Silicon esters are organic silicon compounds that contain an oxygen bridge from the silicon atom to the organic group, i.e. ≡Si—O—Ri. The earliest reported organic silicon compounds containing four oxygen bridges were derivatives of orthosilicic acid, Si(OH)4. Silicic acid behaves as though it is dibasic with pKs at about 9.8 and 11.8 and can form polymers such as silica gels and silicates by condensation of the silanol groups or reaction of silicate ions. Commonly organic silicon compounds are referred to by their organic nomenclature, for example the alkoxy derivatives Si(OC2H5)4 is tetraethoxysilane and the acyloxy derivatives Si(OOCCH3)4 is tetraacetooxysilane.
The esters of orthosilicic acid and their lower condensation stages are not regarded as organosilanes in the strictest sense; since unlike organo(organoxy)silanes, tetra(hydrocarbyloxy)silanes can be synthesized directly from silicon or suitable natural silicates and alcohols. Tetra(hydrocarbyloxy)silanes have a wide variety of applications which are somewhat dependent on whether the Si—O—Ri bond is expected to remain intact or to be hydrolyzed in the final application. Tetra(hydrocarblyoxy)silanes may contain up to four matrix coordinations in the polymeric hydrolysates and thus can lead to more rigid films than alkyl and aryltialkoxysilanes which have three matrix coordinations. Likewise, monoalkoxysilane can only form a monolayer or partial monolayer. Hydrolysis on adsorption onto a metal surface has been observed at room temperature for carboxylic acid esters and certain phosphate esters. Thus, the surface may be reactive. However, both adsorption onto a metal surface and rubbing under load typically are needed to produce the mature antiwear film in the case of the esters of orthosilicic acid. The films thus produced have been found to contain Si and are effective in preventing wear, as seen in the examples below. The film could be a monolayer of multilayer. The multilayer could be either interconnected through a loose network structure, intermixed, or both and are in fact formed by most deposition techniques. These films can also contain other surface active components, such as detergents, antiwear agents, dispersants, etc. which can lead to unique protective films. The formation of covalent bonds to the surface proceeds with a certain amount of reversibility with the degree of hydrogen bonding decreasing with further condensation. Likewise with the removal of water the bonds may form, break and reform to relieve internal stress of the film and likewise can permit a positional displacement of interface components.
The Si—O—Ri bond undergoes a variety of reactions apart from the hydrolysis and condensation. The alkoxy moiety can improve oil solubility and stability with increased steric bulk, increased size of the alkoxy groups can decrease the rate of hydrolysis. Tetra(alkoxy)silanes and tetra(aryloxy)silanes possess excellent thermal stability and liquid behavior over a broad temperature range what widens with length and branching of the substituents. Acyloxy- and amino-substituted silanes are typically more susceptible to hydrolysis than the alkoxysilanes. The increased rate can be attributed to the acidic or basic character of the byproducts. Thus catalytic amounts of amine or acid are often added to accelerate this rate. Table A illustrates some physical properties of commercially available silane esters.
aKirk-Othmer Encyclopedia of Chemical Technology Vol 22, John Wiley & Sons, Inc.
bSubscript denotes pressure, other than atmospheric, in kPa. To convert kPa to psi, multiply by 0.145
cAvailable from Sigma Aldrich Co.
The silicon ester compounds of the present invention may be prepared by a wide number of synthetic pathways. The oldest principal method of silicon ester production was described by Von Ebelman's 1846 synthesis:
SiCl4+4C2H5OH→Si(OC2H5)4+4HCl
Catalyzed direct reactions of alcohols using silicon metal introduced in the 1940s and 1950s (see U.S. Pat. Nos. 2,473,260 and 3,072,700) became important commercial technology in the 1990s for production of the lower esters via use of a metal alcoholate catalysis, U.S. Pat. No. 4,113,761. Another commercial method used to prepare alkoxysilanes is by transesterification. Transesterification is practical when the alcohol to be esterified has a high boiling point and the leaving alcohol can be removed by distillation. Other preparative methods of alkoxysilanes can be exemplified as follows:
1. ≡SiCl+(RO)3CH→≡SiOR+RCl+ROOCH
2. ≡SiCl+NaOR→≡SiOR+NaCl
3. ≡SiH+HOR(catalyst)→≡SiOR+H2
4. ≡SiOH+HOR→≡SiOR+H2O
5. ≡SiCl+CH3NO2→≡SiOCH3+NO2Cl
6. ≡SiSR+HOR→≡SiOR+H2S
7. ≡SiCl+HOC(O)R→≡SiOC(O)R+HCl
8. ≡SiCl+HONR′R″→≡SiONR′R″+HCl
Acyloxysilanes are readily produced by the reaction of an anhydride and a chlorosilane. Aminosilanes are formed by the reaction of hydroxylamines with chlorosilanes and removal of liberated hydrogen chloride by base. Processes for preparing acyloxysilanes and alkoxy-acyloxy-silanes, particularly di-tert-butoxydiacetoxysilanes, are disclosed in U.S. Pat. Nos. 3,296,195; 3,296,161; 5,817,853 and European Patent Application Publication No. 0 465 723.
