Alzheimer's disease, ischemia, multi-infarct dementia, trauma, vascular problems or stroke, HIV disease, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jacob disease, perinatal hypoxia, other general medical conditions or substance abuse); delirium, amnestic disorders or cognitive impairment including age related cognitive decline; anxiety disorders including acute stress disorder, agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, panic attack, panic disorder, post-traumatic stress disorder, separation anxiety disorder, social phobia, specific phobia, substance-induced anxiety disorder and anxiety due to a general medical condition; substance-related disorders and addictive behaviors (including substance-induced delirium, persisting dementia, persisting amnestic disorder, psychotic disorder or anxiety disorder; tolerance, dependence or withdrawal from substances including alcohol, amphetamines, cannabis, cocaine, hallucinogens, inhalants, nicotine, opioids, phencyclidine, sedatives, hypnotics or anxiolytics); obesity, bulimia nervosa and compulsive eating disorders; bipolar disorders, mood disorders including depressive disorders; depression including unipolar depression, seasonal depression and post-partum depression, premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PDD), mood disorders due to a general medical condition, and substance-induced mood disorders; learning disorders, pervasive developmental disorder including autistic disorder, attention deficit disorders including attention-deficit hyperactivity disorder (ADHD) and conduct disorder; movement disorders, including akinesias and akinetic-rigid syndromes (including Parkinson's disease, drug-induced parkinsonism, postencephalitic parkinsonism, progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, parkinsonism-ALS dementia complex and basal ganglia calcification), medication-induced parkinsonism (such as neuroleptic-induced parkinsonism, neuroleptic malignant syndrome, neuroleptic-induced acute dystonia, neuroleptic-induced acute akathisia, neuroleptic-induced tardive dyskinesia and medication-induced postural tremor), Gilles de la Tourette's syndrome, epilepsy, muscular spasms and disorders associated with muscular spasticity or weakness including tremors; dyskinesias [including tremor (such as rest tremor, postural tremor and intention tremor), chorea (such as Sydenham's chorea, Huntington's disease, benign hereditary chorea, neuroacanthocytosis, symptomatic chorea, drug-induced chorea and hemiballism), myoclonus (including generalised myoclonus and focal myoclonus), tics (including simple tics, complex tics and symptomatic tics), and dystonia (including generalised dystonia such as iodiopathic dystonia, drug-induced dystonia, symptomatic dystonia and paroxymal dystonia, and focal dystonia such as blepharospasm, oromandibular dystonia, spasmodic dysphonia, spasmodic torticollis, axial dystonia, dystonic writer's cramp and hemiplegic dystonia)]; urinary incontinence; neuronal damage including ocular damage, retinopathy or macular degeneration of the eye, tinnitus, hearing impairment and loss, and brain edema; emesis; and sleep disorders including insomnia and narcolepsy.


According to a further particular embodiment, the disorder is pain, in particular chronic pain and especially neuropathic pain.


Pain can be classified as acute and chronic pain. Acute pain and chronic pain differ in their etiology, pathophysiology, diagnosis and treatment.


Acute pain, which occurs following tissue injury, is self-limiting, serves as an alert to ongoing tissue damage and following tissue repair it will usually subside. There are minimal psychological symptoms associated with acute pain apart from mild anxiety. Acute pain is nociceptive in nature and occurs following chemical, mechanical and thermal stimulation of A-delta and C-polymodal pain receptors.


Chronic pain, on the other hand, serves no protective biological function. Rather than being the symptom of tissue damage it is a disease in its own right. Chronic pain is unrelenting and not self-limiting and can persist for years, perhaps decades after the initial injury. Chronic pain can be refractory to multiple treatment regimes. Psychological symptoms associated with chronic pain include chronic anxiety, fear, depression, sleeplessness and impairment of social interaction. Chronic non-malignant pain is predominantly neuropathic in nature and involves damage to either the peripheral or central nervous systems.


Acute pain and chronic pain are caused by different neuro-physiological processes and therefore tend to respond to different types of treatments. Acute pain can be somatic or visceral in nature. Somatic pain tends to be a well localised, constant pain and is described as sharp, aching, throbbing or gnawing. Visceral pain, on the other hand, tends to be vague in distribution, paroxysmal in nature and is usually described as deep, aching, squeezing or colicky in nature. Examples of acute pain include post-operative pain, pain associated with trauma and the pain of arthritis. Acute pain usually responds to treatment with opioids or non-steroidal anti-inflammatory drugs.


Chronic pain, in contrast to acute pain, is described as burning, electric, tingling and shooting in nature. It can be continuous or paroxysmal in presentation. The hallmarks of chronic pain are chronic allodynia and hyperalgesia. Allodynia is pain resulting from a stimulus that normally does not elicit a painful response, such as a light touch. Hyperalgesia is an increased sensitivity to normally painful stimuli. Primary hyperalgesia occurs immediately within the area of the injury. Secondary hyperalgesia occurs in the undamaged area surrounding the injury. Examples of chronic pain include complex regional pain syndrome, pain arising from peripheral neuropathies, post-operative pain, chronic fatigue syndrome pain, tension-type headache, pain arising from mechanical nerve injury and severe pain associated with diseases such as cancer, metabolic disease, neurotropic viral disease, neurotoxicity, inflammation, multiple sclerosis or any pain arising as a consequence of or associated with stress or depressive illness.