Tetraalkoxysilanes typically are prepared in slurry-phase Direct Synthesis processes wherein the solvent is often the product itself. The catalyst can be copper or a copper compound, but is usually an alkali or alkali metal salt of a high boiling alcohol. Such processes are disclosed in U.S. Pat. Nos. 3,627,807; 3,803,197; 4,113,761; 4,288,604 and 4,323,690. Likewise for trialkoxysilanes, the Direct Synthesis process employs catalytically-activated silicon particles maintained in suspension in an inert, high boiling solvent and are made to react with an alcohol at an elevated temperature. This type of reaction is disclosed in U.S. Pat. Nos. 3,641,077; 3,775,457; 4,727,173; 4,761,492; 4,762,939; 4,999,446; 5,084,590; 5,103,034; 5,362,897; 5,527,937. Slurry-phase reactors for the Direct Synthesis of alkoxysilanes and tetraalkoxysilanes may be operated in a batchwise or continuous mode. In batchwise operation, a single addition of silicon and catalyst is made to the reactor at the outset and alcohol is added continuously, or intermittently, until the silicon is fully reacted, or reacted to a desired degree of conversion. The alcohol typically is added in the gas phase but liquid phase addition is also feasible. In continuous operation, silicon and catalyst are added to the reactor initially and thereafter to maintain the solids content of the slurry within desired limits. The batchwise mode is illustrated in U.S. Pat. Nos. 4,727,173, 5,783,720, and 5,728,858. The desired reaction products are removed from the reactor in a gas phase mixture along with unreacted alcohol. Isolation of the product is accomplished readily by distillation according to known procedures. Continuous Direct Synthesis of trialkoxysilanes is disclosed in U.S. Pat. No. 5,084,590 and of tetraalkoxysilanes in U.S. Pat. Nos. 3,627,807; 3,803,197 and 4,752,647.
The hydrolyzable tetra-functional silanes useful in the formulation of the lubricating oil compositions and in the film coating compositions of the present invention have four functional groups attached to the silicon atom. These tetra-functional hydrolyzable silane compounds are of the general formula Si—X4 or hydrolysis product thereof, wherein X is independently selected from the group consisting of hydroxyl, alkoxy, aryloxy, acyloxy, amino, monoalkyl amino and dialkyl amino. More particularly X is independently selected for the group consisting of C1-6 alkoxy, C6-C10 and aryloxy, C1-6 acyloxy. The hydrolyzable groups employed may be hydrolyzed by water, undergo alcoholysis, transesterifications reactions, and/or produce polysiloxanes derivatives by condensation. The tetracoordination of these silane compounds provide for three dimensional film formation with the simultaneous properties of having great hardness and high mechanical resilience.
The term “hydrolyzable group” in connection with the present invention refers to a group which either is directly capable of undergoing condensation reactions under appropriate conditions or which is capable of hydrolyzing under appropriate conditions, thereby yielding a compound, which is capable of undergoing condensation reactions. Appropriate conditions include acidic or basic aqueous conditions, optionally in the presence of a condensation catalyst. Accordingly, the term “non-hydrolyzable group” as used in the present invention refers to a group not capable of either directly undergoing condensation reactions under appropriate conditions or of hydrolyzing under the conditions listed above for hydrolyzing the hydrolyzable groups.
More particularly preferred are the tetra-functional hydrolyzable silane compounds selected from the compound of the formula I or a hydrolysis product thereof:
wherein R is independently a C1-20 hydrocarbyl group selected from the group consisting of straight and branched chain alkyl, cycloalkyl, alkcycloalkyl, aryl, alkaryl, arylalkyl and substituted hydrocarbyl groups having one or more substituents selected from hydroxy, alkoxy, ester or amino groups; R1 is independently straight and branched chain alkyl, cycloalkyl and aryl; and a is an integer of 0 to 4. The substituted hydrocarbyl groups are attached to the silicon-oxygen via alkylene or arylene bridging groups, which may be interrupted by oxygen or —NH— groups or terminated by an amino, monoalkyl amino or dialkyl amino where the alkyl group is from 1 to 8. Thus, glycols and glycol monoethers, polyhydric alcohols or polyhydric phenols, can be reacted via alcoholysis with the (RO) group above, typically a lower tetraalkoxysilane (usually a methoxy or ethoxysilane), to form oxygen interrupted substituent groups. Thus for example, tetraethoxysilane can be reacted with glycol monoether residues to replace three ethoxy groups or four ethoxy groups. To replace four ethoxy groups typically a small amount of a catalyst is employed, such as sodium to form an alkali metal alkoxide. Particularly preferred tetraalkyoxysilanes prepared from glycol monoethers are represented by the formula Si(OCH2CH2ORa)4 where Ra is alkyl, cycloalkyl or aryl. Similarly, alcoholysis of the tetraalkoxysilane can be conducted with amino alcohols to form aminoalkoxysilanes. Particularly preferred glycol monoethers are selected from HO—(CH2CH2)mR20 where m is from 1 to 10 and R20 is C1-6 alkyl. Particularly preferred amino alcohols are selected from HO—(CH2CH2)mN(R21)2 where R21 is independently hydrogen or C1-6 alkyl, preferably monoalkyl or dialkyl and more preferably dialkyl. Hydrolysis products of formula I can be formed via the hydrolysis and condensation of the compounds of formula I and for example R above may be represented by —Si(OR)3 groups thus forming one or more siloxane bonds.
Examples of tetrafunctional silanes represented by the formula I are hydrolyzable silane compound is selected from the group consisting of tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraisobutoxysilane, tetrakis(methoxyethoxy)silane, tetrakis(methoxypropoxy)silane, tetrakis(ethoxyethoxy)silane, tetrakis(methoxyethoxyethoxy)silane, trimethoxyethoxysilane, dimethoxydiethoxysilane, triethoxymethoxysilane, tetra-(4-methyl 2-pentoxy)silane, and tetra-(2-ethylhexoxy)silane. Hydrolysis products may be represented by poly-(dimethoxysiloxane), poly(diethoxysiloxane), poly(dimethoxy-diethoxysiloxane), tetrakis(trimethoxysiloxy)silane, tetrakis-(triethoxysiloxy)silane, and the like. In addition examples of tetrafunctional silanes with acyloxy groups are tetraacetoxyoxysilane, silicon tetrapropionate and silicon tetrabutyrate.
The compositions of the present invention may further include from about 0.1 to about 50 wt. %, based on the total weight of the lubricating composition of a compound of formula II below, or a mixture of hydrolysis products and partial condensates of one or more silane additives of formula II (i.e., trifunctional silanes, difunctional silanes, monofunctional silanes, and mixtures thereof) in addition to the tetrafunctional silanes of formula I. The selection of the additional silane additives incorporated into the lubricating compositions of the present invention will depend upon the particular properties to be enhanced or imparted to either the lubricating composition or the formed film coating. The optional silane additives are represented by the formula II
(R10)nSi(OR11)4−n (II)
where n is a 1, 2 or 3; the —OR11 moiety is a hydrolyzable group and may the same or different when n=1 or 2. Examples of hydrolyzable —OR11 groups are for example, alkoxy (preferably C1-6-alkoxy, such as, for example, methoxy, ethoxy, n-propoxy, i-propoxy and butoxy), aryloxy (preferably C6-10-aryloxy, such as, for example, phenoxy), and acyloxy (for example C1-6-acyloxy, such as, for example, acetoxy or propionyloxy).
R10 is a non-hydrolyzable group which may optionally carry a functional group. Examples of R10 are alkyl (preferably C1-6-alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl and t-butyl, pentyl, hexyl or cyclohexyl), and aryl (preferably C6-10-aryl, such as, for example, phenyl and naphthyl).
Specific examples of functional groups of the radical R10 are the hydroxyl, ether, amino, monoalkylamino, dialkylamino, amide, carboxyl, mercapto, thioether, acryloxy, cyano, aldehyde, alkylcarbonyl, sulfonic acid and phosphoric acid groups. These functional groups are bonded to the silicon atom via alkylene, or arylene bridging groups, which may be interrupted by oxygen or sulfur atoms or —NH— groups. The said bridging groups are derived, for example, from the above-mentioned alkyl, or aryl radicals. The radicals R10 preferably contain from 1 to 18, in particular from 1 to 8, carbon atoms.
Examples of silane additives represented by the above-defined formula are methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, 4-methyl-2-pentyltriethoxysilane, 4-methyl-2-pentyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexylmethyltrimethoxysilane, dimethyldimethoxysilane, 2-(3-cyclohexenyl)ethyltrimethoxysilane, 3-cyanopropyltrimethoxysilane, 3-cyanopropyltrimethoxysilane, phenethyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, phenyltrimethoxysilane, 3-isocyanopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 4-(2-aminoethylaminomethyl)phenethyltrimethoxysilane, phenyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, cyclohexyltriethoxysilane, cyclohexylmethyltriethoxysilane, 3-cyanopropyltriethoxysilane, 3-ethoxypropyltrimethoxysilane, 3-ethoxypropyltrimethoxysilane, 3-propoxypropyltrimethoxysilane, 3-methoxyethyltrimethoxysilane, 3-ethoxyethyltrimethoxysilane, 3-propoxyethyltrimethoxysilane, 2-ethylhexyltrimethoxysilane, 2-ethylhexyltriethoxysilane, 2-[methoxy(polyethyleneoxy)propyl]heptamethyltrisiloxane, [methoxy(polyethyleneoxy)propyl]trimethoxysilane, [methoxy(polyethylene-oxy)ethyl]trimethoxysilane, [methoxy(polyethyleneoxy)propyl]-triethoxysilane, [methoxy(polyethyleneoxy)ethyl]triethoxysilane, and the like.
Although a condensation catalyst is not an essential ingredient of the lubricating compositions of the present invention, the addition of a condensation catalyst can affect film formation, abrasion resistance and other properties of the coating including stability, porosity, caustic resistance, water resistance and the like. When employing a condensation catalyst, the amount of catalyst used can vary widely, but will generally be present in an amount from about 0.005 to about 1 wt. %, based on the total solids of the composition.
Examples of catalysts which can be incorporated into lubricating compositions of the present invention or more preferably are provided when such lubricating compositions are employed in their intended use, for example as lubricants for engines, gears, hydraulic fluids, etc; are (i) metal acetylacetonates, (ii) diamides, (iii) imidazoles, (iv) amines and ammonium salts, (v) inorganic acids, organic acids, organic sulfonic acids, and their amine salts, (vi) alkali metal salts of carboxylic acids, (vii) alkali and alkaline earth metal hydroxides and oxides, (viii) fluoride salts, and (ix) organometalic. Thus, examples of such catalysts include for group (i) such compounds as aluminum, zinc, iron and cobalt acetylacetonates; group (ii) dicyandiamide; for group (iii) such compounds as 2-methylimidazole, 2-ethyl-4 methylimidazole and 1-cyanoethyl-2-propylimidazole; for group (iv), such compounds as benzyldimethylamine, and 1,2-diaminocyclohexane; for group (v), such compounds hydrochloric acid, sulfuric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid; for group (vi), such compounds as sodium acetate, for group (vii), such compounds as sodium hydroxide, and potassium hydroxide, for group (viii), tetra n-butyl ammonium fluoride, and for group (ix), dibutyltin dilaurate and tin di(2-ethylhexonate), and the like.
In a further aspect, the present invention provides a composition derivable from a partial condensation of the above defined composition. By “partial condensation” and “partial condensate” in connection with the present invention is meant that some of the hydrolyzable groups in the mixture have reacted while leaving a substantial amount of hydrolyzable groups available for a condensation reaction. Typically, a partial condensate means that at least 20%, preferably at least 30%, more preferably at least 50% of the hydrolyzable groups are still available for condensation reaction.
In another aspect, the present invention provides a composition derivable from a complete condensation of the above defined composition. By “complete condensation” in connection with the present invention is meant that most or all of the hydrolyzable groups in the mixture have reacted. Typically, a complete condensate means that little or no hydrolyzable groups remain available for condensation reaction.
In another aspect, the present invention provides a process for preparing a partial or complete condensate containing the above-defined composition by reacting the components of the composition in an organic solvent in the presence of water and a catalyst, such as an acid or a base.