Although opioids are cheap and effective, serious and potentially life-threatening side effects occur with their use, most notably respiratory depression and muscle rigidity. In addition the doses of opioids which can be administered are limited by nausea, emesis, constipation, pruritis and urinary retention, often resulting in patients electing to receive suboptimal pain control rather than suffer these distressing side-effects. Furthermore, these side-effects often result in patients requiring extended hospitalization. Opioids are highly addictive and are scheduled drugs in many territories.


The compounds of formula (I) are particularly useful in the treatment of schizophrenia, bipolar disorder, depression including unipolar depression, seasonal depression and post-partum depression, premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PDD), learning disorders, pervasive developmental disorder including autistic disorder, attention deficit disorders including Attention-Deficit/Hyperactivity Disorder, tic disorders including Tourette's disorder, anxiety disorders including phobia and post traumatic stress disorder, cognitive disorders associated with dementia, AIDS dementia, Alzheimer's, Parkinson's, Huntington's disease, spasticity, myoclonus, muscle spasm, tinnitus and hearing impairment and loss are of particular importance.


Particular cognitive disorders are dementia, delirium, amnestic disorders and cognitive impairment including age-related cognitive decline.


Particular anxiety disorders are generalized anxiety disorder, obsessive-compulsive disorder and panic attack.


Particular schizophrenia or psychosis pathologies are paranoid, disorganized, catatonic or undifferentiated schizophrenia and substance-induced psychotic disorder.


Particular neurologic disorders that can be treated with the compounds of the formula (I) include in particular a cognitive disorder such as dementia, cognitive impairment, attention deficit hyperactivity disorder.


Particular psychiatric disorders that can be treated with the compounds of the formula (I) include in particular an anxiety disorder, a mood disorder such as depression or a bipolar disorder, schizophrenia, a psychotic disorder.


Within the context of the treatment, the use according to the invention of the compounds of the formula (I) involves a method. In this method, an effective quantity of one or more compounds or the formula (I), as a rule formulated in accordance with pharmaceutical and veterinary practice, is administered to the individual to be treated, preferably a mammal, in particular a human being. Whether such a treatment is indicated, and in which form it is to take place, depends on the individual case and is subject to medical assessment (diagnosis) which takes into consideration signs, symptoms and/or malfunctions which are present, the risks of developing particular signs, symptoms and/or malfunctions, and other factors.


As a rule, the treatment is effected by means of single or repeated daily administration, where appropriate together, or alternating, with other drugs or drug-containing preparations.


The invention also relates to the manufacture of pharmaceutical compositions for treating an individual, preferably a mammal, in particular a human being. Thus, the compounds of the formula (I) are customarily administered in the form of pharmaceutical compositions which comprise an inert carrier (e.g. a pharmaceutically acceptable excipient) together with at least one compound according to the invention and, where appropriate, other drugs. These compositions can, for example, be administered orally, rectally, transdermally, subcutaneously, intravenously, intramuscularly or intranasally.


Examples of suitable pharmaceutical formulations are solid medicinal forms, such as powders, granules, tablets, in particular film tablets, lozenges, sachets, cachets, sugar-coated tablets, capsules, such as hard gelatin capsules and soft gelatin capsules, suppositories or vaginal medicinal forms, semisolid medicinal forms, such as ointments, creams, hydrogels, pastes or plasters, and also liquid medicinal forms, such as solutions, emulsions, in particular oil-in-water emulsions, suspensions, for example lotions, injection preparations and infusion preparations, and eyedrops and eardrops. Implanted release devices can also be used for administering inhibitors according to the invention. In addition, it is also possible to use liposomes or microspheres.


When producing the compositions, the compounds according to the invention are optionally mixed or diluted with one or more carriers (excipients). Carriers (excipients) can be solid, semisolid or liquid materials which serve as vehicles, carriers or medium for the active compound.


Suitable carriers (excipients) are listed in the specialist medicinal monographs. In addition, the formulations can comprise pharmaceutically acceptable auxiliary substances, such as wetting agents; emulsifying and suspending agents; preservatives; antioxidants; antiirritants; chelating agents; coating auxiliaries; emulsion stabilizers; film formers; gel formers; odor masking agents; taste corrigents; resin; hydrocolloids; solvents; solubilizers; neutralizing agents; diffusion accelerators; pigments; quaternary ammonium compounds; refatting and overfatting agents; raw materials for ointments, creams or oils; silicone derivatives; spreading auxiliaries; stabilizers; sterilants; suppository bases; tablet auxiliaries, such as binders, fillers, glidants, disintegrants or coatings; propellants; drying agents; opacifiers; thickeners; waxes; plasticizers and white mineral oils. A formulation in this regard is based on specialist knowledge as described, for example, in Fiedler, H. P., Lexikon der Hilfsstoffe für Pharmazie, Kosmetik and angrenzende Gebiete [Encyclopedia of auxiliary substances for pharmacy, cosmetics and related fields], 4th edition, Aulendorf: ECVE-ditio-Cantor-Verlag, 1996.


The compounds of formula (I) may also be suitable for combination with other therapeutic agents.


Thus, the present invention also provides:


i) a combination comprising a compound of formula (I) with one or more further therapeutic agents;


ii) a pharmaceutical composition comprising a combination product as defined in i) above and at least one carrier, diluent or excipient;


iii) the use of a combination as defined in i) above in the manufacture of a medicament for treating or preventing a disorder, disease or condition as defined herein;


iv) a combination as defined in i) above for use in treating or preventing a disorder, disease or condition as defined herein;


v) a kit-of-parts for use in the treatment of a disorder, disease or condition as defined herein, comprising a first dosage form comprising a compound of formula (I) and one or more further dosage forms each comprising one or more further therapeutic agents for simultaneous therapeutic administration,


vi) a combination as defined in i) above for use in therapy;


vii) a method of treatment or prevention of a disorder, disease or condition as defined herein comprising administering an effective amount of a combination as defined in i) above;


viii) a combination as defined in i) above for treating or preventing a disorder, disease or condition as defined herein.