In a still further aspect, the present invention also provides a method for treating a substrate, comprising the step of applying to at least a portion of the surface of the substrate the compositions as defined above. Preferably, the obtained coating on the substrate is cured, generally at a temperature of about 20 to 300 Celsius depending on if and the type of catalyst chosen. The substrate may be pre-heated as to cause curing of the composition when applied, or alternatively the heating may take place simultaneously with or subsequent to the application of the composition onto the substrate.
The lubricating oil compositions of the present invention can be conveniently prepared by simply blending or mixing the hydrolyzable tetra-functional silane of the present invention optionally with other additives, with an oil of lubricating viscosity (base oil). The compounds of the invention may also be preblended as a concentrate or package with various other additives in the appropriate ratios to facilitate blending of a lubricating composition containing the desired concentration of additives. The compounds of the present invention are blended with base oil using a concentration at which they provide improved antiwear effect and are both soluble in the oil and compatible with other additives in the desired finished lubricating oil. Compatibility in this instance generally means that the present compounds as well as being oil soluble in the applicable treat rate also do not cause other additives to precipitate under normal conditions. Suitable oil solubility/compatibility ranges for a given compound of lubricating oil formulation can be determined by those having ordinary skill in the art using routine solubility testing procedures. For example, precipitation from a formulated lubricating oil composition at ambient conditions (about 20° C.-25° C.) can be measured by either actual precipitation from the oil composition or the formulation of a “cloudy” solution which evidences formation of insoluble wax particles.
The lubricating oil, or base oil, used in the lubricating oil compositions of the present invention are generally tailored to the specific use, e.g., engine oil, gear oil, industrial oil, cutting oil, etc. For example, where desired as a crankcase engine oil, the base oil typically will be a mineral oil or synthetic oil of viscosity suitable for use in the crankcase of an internal combustion engine such as gasoline engines and diesel engines which include marine engines. Crankcase lubricating oils ordinarily have a viscosity of about 1300 cSt at 0° F. to 24 cSt at 210° F. (99° C.). The lubricating oils may be derived from synthetic or natural sources. Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral oil. Mineral oil for use as the base oil in this invention includes paraffinic, naphthenic and other oils that are ordinarily used in lubricating oil compositions, including solvent treated, hydro treated or oils from Fisher-Tropsch processes. Preferred oils of lubricating viscosity used in this invention should have a viscosity index of at least 95, preferably at least 100. The preferred are selected from API Category oils Group I through Group IV and preferably from Group II, III and IV or mixtures thereof optionally blended with Group I. Synthetic oils include both hydrocarbon synthetic oils and synthetic esters. Useful synthetic hydrocarbon oils include liquid polymers of alpha olefins having the proper viscosity. Especially useful are the hydrogenerated liquid oligomers of C6 to C12 alpha olefins such as 1-decene trimer. Likewise, alkyl benzenes of proper viscosity such as didodecyl benzene can be used. Useful synthetic esters include the esters of both monocarboxylic acid and polycarboxylic acids as well as monohydroxy alkanols and polyols. Typical examples are didodecyl adipate, pentaerythritol tetracaproate, di-2-ethylhexyl adipate, dilaurylsebacate and the like. Complex esters prepared from mixtures of mono and dicarboxylic acid and mono and dihydroxy alkanols can also be used. Blends of various mineral oils, synthetic oils and minerals and synthetic oils may also be advantageous, for example to provide a given viscosity or viscosity range. In general the base oils or base oil mixtures for engine oil are preselected so that the final lubricating oil, containing the various additives, including the present fuel economy additive composition, has a viscosity at 100° C. of 4 to 22 centistokes, preferably 10 to 17 centistokes and more preferably 13 to 17 centistokes.
Typically the lubricating oil composition will contain a variety of compatible additives desired to impart various properties to the finished lubricating oil composition depending on the particular end use and base oils used. Such additives include supplemental neutral and basic detergents such as natural and overbased organic sulfonates and normal and overbased phenates and salicylates, dispersants, and/or ashless dispersants.
Also included are other additives such as antiwear agents, friction modifiers, rust inhibitors, foam inhibitors, pour point dispersants, antioxidants, including the so called viscosity index (VI) improvers, dispersant VI improvers and, as noted above, other corrosion or wear inhibitors.
Metal detergents have widely been employed in engine oil lubricating formulations to neutralize the acidic by-products of the combustion process and/or lubricant oxidation and to provide a soap effect and keep pistons and other high temperature surfaces clean thus preventing sludge. A number of different surfactant types have been used to produce different lubricant detergents. Common examples of metal detergents included: sulphonates, alkylphenates, sulfurized alkyl phenates, carboxylates, salicylates, phosphonates, and phosphinates. Commercial products are generally referred to as neutral or overbased. Overbased metal detergents are generally produced by carbonating a mixture of hydrocarbons, detergent acid, for example: sulfonic acid, alkylphenol, carboxylate etc., metal oxide or hydroxides (for example calcium oxide or calcium hydroxide) and promoters such as xylene, methanol and water. For example for preparing an overbased calcium sulfonate; in carbonation, the calcium oxide or hydroxide reacts with the gaseous carbon dioxide to form calcium carbonate. The sulfonic acid is neutralized with an excess of CaO or Ca(OH), to form the sulfonate.
Metal-containing or ash-forming detergents function as both detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life. Detergents generally comprise a polar head with a long hydrophobic tail. The polar head comprises a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80. A large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide). The resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g., carbonate) micelle. Such overbased detergents may have a TBN of 150 or greater, and typically will have a TBN of from 250 to 450 or more.
Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450, neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 and neutral and overbased magnesium or calcium salicylates having a TBN of from 20 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.
Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
The oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 wt. % (preferably at least 125 wt. %) of that stoichiometrically required.
Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
Carboxylate detergents, e.g., salicylates, can be prepared by reacting an aromatic carboxylic acid with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. The aromatic moiety of the aromatic carboxylic acid can contain heteroatoms, such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms; more preferably the moiety contains six or more carbon atoms; for example benzene is a preferred moiety. The aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, either fused or connected via alkylene bridges. The carboxylic moiety may be attached directly or indirectly to the aromatic moiety. Preferably the carboxylic acid group is attached directly to a carbon atom on the aromatic moiety, such as a carbon atom on the benzene ring. More preferably, the aromatic moiety also contains a second functional group, such as a hydroxy group or a sulfonate group, which can be attached directly or indirectly to a carbon atom on the aromatic moiety.