The combination therapies of the invention may be administered adjunctively. By adjunctive administration is meant the coterminous or overlapping administration of each of the components in the form of separate pharmaceutical compositions or devices. This regime of therapeutic administration of two or more therapeutic agents is referred to generally by those skilled in the art and herein as adjunctive therapeutic administration; it is also known as add-on therapeutic administration. Any and all treatment regimes in which a patient receives separate but coterminous or overlapping therapeutic administration of the compounds of formula (I) and at least one further therapeutic agent are within the scope of the current invention. In one embodiment of adjunctive therapeutic administration as described herein, a patient is typically stabilised on a therapeutic administration of one or more of the components for a period of time and then receives administration of another component.


The combination therapies of the invention may also be administered simultaneously. By simultaneous administration is meant a treatment regime wherein the individual components are administered together, either in the form of a single pharmaceutical composition or device comprising or containing both components, or as separate compositions or devices, each comprising one of the components, administered simultaneously. Such combinations of the separate individual components for simultaneous combination may be provided in the form of a kit-of-parts.


In a further aspect, the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of compounds of formula (I) to a patient receiving therapeutic administration of at least one antipsychotic agent. In a further aspect, the invention provides the use of compounds of formula (I) in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one antipsychotic agent. The invention further provides compounds of formula (I) for use for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one antipsychotic agent.


In a further aspect, the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of at least one antipsychotic agent to a patient receiving therapeutic administration of compounds of formula (I). In a further aspect, the invention provides the use of at least one antipsychotic agent in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I). The invention further provides at least one antipsychotic agent for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I).


In a further aspect, the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of compounds of formula (I) in combination with at least one antipsychotic agent. The invention further provides the use of a combination of compounds of formula (I) and at least one antipsychotic agent in the manufacture of a medicament for simultaneous therapeutic administration in the treatment of a psychotic disorder. The invention further provides a combination of compounds of formula (I) and at least one antipsychotic agent for simultaneous therapeutic administration in the treatment of a psychotic disorder. The invention further provides the use of compounds of formula (I) in the manufacture of a medicament for simultaneous therapeutic administration with at least one antipsychotic agent in the treatment of a psychotic disorder. The invention further provides compounds of formula (I) for use for simultaneous therapeutic administration with at least one antipsychotic agent in the treatment of a psychotic disorder. The invention further provides the use of at least one antipsychotic agent in the manufacture of a medicament for simultaneous therapeutic administration with compounds of formula (I) in the treatment of a psychotic disorder. The invention further provides at least one antipsychotic agent for simultaneous therapeutic administration with compounds of formula (I) in the treatment of a psychotic disorder.


In further aspects, the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of a pharmaceutical composition comprising compounds of formula (I) and at least one mood stabilising or antimanic agent, a pharmaceutical composition comprising compounds of formula (I) and at least one mood stabilising or antimanic agent, the use of a pharmaceutical composition comprising compounds of formula (I) and at least one mood stabilising or antimanic agent in the manufacture of a medicament for the treatment of a psychotic disorder, and a pharmaceutical composition comprising compounds of formula (I) and at least one mood stabilising or antimanic agent for use in the treatment of a psychotic disorder.


Antipsychotic agents include both typical and atypical antipsychotic drugs. Examples of antipsychotic drugs that are useful in the present invention include, but are not limited to: butyrophenones, such as haloperidol, pimozide, and droperidol; phenothiazines, such as chlorpromazine, thioridazine, mesoridazine, trifluoperazine, perphenazine, fluphenazine, thiflupromazine, prochlorperazine, and acetophenazine; thioxanthenes, such as thiothixene and chlorprothixene; thienobenzodiazepines; dibenzodiazepines; benzisoxazoles; dibenzothiazepines; imidazolidinones; benziso- thiazolyl-piperazines; triazine such as lamotrigine; dibenzoxazepines, such as loxapine; dihydroindolones, such as molindone; aripiprazole; and derivatives thereof that have antipsychotic activity.


Examples of tradenames and suppliers of selected antipsychotic drugs are as follows: clozapine (available under the tradename CLOZARIL®, from Mylan, Zenith Goldline, UDL, Novartis); olanzapine (available under the tradename ZYPREX®, from Lilly); ziprasidone (available under the tradename GEODON®, from Pfizer); risperidone (available under the tradename RISPERDAL®, from Janssen); quetiapine fumarate (available under the tradename SEROQUEL®, from AstraZeneca); haloperidol (available under the tradename HALDOL®, from Ortho-McNeil); chlorpromazine (available under the tradename THORAZINE®, from SmithKline Beecham (GSK)); fluphenazine (available under the tradename PROLIXIN®, from Apothecon, Copley, Schering, Teva, and American Pharmaceutical Partners, Pasadena); thiothixene (available under the tradename NAVANE®, from Pfizer); trifluoperazine (10-[3-(4-methyl-1-piperazinyl)propyl]-2-(trifluoromethyl)phenothiazine dihydrochloride, available under the tradename STELAZINE®, from Smith Klein Beckman); perphenazine (available under the tradename TRILAFON®; from Schering); thioridazine (available under the tradename MELLARIL®; from Novartis, Roxane, HiTech, Teva, and Alpharma); molindone (available under the tradename MOBAN®, from Endo); and loxapine (available under the tradename LOXITANE(D; from Watson). Furthermore, benperidol (Glianimon®), perazine (Taxilan®) or melperone (Eunerpan®) may be used. Other antipsychotic drugs include promazine (available under the tradename SPARINE®), triflurpromazine (available under the tradename VESPRI N®), chlorprothixene (available under the tradename TARACTAN®), droperidol (available under the tradename INAPSINE®), acetophenazine (available under the tradename TINDAL®), prochlorperazine (available under the tradename COMPAZINE®), methotrimeprazine (available under the tradename NOZINAN®), pipotiazine (available under the tradename PIPOTRIL®), ziprasidone, and hoperidone.


In a further aspect, the invention provides a method of treatment of a neurodegenerative disorder such as Alzheimer Disease by adjunctive therapeutic administration of compounds of formula (I) to a patient receiving therapeutic administration of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease. In a further aspect, the invention provides the use of compounds of formula (I) in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a neurodegenerative disorder such as Alzheimer Disease in a patient receiving therapeutic administration of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides compounds of formula (I) for use for adjunctive therapeutic administration for the treatment of a neurodegenerative disorder such as Alzheimer Disease in a patient receiving therapeutic administration of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease.


In a further aspect, the invention provides a method of treatment of a neurodegenerative disorder such as Alzheimer Disease by adjunctive therapeutic administration of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease to a patient receiving therapeutic administration of compounds of formula (I). In a further aspect, the invention provides the use of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a neurodegenerative disorder such as Alzheimer Disease in a patient receiving therapeutic administration of compounds of formula (I). The invention further provides at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease for adjunctive therapeutic administration for the treatment of a neurodegenerative disorder such as Alzheimer Disease in a patient receiving therapeutic administration of compounds of formula (I).


In a further aspect, the invention provides a method of treatment of a neurodegenerative disorder such as Alzheimer Disease by simultaneous therapeutic administration of compounds of formula (I) in combination with at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides the use of a combination of compounds of formula (I) and at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease in the manufacture of a medicament for simultaneous therapeutic administration in the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides a combination of compounds of formula (I) and at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease for simultaneous therapeutic administration in the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides the use of compounds of formula (I) in the manufacture of a medicament for simultaneous therapeutic administration with at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease in the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides compounds of formula (I) for use for simultaneous therapeutic administration with at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease in the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides the use of at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease in the manufacture of a medicament for simultaneous therapeutic administration with compounds of formula (I) in the treatment of a neurodegenerative disorder such as Alzheimer Disease. The invention further provides at least one agent suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease for simultaneous therapeutic administration with compounds of formula (I) in the treatment of a neurodegenerative disorder such as Alzheimer Disease.


Examples of agents suitable for the treatment of a neurodegenerative disorder such as Alzheimer Disease that are-useful in the present invention include, but are not limited to: cholinesterase inhibitors, agents targeting nicotinic or muscarinic acetylcholine receptors, NMDA receptors, amyloid formation, mitochondrial dysfunctions, disease associated calpain activity, neuroinflamation, tumor necrosis factor receptors, NF-kappaB, peroxisome proliferator activator receptor gamma, Apolipoprotein E variant 4 (ApoE4), disease-associated increase of the HPA axis, epileptic discharges, vascular dysfunction, vascular risk factors, and oxidative stress.


Suitable cholinesterase inhibitors which may be used in combination with the compounds of the inventions include for example tacrine, donepezil, galantamine and rivastigmine.


Suitable NMDA receptors targeting agents which may be used in combination with the compounds of the inventions include for example memantine.


Suitable agents affecting increased HPA axis activity which may be used in combination with the compounds of the inventions include for example CRF1 antagonists or V1b antagonists.


In a further aspect therefore, the invention provides a method of treatment of pain by adjunctive therapeutic administration of compounds of formula (I) to a patient receiving therapeutic administration of at least one agent suitable for the treatment of pain. In a further aspect, the invention provides the use of compounds of formula (I) in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of pain in a patient receiving therapeutic administration of at least one agent suitable for the treatment of pain. The invention further provides compounds of formula (I) for use for adjunctive therapeutic administration for the treatment of pain in a patient receiving therapeutic administration of at least one agent suitable for the treatment of pain.


In a further aspect, the invention provides a method of treatment of pain by adjunctive therapeutic administration of at least one agent suitable for the treatment of pain to a patient receiving therapeutic administration of compounds of formula (I). In a further aspect, the invention provides the use of at least one agent suitable for the treatment of pain in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of pain in a patient receiving therapeutic administration of compounds of formula (I).


The invention further provides at least one agent suitable for the treatment of pain for adjunctive therapeutic administration for the treatment of pain in a patient receiving therapeutic administration of compounds of formula (I).


In a further aspect, the invention provides a method of treatment of pain by simultaneous therapeutic administration of compounds of formula (I) in combination with at least one agent suitable for the treatment of pain. The invention further provides the use of a combination of compounds of formula (I) and at least one agent suitable for the treatment of pain in the manufacture of a medicament for simultaneous therapeutic administration in the treatment of pain. The invention further provides a combination of compounds of formula (I) and at least one agent suitable for the treatment of pain for simultaneous therapeutic administration in the treatment of pain. The invention further provides the use of compounds of formula (I) in the manufacture of a medicament for simultaneous therapeutic administration with at least one agent suitable for the treatment of pain in the treatment of pain. The invention further provides compounds of formula (I) for use for simultaneous therapeutic administration with at least one agent suitable for the treatment of pain in the treatment of pain. The invention further provides the use of at least one agent suitable for the treatment of pain in the manufacture of a medicament for simultaneous therapeutic administration with compounds of formula (I) in the treatment of pain. The invention further provides at least one agent suitable for the treatment of pain for simultaneous therapeutic administration with compounds of formula (I) in the treatment of pain.