Preferred examples of aromatic carboxylic acids are salicylic acids and sulfurized derivatives thereof, such as hydrocarbyl substituted salicylic acid and derivatives thereof. Processes for sulfurizing, for example a hydrocarbyl-substituted salicylic acid, are known to those skilled in the art. Salicylic acids are typically prepared by carboxylation, for example, by the Kolbe-Schmitt process, of phenoxides, and in that case, will generally be obtained, normally in a diluent, in admixture with uncarboxylated phenol.
The dispersant employed in the compositions of this invention can be ashless dispersants such as an alkenyl succinimide, an alkenyl succinic anhydride, an alkenyl succinate ester, and the like, or mixtures of such dispersants.
Ashless dispersants are broadly divided into several groups. One such group is directed to copolymers which contain a carboxylate ester with one or more additional polar function, including amine, amide, imine, imide, hydroxyl carboxyl, and the like. These products can be prepared by copolymerization of long chain alkyl acrylates or methacrylates with monomers of the above function. Such groups include alkyl methacrylate-vinyl pyrrolidinone copolymers, alkyl methacrylate-dialkylaminoethyl methacrylate copolymers and the like. Additionally, high molecular weight amides and polyamides or esters and polyesters such as tetraethylene pentamine, polyvinyl polysterarates and other polystearamides may be employed. Preferred dispersants are N-substituted long chain alkenyl succinimides.
Mono and bis alkenyl succinimides are usually derived from the reaction of alkenyl succinic acid or anhydride and alkylene polyamines. These compounds are generally considered to have the formula
wherein R1 is a substantially hydrocarbon radical having a molecular weight from about 450 to 3000, that is, R1 is a hydrocarbyl radical, preferably an alkenyl radical, containing about 30 to about 200 carbon atoms; Alk is an alkylene radical of 2 to 10, preferably 2 to 6, carbon atoms, R2, R3, and R4 are selected from a C1-C4 alkyl or alkoxy or hydrogen, preferably hydrogen, and x is an integer from 0 to 10, preferably 0 to 3. The actual reaction product of alkylene or alkenylene succinic acid or anhydride and alkylene polyamine will comprise the mixture of compounds including succinamic acids and succinimides. However, it is customary to designate this reaction product as a succinimide of the described formula, since this will be a principal component of the mixture. The mono alkenyl succinimide and bis alkenyl succinimide produced may depend on the charge mole ratio of polyamine to succinic groups and the particular polyamine used. Charge mole ratios of polyamine to succinic groups of about 1:1 may produce predominately mono alkenyl succinimide. Charge mole ratios of polyamine to succinic group of about 1:2 may produce predominantly bis alkenyl succinimide.
These N-substituted alkenyl succinimides can be prepared by reacting maleic anhydride with an olefinic hydrocarbon followed by reacting the resulting alkenyl succinic anhydride with the alkylene polyamine. The R1 radical of the above formula, that is, the alkenyl radical, is preferably derived from a polymer prepared from an olefin monomer containing from 2 to 5 carbon atoms. Thus, the alkenyl radical is obtained by polymerizing an olefin containing from 2 to 5 carbon atoms to form a hydrocarbon having a molecular weight ranging from about 450 to 3000. Such olefin monomers are exemplified by ethylene, propylene, 1-butene, 2-butene, isobutene, and mixtures thereof.
In a preferred aspect, the alkenyl succinimide may be prepared by reacting a polyalkylene succinic anhydride with an alkylene polyamine. The polyalkylene succinic anhydride is the reaction product of a polyalkylene (preferably polyisobutene) with maleic anhydride. One can use conventional polyisobutene, or high methylvinylidene polyisobutene in the preparation of such polyalkylene succinic anhydrides. One can use thermal, chlorination, free radical, acid catalyzed, or any other process in this preparation. Examples of suitable polyalkylene succinic anhydrides are thermal PIBSA (polyisobutenyl succinic anhydride) described in U.S. Pat. No. 3,361,673; chlorination PIBSA described in U.S. Pat. No. 3,172,892; a mixture of thermal and chlorination PIBSA described in U.S. Pat. No. 3,912,764; high succinic ratio PIBSA described in U.S. Pat. No. 4,234,435; PolyPIBSA described in U.S. Pat. Nos. 5,112,507 and 5,175,225; high succinic ratio PolyPIBSA described in U.S. Pat. Nos. 5,565,528 and 5,616,668; free radical PIBSA described in U.S. Pat. Nos. 5,286,799, 5,319,030, and 5,625,004; PIBSA made from high methylvinylidene polybutene described in U.S. Pat. Nos. 4,152,499, 5,137,978, and 5,137,980; high succinic ratio PIBSA made from high methylvinylidene polybutene described in European Patent Application Publication No. 0 355 895; terpolymer PIBSA described in U.S. Pat. No. 5,792,729; sulfonic acid PIBSA described in U.S. Pat. No. 5,777,025 and European Patent Application Publication No. 0 542 380; and purified PIBSA described in U.S. Pat. No. 5,523,417 and European Patent Application Publication No. 0 602 863. The disclosures of each of these documents are incorporated herein by reference in their entirety. The polyalkylene succinic anhydride is preferably a polyisobutenyl succinic anhydride. In one preferred embodiment, the polyalkylene succinic anhydride is a polyisobutenyl succinic anhydride having a number average molecular weight of at least 450, more preferably at least 900 to about 3000 and still more preferably from at least about 900 to about 2300.