Examples of agents suitable for the treatment of pain that are useful in the present invention include, but are not limited to: NSAIDs (Nonsteroidal Antiinflammatory Drugs), anti-convulsant drugs such as carbamazepine and gabapentin, sodium channel blockers, anti-depressant drugs, cannabinoids and local anesthetics.


Suitable agents used in combination with the compounds of the inventions include for example celecoxib, etoricoxib, lumiracoxib, paracetamol, tramadol, methadone, venlafaxine, imipramine, duloxetine, bupropion, gabapentin, pregabalin, lamotrigine, fentanyl, parecoxib, nefopam, remifentanil, pethidine, diclofenac, rofecoxib, nalbuphine, sufentanil, pethidine, diamorphine and butorphanol.


It will be appreciated by those skilled in the art that the compounds according to the invention may advantageously be used in conjunction with one or more other therapeutic agents, for instance, antidepressant agents such as 5HT3 antagonists, serotonin agonists, NK-1 antagonists, selective serotonin reuptake inhibitors (SSRI), noradrenaline re-uptake inhibitors (SNRI), tricyclic antidepressants, dopaminergic antidepressants, H3 antagonists, 5HT1A antagonists, 5HT1 B antagonists, 5HT1 D antagonists, D1 agonists, M1 agonists and/or anticonvulsant agents, as well as cognitive enhancers.


Suitable 5HT3 antagonists which may be used in combination of the compounds of the inventions include for example ondansetron, granisetron, metoclopramide.


Suitable serotonin agonists which may be used in combination with the compounds of the invention include sumatriptan, rauwolscine, yohimbine, metoclopramide.


Suitable SSRIs which may be used in combination with the compounds of the invention include fluoxetine, citalopram, femoxetine, fluvoxamine, paroxetine, indalpine, sertraline, zimeldine.


Suitable SNRIs which may be used in combination with the compounds of the invention include venlafaxine and reboxetine.


Suitable tricyclic antidepressants which may be used in combination with a compound of the invention include imipramine, amitriptiline, chlomipramine and nortriptiline.


Suitable dopaminergic antidepressants which may be used in combination with a compound of the invention include bupropion and amineptine.


Suitable anticonvulsant agents which may be used in combination of the compounds of the invention include for example divaiproex, carbamazepine and diazepam.


The following examples serve to explain the invention without limiting it.


The compounds were characterized by mass spectrometry, generally recorded via HPLC-MS in a fast gradient on C18-material (electrospray-ionisation (ESI) mode).


Preparation Examples

The following compounds were obtained or can be obtained using the procedures described herein.
















1


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





2


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





3


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





4


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





5


embedded image


N-[[3-benzyl-2- (methylaminomethyl)indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





6


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





7


embedded image


N-[[3-benzyl-2- (methylaminomethyl)indan-5- yl]methyl]cyclobutanesulfonamide





8


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]ethyl]cyclobutanesulfonamide





9


embedded image


N-[[3-benzyl-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





10


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





11


embedded image


N-[[3-benzyl-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





12


embedded image


N-[2-[3-benzyl-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





13


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





14


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





15


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





16


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





17


embedded image


N-[[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





18


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





19


embedded image


N-[[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]methyl]cyclobutanesulfonamide





20


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]ethyl]cyclobutanesulfonamide





21


embedded image


N-[[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





22


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





23


embedded image


N-[[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





24


embedded image


N-[2-[3-benzyl-6-fluoro-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





25


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]oxyethyl]-1- cyclopropyl-methanesulfonamide





26


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5- yl]oxyethyl]cyclobutanesulfonamide





27


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]oxyethyl]-1- methyl-imidazole-4-sulfonamide





28


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]oxyethyl]-1- methyl-pyrazole-4-sulfonamide





29


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- indan-5-yl]methyl]-1-cyclopropyl- methanesulfonamide





30


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]ethyl]-1- cyclopropyl-methanesulfonamide





31


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- indan-5- yl]methyl]cyclobutanesulfonamide





32


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5- yl]ethyl]cyclobutanesulfonamide





33


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- indan-5-yl]methyl]-1-methyl- imidazole-4-sulfonamide





34


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]ethyl]-1-methyl- imidazole-4-sulfonamide





35


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- indan-5-yl]methyl]-1-methyl- pyrazole-4-sulfonamide





36


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-indan-5-yl]ethyl]-1-methyl- pyrazole-4-sulfonamide





37


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]oxyethyl]- 1-cyclopropyl-methanesulfonamide





38


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5- yl]oxyethyl]cyclobutanesulfonamide





39


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]oxyethyl]- 1-methyl-imidazole-4-sulfonamide





40


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]oxyethyl]- 1-methyl-pyrazole-4-sulfonamide





41


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- 6-fluoro-indan-5-yl]methyl]-1- cyclopropyl-methanesulfonamide





42


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]ethyl]-1- cyclopropyl-methanesulfonamide





43


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- 6-fluoro-indan-5- yl]methyl]cyclobutanesulfonamide





44


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5- yl]ethyl]cyclobutanesulfonamide





45


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- 6-fluoro-indan-5-yl]methyl]-1- methyl-imidazole-4-sulfonamide





46


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]ethyl]-1- methyl-imidazole-4-sulfonamide





47


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-benzyl- 6-fluoro-indan-5-yl]methyl]-1- methyl-pyrazole-4-sulfonamide





48


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3- benzyl-6-fluoro-indan-5-yl]ethyl]-1- methyl-pyrazole-4-sulfonamide





49


embedded image


1-cyclopropyl-N-[2-[3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]methanesulfonamide





50


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





51


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





52


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





53


embedded image


1-cyclopropyl-N-[[3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]methanesulfonamide





54


embedded image


1-cyclopropyl-N-[2-[3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]methanesulfonamide





55


embedded image


N-[[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]cyclobutanesulfonamide





56


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]cyclobutanesulfonamide





57


embedded image


N-[[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





58


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





59


embedded image


N-[[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





60


embedded image


N-[2-[3-[(3-fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





61


embedded image


1-cyclopropyl-N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]methanesulfonamide





62


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





63


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





64


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





65


embedded image


1-cyclopropyl-N-[[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]methanesulfonamide





66


embedded image


1-cyclopropyl-N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]methanesulfonamide





67


embedded image


N-[[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]cyclobutanesulfonamide





68


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]ethyl]cyclobutanesulfonamide





69


embedded image


N-[[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





70


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





71


embedded image


N-[[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





72


embedded image


N-[2-[6-fluoro-3-[(3- fluorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





73


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





74


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





75


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





76


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





77


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





78


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





79


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]methyl]cyclobutanesulfonamide





80


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





81


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





82


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





83


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





84


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





85


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





86


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





87


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





88


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





89


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[(3-fluorophenyl)methyl]indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





90


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





91


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[(3-fluorophenyl)methyl]indan-5- yl]methyl]cyclobutanesulfonamide





92


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3-fluorophenyl)methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





93


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[(3-fluorophenyl)methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





94


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





95


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[(3-fluorophenyl)methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





96


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[(3- fluorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





97


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





98


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





99


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





100


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





101


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





102


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





103


embedded image


N-[[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]cyclobutanesulfonamide





104


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]ethyl]cyclobutanesulfonamide





105


embedded image


N-[[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





106


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





107


embedded image


N-[[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





108


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-2- (methylaminomethyl)indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





109


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





110


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan-5- yl]oxyethyl]cyclobutanesulfonamide





111


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





112


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





113


embedded image


N-[[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]methyl]-1-cyclopropyl- methanesulfonamide





114


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]ethyl]-1-cyclopropyl- methanesulfonamide





115


embedded image


N-[[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]methyl]cyclobutanesulfonamide





116


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]ethyl]cyclobutanesulfonamide





117


embedded image


N-[[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]methyl]-1-methyl-imidazole-4- sulfonamide





118


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]ethyl]-1-methyl-imidazole-4- sulfonamide





119


embedded image


N-[[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]methyl]-1-methyl-pyrazole-4- sulfonamide





120


embedded image


N-[2-[3-[(3-chlorophenyl)methyl]-6- fluoro-2-(methylaminomethyl)indan- 5-yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





121


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





122


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





123


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





124


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





125


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





126


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





127


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]methyl]cyclobutanesulfonamide





128


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





129


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





130


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





131


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





132


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





133


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





134


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan-5- yl]oxyethyl]cyclobutanesulfonamide





135


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





136


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





137


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]methyl]-1-cyclopropyl- methanesulfonamide





138


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]ethyl]-1-cyclopropyl- methanesulfonamide





139


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]methyl]cyclobutanesulfonamide





140


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]ethyl]cyclobutanesulfonamide





141


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]methyl]-1-methyl-imidazole-4- sulfonamide





142


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]ethyl]-1-methyl-imidazole-4- sulfonamide





143


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]methyl]-1-methyl-pyrazole-4- sulfonamide





144


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[(3- chlorophenyl)methyl]-6-fluoro-indan- 5-yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





145


embedded image


1-cyclopropyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]methanesulfonamide





146


embedded image


N-[2-[2-(methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





147


embedded image


1-methyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]imidazole-4-sulfonamide





148


embedded image


1-methyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]pyrazole-4-sulfonamide





149


embedded image


1-cyclopropyl-N-[[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]methanesulfonamide





150


embedded image


1-cyclopropyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]methanesulfonamide





151


embedded image


N-[[2-(methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]cyclobutanesulfonamide





152


embedded image


N-[2-[2-(methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





153


embedded image


1-methyl-N-[[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]imidazole-4-sulfonamide





154


embedded image


1-methyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]imidazole-4-sulfonamide





155


embedded image


1-methyl-N-[[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]pyrazole-4-sulfonamide





156


embedded image


1-methyl-N-[2-[2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]pyrazole-4-sulfonamide





157


embedded image


1-cyclopropyl-N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]methanesulfonamide





158


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





159


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





160


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





161


embedded image


1-cyclopropyl-N-[[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]methanesulfonamide





162


embedded image


1-cyclopropyl-N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]methanesulfonamide





163


embedded image


N-[[6-fluoro-2-(methylaminomethyl)- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]cyclobutanesulfonamide





164


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





165


embedded image


N-[[6-fluoro-2-(methylaminomethyl)- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





166


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





167


embedded image


N-[[6-fluoro-2-(methylaminomethyl)- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





168


embedded image


N-[2-[6-fluoro-2- (methylaminomethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