In another preferred embodiment, a mixture of polyalkylene succinic anhydrides are employed. In this embodiment, the mixture preferably comprises a low molecular weight polyalkylene succinic anhydride component and a high molecular weight polyalkylene succinic anhydride component. More preferably, the low molecular weight component has a number average molecular weight of from about 450 to below 1000 and the high molecular weight component has a number average molecular weight of from 1000 to about 3000. Still more preferably, both the low and high molecular weight components are polyisobutenyl succinic anhydrides. Alternatively, various molecular weights polyalkylene succinic anhydride components can be combined as a dispersant as well as a mixture of the other above referenced dispersants as identified above.
The polyalkylene succinic anhydride can also be incorporated with the detergent which is anticipated to improve stability and compatibility of the detergent mixture. When employed with the detergent it can comprise from 0.5 to 5 percent by weight of the detergent mixture and preferably from about 1.5 to 4 wt. %.
The preferred polyalkylene amines used to prepare the succinimides are of the formula:
wherein z is an integer of from 0 to 10 and Alk, R2, R3, and R4 are as defined above. The alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines and also the cyclic and the higher homologs of such amines as piperazine and amino alkyl-substituted piperazines. They are exemplified specifically by ethylene diamine, triethylene tetraamine, propylene diamine, decamethyl diamine, octamethylene diamine, diheptamethylene triamine, tripropylene tetraamine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, ditrimethylene triamine, 2-heptyl-3-(2-aminopropyl)-imidazoline,4-methyl imidazoline, N,N-dimethyl-1,3-propane diamine, 1,3-bis(2-aminoethyl)imidazoline, 1-(2-aminopropyl)-piperazine, 1,4-bis(2-aminoethyl)piperazine and 2-methyl-1-(2-aminobutyl)piperazine. Higher homologs such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful. The ethylene amines are especially useful. They are described in some detail under the heading “Ethylene Amines” in Encyclopedia of Chemical Technology, Kirk-Othmer, Vol. 5, pp. 898-905 (Interscience Publishers, New York, 1950). The term “ethylene amine” is used in a generic sense to denote a class of polyamines conforming for the most part to the structure
H2N(CH2CH2NH)aH
wherein a is an integer from 1 to 10.
Thus, it includes, for example, ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylene pentamine, pentaethylene hexamine, and the like. The individual alkenyl succinimides used in the alkenyl succinimide composition of the present invention can be prepared by conventional processes, such as disclosed in U.S. Pat. Nos. 2,992,708; 3,018,250; 3,018,291; 3,024,237; 3,100,673; 3,172,892; 3,202,678; 3,219,666; 3,272,746; 3,361,673; 3,381,022; 3,912,764; 4,234,435; 4,612,132; 4,747,965; 5,112,507; 5,241,003; 5,266,186; 5,286,799; 5,319,030; 5,334,321; 5,356,552; 5,716,912, the disclosures of which are all hereby incorporated by reference in their entirety for all purposes.
Also included within the term “alkenyl succinimides” are post-treated succinimides such as post-treatment processes involving borate or ethylene carbonate disclosed by Wollenberg, et al., U.S. Pat. No. 4,612,132; Wollenberg, et al., U.S. Pat. No. 4,746,446; and the like as well as other post-treatment processes each of which are incorporated herein by reference in its entirety. Preferably, the carbonate-treated alkenyl succinimide is a polybutene succinimide derived from polybutenes having a molecular weight of 450 to 3000, preferably from 900 to 2500, more preferably from 1300 to 2300, and preferably from 2000 to 2400, as well as mixtures of these molecular weights. Preferably, it is prepared by reacting, under reactive conditions, a mixture of a polybutene succinic acid derivative, an unsaturated acidic reagent copolymer of an unsaturated acidic reagent and an olefin, and a polyamine, such as taught in U.S. Pat. No. 5,716,912 incorporated herein by reference.
Preferably, the alkenyl succinimide component comprises from 1 to 20 wt. %, preferably 2 to 12 wt. %, and more preferably 4 to 8 wt. % of the weight of the lubricant composition.
Preferably a minor amount of antiwear agent, a metal dihydrocarbyl dithiophosphate is added to the lubricant composition. The metal is preferably zinc. The dihydrocarbyldithiophosphate may be present in amount of 0.1 to 2.0 mass % but typically low phosphorus compositions are desired so the dihydrocarbyldithiophosphate is employed at 0.25 to 1.2, preferably 0.5 to 0.7, mass %, in the lubricating oil composition. Preferably, zinc dialkylthiophosphate (ZDDP) is used. This provides antioxidant and antiwear properties to the lubricating composition. Such compounds may be prepared in accordance with known techniques by first forming a dithiophosphoric acid, usually by reaction of an alcohol or a phenol with P2S5 and then neutralizing the dithiophosphoric acid with a suitable zinc compound. Mixtures of alcohols may be used including mixtures of primary and secondary alcohols. Examples of such alcohols include, but are not restricted to the following list: iso-propanol, iso-octanol, 2-butanol, methyl isobutyl carbinol (4-methyl-1-pentane-2-ol), 1-pentanol, 2-methyl butanol, and 2-methyl-1-propanol. The hydrocarbyl groups can be a primary, secondary, or mixtures thereof, e.g., the compounds may contains primary and/or secondary alkyl groups derived from primary or secondary carbon atoms. Moreover, when employed, there is preferably at least 50, more preferably 75 or more, most preferably 85 to 100, mass % secondary alkyl groups; an example is a ZDDP having 85 mass % secondary alkyl groups and 15 mass % primary alkyl groups, such as a ZDDP made from 85 mass % butan-2-ol and 15 mass % iso-octanol. Even more preferred is a ZDDP derived from derived from sec-butanol and methylisobutylcarbinol and most preferably wherein the sec-butanol is 75 mole %.