169


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





170


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





171


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





172


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





173


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





174


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





175


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]cyclobutanesulfonamide





176


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





177


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





178


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





179


embedded image


N-[[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





180


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-3-[[3- (trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide





181


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-cyclopropyl- methanesulfonamide





182


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]cyclobutanesulfonamide





183


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-imidazole-4- sulfonamide





184


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]oxyethyl]-1-methyl-pyrazole-4- sulfonamide





185


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-cyclopropyl- methanesulfonamide





186


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-cyclopropyl- methanesulfonamide





187


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]cyclobutanesulfonamide





188


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]cyclobutanesulfonamide





189


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-imidazole-4- sulfonamide





190


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-imidazole-4- sulfonamide





191


embedded image


N-[[2-(azetidin-1-ylmethyl)-6-fluoro- 3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]methyl]-1-methyl-pyrazole-4- sulfonamide





192


embedded image


N-[2-[2-(azetidin-1-ylmethyl)-6- fluoro-3-[[3-(trifluoro- methyl)phenyl]methyl]indan-5- yl]ethyl]-1-methyl-pyrazole-4- sulfonamide









Example 193
Propane-1-sulfonic acid (8-benzyl-7-cyclopropylamino-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl)-amide hydrochloride



embedded image


N-((7-Amino-8-benzyl-5,6,7,8-tetrahydronaphthalen-2-yl)methyl)propane-1-sulfonamide (51 mg, 0.137 mmol), (1-ethoxycyclopropoxy)trimethylsilane (26 mg, 0.151 mmol), acetic acid (0.078 mL, 1.37 mmol), sodium cyanoborohydride (26 mg, 0.411 mmol) and molecular sieve (50 mg) in methanol (1.5 mL) were heated in the microwave at 100° C. for 25 min. The solvent was evaporated and the crude product purified by flash chromatography (silica gel, dichloromethane, methanol) and converted into the hydro chloride. Yield: 18 mg (0.04 mmol, 29%).


ESI-MS [M+H+]=413 Calculated for C24H32N2O2S=412


Biological Testing

1. [3H]-Glycine uptake into recombinant CHO cells expressing human GlyT1: Human GlyT1c expressing recombinant hGlyT1c5_CHO cells were plated at 20,000 cells per well in 96 well Cytostar-T scintillation microplates (Amersham Biosciences) and cultured to sub-confluency for 24 h. For glycine uptake assays the culture medium was aspirated and the cells were washed once with 100 μl HBSS (Gibco BRL, #14025-050) with 5 mM L-Alanine (Merck #1007). 80 μl HBSS buffer were added, followed by 10μl inhibitor or vehicle (10% DMSO) and 10 μl [3H]-glycine (TRK71, Amersham Biosciences) to a final concentration of 200 nM for initiation of glycine uptake. The plates were placed in a Wallac Microbeta (PerkinElmer) and continuously counted by solid phase scintillation spectrometry during up to 3 hours. Nonspecific uptake was determined in the presence of 10 μM Org24598. IC50 calculations were made by four-parametric logistic nonlinear regression analysis (GraphPad Prism) using determinations within the range of linear increase of [3H]-glycine incorporation between 60 and 120 min.


2. Radioligand binding assays using recombinant CHO cell membranes expressing human GlyT1:


Radioligand binding to human GlyT1c transporter-expressing membranes was determined as described in Mezler et al., Molecular Pharmacology 74:1705-1715, 2008.