The metal dihydrocarbyldithiophosphate provides most if not all, of the phosphorus content of the lubricating oil composition. Amounts are present in the lubricating oil composition to provide a phosphorus content, expressed as mass % elemental phosphorus, of 0.10 or less, preferably 0.08 or less, and more preferably 0.075 or less, such as in the range of 0.025 to 0.07. In a particularly preferred aspect, the lubricating oil composition does not contain a metal dihydrocarblydithiophosphate and another aspect of this lubricating oil composition may contain essentially no added phosphorus additive component.
Oxidation inhibitors or antioxidants reduce the tendency of base stocks to deteriorate in service, which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth. Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C5 to C12 alkyl side chains, calcium nonylphenol sulfide, ashless oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons, alkyl-substituted diphenylamine, alkyl-substituted phenyl and naphthylamines, phosphorus esters, metal thiocarbamates, ashless thiocarbamates (preferred are dithiocarbamates are methylenebis (dibutyldithiocarbamate), ethylenebis (dibutyldithiocarbamate), and isobutyl disulfide-2,2′-bis(dibutyldithiocarbamate). Preferred phenol type oxidation inhibitors are selected from the group consisting of: 4,4′-methylene bis(2,6-di-tert-butylphenol), 4,4′-bis(2,6-di-tert-butylphenol), 4,4′-bis(2-methyl-6-tert-butylphenol), 2,2′-methylene bis(4-methyl-6-tert-butyl-phenol), 4,4′-butylidenebis(3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-nonylphenol), 2,2′-isobutylidene-bis(4,6-dimethylphenol), 2,2′-methylenebis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methyl-phenol, 2,6-di-tert-butyl-4-ethylphenol, 2,4-dimethyl-6-tert-butyl-phenol, 2,6-di-tert-4-(N.N′dimethylaminomethylphenol), 4,4′-thiobis(2-methyl-6-tert-butylphenol), 2,2′-thiobis(4-methyl-6-tert-butylphenol), bis(3-methyl-4-hydroxy-5-tert-butylbenzyl)-sulfide, and bis(3,5-di-tert-butyl-4-hydroxybenzyl). Diphenylamine type oxidation inhibitor: alkylated diphenylamine, octylated/butylated diphenylamine and a hindered phenolic antioxidant primarily 3,5-di-tert-butyl-4-hydroxcinnamic acid C7-9 branched alkyl ester, phenyl-.alpha.-naphthylamine, and alkylated .alpha.-naphthylamine.
In some instances a friction modifier is needed. Such friction modifier is preferably an oil soluble organic friction modifier incorporated in the lubricating oil composition in an amount of from about 0.02 to 2.0 wt. % of the lubricating oil composition. Preferably, from 0.05 to 1.0, more preferably from 0.1 to 0.5 wt. % of the friction modifier is used. Friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters of polyols such as glycerol esters of fatty acid as exemplified by glycerol oleate, boric esters of glycerol fatty acid monoesters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, etc., wherein the aliphatic group usually contains above about eight carbon atoms so as to render the compound suitably oil soluble. Representative examples of suitable friction modifiers are found in U.S. Pat. No. 3,933,659 which discloses fatty acid esters and amides; U.S. Pat. No. 4,105,571 which discloses glycerol esters of dimerized fatty acids; U.S. Pat. No. 4,702,859 which discloses esters of carboxylic acids and anhydrides with alkanols; U.S. Pat. No. 4,530,771 which is a preferred borated glycerol monooleate comprising esters constituted with a glycerol, fatty acid and a boric acid, said ester having a positive amount up to 2.0 moles of a carboxylic acid residue comprising a saturated or unsaturated alkyl group having 8 to 24 carbon atoms and 1.5 to 2.0 moles of a glycerol residue, both per unit mole of a boric acid residue on average of the boric esters used singly or in combination, molar proportion between said carboxylic acid residue and said glycerol residue being that the glycerol residue is 1.2 moles or more based on 1 mole of the carboxylic acid residue; U.S. Pat. No. 3,779,928 which discloses alkane phosphonic acid salts; U.S. Pat. No. 3,778,375 which discloses reaction products of a phosphonate with an oleamide; and U.S. Pat. No. 3,932,290 which discloses reaction products of di-(lower alkyl) phosphites and epoxides. The disclosures of the above references are herein incorporated by reference. Examples of nitrogen containing friction modifiers, include, but are not limited to, imidazolines, amides, amines, alkoxylated amines, alkoxylated ether amines, amine oxides, amidoamines, nitriles, betaines, quaternary amines, imines, amine salts, amino guanadine, alkanolamides, and the like. Such friction modifiers can contain hydrocarbyl groups that can be selected from straight chain, branched chain or aromatic hydrocarbyl groups or admixtures thereof, and may be saturated or unsaturated. Hydrocarbyl groups are predominantly composed of carbon and hydrogen but may contain one or more hetero atoms such as sulfur or oxygen. Preferred hydrocarbyl groups range from 12 to 25 carbon atoms and may be saturated or unsaturated. More preferred are those with linear hydrocarbyl groups.
The lubricating composition of the present invention may also contain a viscosity index improver or VII. Viscosity Index Improver. Examples of the viscosity index improvers are poly-(alkyl methacrylate), ethylene-propylene copolymer, styrene-butadiene copolymer, and polyisoprene. Viscosity index improvers of dispersant type (having increased dispersancy) or multifunction type are also employed. These viscosity index improvers can be used singly or in combination. The amount of viscosity index improver to be incorporated into an engine oil varies with desired viscosity of the compounded engine oil, and generally in the range of 0.5-20 wt. % per total amount of the engine oil.
The invention will be further by the following examples, which set forth particularly advantageous embodiments. While the examples are provided to illustrate the present invention, they are not intended to limit it.