Claims
  • 1. Compounds of the formula (I)
  • 2. Compound as claimed in claim 1, wherein A is a benzene ring or a ring selected from the group consisting of the following 5- or 6-membered heterocyclic rings:
  • 3. Compound as claimed in claim 1, wherein —Y-A2-X1- comprises at least 2, 3 or 4 atoms in the main chain.
  • 4. Compound as claimed in claim 1, wherein R1 is C1-C6-alkyl, C3-C12-cycloalkyl-C1-C4-alkyl, C3-C12-cycloalkyl, or optionally substituted C3-C12-heterocyclyl.
  • 5. Compound as claimed in claim 1, wherein A1 is a bond.
  • 6. Compound as claimed in claim 1, wherein W is a bond and Y is a bond, or W is a bond and Y is —NR9—.
  • 7. Compound as claimed in claim 1, wherein X1 is —O— and A2 is C1-C4-alkylene, or X1 is C1-C4-alkylene and A2 is a bond.
  • 8. Compound as claimed in claim 1, wherein R1—W-A1-Q-Y-A2-X1- is R1—S(O)2—NR9-A2-X1- or R1—S(O)2—X1—.
  • 9. Compound as claimed in claim 1, having the formula
  • 10. Compound as claimed in claim 1, wherein Y1 is methylene or 1,2-ethylene.
  • 11. Compound as claimed in claim 1, wherein R4a is C1-C6-alkyl, C3-C12-cycloalkyl or C3-C12-heterocyclyl, or R4a is C1-C4-alkylene that is bound to a carbon atom in Y1.
  • 12. Compound as claimed in claim 1, wherein R4b is hydrogen or C1-C6-alkyl.
  • 13. Compound as claimed in claim 1, wherein R4a, R4b together are optionally substituted C1-C6-alkylene, wherein one —CH2— of C1-C4-alkylene may be replaced by an oxygen atom.
  • 14. Compound as claimed in claim 1, wherein X2 is CR12aR12b and X3 is a bond.
  • 15. Compound as claimed in claim 1, wherein R12a is hydrogen or C1-C6-alkyl and R12b is hydrogen or C1-C6-alkyl, or R12a, R12b together are optionally substituted C1-C4-alkylene.
  • 16. Compound as claimed in claim 1, having the formula
  • 17. Compound as claimed in claim 1, wherein A is a benzene ring;R is R1—W-A1-Q-Y-A2X1;R1 is C1-C6-alkyl, C3-C12-cycloalkyl-C1-C4-alkyl, C3-C12-cycloalkyl, or optionally substituted C3-C12-heterocyclyl;W is a bond;A1 is a bond;Q is —S(O)2—;Y is —NR9 or a bond;A2 is C1-C4-alkylene or a bond;X1 is —O— or C1-C4-alkylene;R2 is hydrogen or halogen;R3 is hydrogen;Y1 is optionally substituted C1-C4-alkylene;R4a is hydrogen, C1-C6-alkyl, C3-C12-cycloalkyl or C3-C12-heterocyclyl; orR4a is optionally substituted C1-C4-alkylene that is bound to a carbon atom in Y1;R4b is hydrogen; orR4a, R4b, together are C1-C6-alkylene, wherein one —CH2— of C1-C4-alkylene may be replaced by an oxygen atom;X2 is CR12aR12b;X3 is a bond;R5 is optionally substituted phenyl;n is 0 or 1;R9 is hydrogen; orR9 is C1-C4-alkylene that is bound to a carbon atom in X1 and X1 is C1-C4-alkylene;R12a is hydrogen; andR12b is hydrogen; orR12a, R12b together are C1-C4-alkylene.
  • 18. The compound as claimed in claim 1, which is: N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[[3-benzyl-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[[3-benzyl-2-(methylaminomethypindan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[3-benzyl-2-(methylaminomethypindan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]ethyl]cyclobutanesulfonamide;N-[[3-benzyl-2-(methylaminomethypindan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[3-benzyl-2-(methylaminomethypindan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[3-benzyl-2-(methylaminomethypindan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]oxyethyl]-cyclobutanesulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[3-benzyl-6-fluoro-2-(methylaminomethypindan-5-yl]methyl]-cyclobutanesulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-cyclobutanesulfonamide;N-[[3-benzyl-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[3-benzyl-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[3-benzyl-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]oxyethyl]-cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-benzyl-6-fluoro-indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;1-cyclopropyl-N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]methanesulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-cyclobutanesulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methylimidazole-4-sulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methylpyrazole-4-sulfonamide;1-cyclopropyl-N-[[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]methanesulfonamide;1-cyclopropyl-N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]methanesulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]-cyclobutanesulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]-1-methylimidazole-4-sulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methylimidazole-4-sulfonamide;N-[[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methylpyrazole-4-sulfonamide;1-cyclopropyl-N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]oxyethyl]methanesulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;1-cyclopropyl-N-[[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]methyl]methanesulfonamide;1-cyclopropyl-N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]ethyl]methanesulfonamide;N-[[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]ethyl]cyclobutanesulfonamide;N-[[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[6-fluoro-3-[(3-fluorophenyl)methyl]-2-(methylaminomethypindan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-methylimidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-methylpyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-methylimidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-methylimidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-methylpyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-methylimidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-methylimidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]methyl]-1-methylpyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[(3-fluorophenyl)methyl]indan-5-yl]ethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methylimidazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]-1-methylimidazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methylimidazole-4-sulfonamide;N-[[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]methyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[3-[(3-chlorophenyl)methyl]-6-fluoro-2-(methylaminomethyl)indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]oxyethyl]-1-methylimidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]oxyethyl]-1-methylpyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]methyl]-1-methylimidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]ethyl]-1-methylimidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]methyl]-1-methylpyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]indan-5-yl]ethyl]-1-methylpyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[(3-chlorophenyl)methyl]-6-fluoro-indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;1-cyclopropyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]methanesulfonamide;N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;1-methyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]imidazole-4-sulfonamide;1-methyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]pyrazole-4-sulfonamide;1-cyclopropyl-N-[[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]methanesulfonamide;1-cyclopropyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]methanesulfonamide;N-[[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;1-methyl-N-[[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]imidazole-4-sulfonamide;1-methyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]imidazole-4-sulfonamide;1-methyl-N-[[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]pyrazole-4-sulfonamide;1-methyl-N-[2-[2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]pyrazole-4-sulfonamide;1-cyclopropyl-N-[[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]methanesulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;1-cyclopropyl-N-[[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]methanesulfonamide;1-cyclopropyl-N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]methanesulfonamide;N-[[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[6-fluoro-2-(methylaminomethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]oxyethyl]-1-methyl-pyrazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-cyclopropyl-methanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-cyclopropyl-methanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]cyclobutanesulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]cyclobutanesulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-imidazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-imidazole-4-sulfonamide;N-[[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]methyl]-1-methyl-pyrazole-4-sulfonamide;N-[2-[2-(azetidin-1-ylmethyl)-6-fluoro-3-[[3-(trifluoromethyl)phenyl]methyl]indan-5-yl]ethyl]-1-methyl-pyrazole-4-sulfonamide;or a physiologically tolerated salt thereof.
  • 19. Pharmaceutical composition which comprises a carrier and a compound of claim 1.
  • 20. A method for treating a neurologic or psychiatric disorder or pain in a mammalian patient in need thereof which comprises administering to the patient a therapeutically effective amount of a compound of claim 1.
CROSS-REFERENCE TO RELATED APPLICATION

This claims priority to U.S. Provisional Patent Application No. 61/373,654, filed on Aug. 13, 2010, the contents of which are hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
61373654 Aug 2010 US