The lubricating oil compositions of the present invention (Example 1-8 and Comparative Examples A, B, and C) were prepared according to the weight percentages shown in Table 1. The baseline oil composition depicted as Comparative Example A, was prepared as a baseline oil typical for a generic low emission diesel lubricant. Several blends of the baseline oil prepared for Examples 1-8. The baseline oil comprised approximately 75 wt % of an oil of lubricating viscosity, namely a 2:1 mixture of neutral oils—100N and 220 N base oils, a succinimide dispersant mixture of approximately 4.75 wt % of or a bis-succinimide prepared from a 2300 avg molecular weight polyisobutylene succinic anhydride with a heavy polyamine, 2.5 wt % of a borated bis-succinimide prepared from a 1300 avg molecular weight polyisobutylene succinic anhydride with a heavy polyamine, approximately 4.5 wt % of a 140BN salicylate detergent prepared mixture of C18-30 alpha olefins and C10-15 branched olefins (prepared for example as disclosed in U.S. Patent Publication No. US 2004/0235686 disclosed herein by reference in its entirety); and approximately 0.6 wt % of a 16 BN calcium synthetic alkylarylsulfonate prepared from a mixture of C20-40 alpha olefins and C10-15 branched olefins, approximately 1 wt % of an equal part mixture of antioxidants comprising a mixture of an octylated/butylated diphenylamine and a hindered phenolic antioxidant primarily 3,5-di-tert-butyl-4-hydroxcinnamic acid C7-9 branched alkyl ester, approximately 0.7 wt % of a secondary ZDDP derived from derived from sec-butanol and methylisobutylcarbinol, an ethylene-propylene copolymer and foam inhibitor. The baseline oil was a 10W-40 blended oil made from Group II oils. To a baseline oil was added the silane additives of the present invention. The baseline oil consists of diluent oil, dispersant, detergent, oxidation inhibitor, foam inhibitor, viscosity index improver, and mineral base oil.
Comparative examples were also prepared. Comparative Example A as stated above, contains the baseline oil. Comparative Example B was prepared with baseline oil and a top-treat of approximately 0.7 wt % of the same ZDDP used in the baseline. A third comparative example, Comparative Example C, was prepared with the baseline oil and a top-treat of approximately 1 wt % of an Octyltriethoxysilane. Comparative Example D was commercial available CI-4 fully-formulated engine oil.
Three different bench wear tests were conducted to examine wear performance. They are the Electrical Contact Resistance (ECR) bench test, the High Frequency Reciprocating Rig (HFRR) bench test, and the Mini-Traction Machine (MTM) bench test. The last two instruments are sold by PCS Instruments Ltd., London, UK.
For the ECR bench test, the relevant conditions are shown below in Table 2.
Simultaneous measurements of ECR and the coefficient of friction for each blend were made using a ball-on-disk tribometer. Test conditions and materials are summarized in Table 3. Both the disk and the slider were of 52100 steel, the disk hardness being Rc=58 and the slider hardness being Rc=62. Before each run, the disk was polished with a succession of grades of silicon carbide abrasive papers and cloths to a final average surface roughness of 0.046-0.056 μm (˜1.8-2.2 μin.) as measured with a Model 5P Tallysurf. The sliders were purchased 0.635 cm (¼-in.) diameter ball bearings, Grade 5. For Grade 5 bearings, the industry average surface roughness specification is 0.02 μm (0.8 μin.). After ultrasonic cleaning in reagent-grade hexane and reagent-grade acetone and thorough air drying, the balls were used as sliders. No surface topography characterization other than average surface roughness was carried out for the disks. For the sliders, the average surface roughness specified by the Grade 5 classification was assumed to apply and no other surface topographical measurement was made.
The disk was clamped in a cup that rotated. A spring-hinged arm held a collect chunk in which the ball was firmly clamped so that it slid and did not rotate. When the ball was lowered onto the disk, the arm was constrained by a strain gauge. Output from the strain gauge was continuously recorded on one channel of a two-pen strip chart recorder. A deadweight was used to calibrate the strain gauge, resulting in the coefficient of friction being directly recorded. ECR was measured using a voltage divider circuit.
Voltages measured by the strip char recorder were reproducible to about ±2%. Obviously, coefficients of friction and ECR voltages, being dependent upon contact conditions, were less reproducible. Past experience with coefficient of friction measurements with this tribometer had shown coefficients of friction in short-term tests, such as those employed in the present work, were reproducible to about 5-12%, depending on the sample. Not surprisingly, resistances, especially those in the megohm range, varied as much as a factor of two, reflecting the nonuniformity of contact conditions.
On completing the run, the collet chuck holding the ball was removed from the tribometer and the war scar on the ball was briefly examined under a 100 power microscope. Marks were then made on a ball near the wear scar with a marking pen to facilitate finding the scar. The collet chuck was loosened, thus freeing the ball, which was mounted for photomicrography at 100× magnification. Wear scar diameters (WSD) were measured on the 100× photomicrographs. Two perpendicular diameters were measured: wear scars were either circular or elliptical. In the case of elliptical wear scars, major and minor diameters were measured, and the diameter of a circle of equal area calculated. Diameters (or equivalent diameters) of at least two wear scars were averaged to obtain an average wear scar diameter for each oil tested.
For the HFRR bench test the relevant conditions are shown below in Table 3.
For the HFRR bench test, conditions are more severe than the ECR test to mimic valve train conditions which in diesel engines may reach 250,000-300,000 psi (maximum) [Mc Geehan, J. A., and Ryason, P. R., “Preventing Catastrophic Camshaft Lobe Failure in Low Emission Diesel Engines,” 2000, SAE Paper 200-01-2949]. There is both startup and complete stop as the ball makes its stroke from start to finish. Again, wear scar diameters are measured.
The PCS MTM instrument was modified so that a ¼-in. diameter Falex 52100 steel test ball (with special holder) was substituted for the pin holder that came with the instrument [Yamaguchi, E. S., “Friction and Wear Measurements Using a Modified MTM Tribometer,” IP.com Journal 7, Vol. 2, 9, pp 57-58 (August 2002), No. IPCOM000009117D]. The instrument was used in the pin-on-disk mode and run under sliding conditions. It is achieved by fixing the ball rigidly in the special holder, such that the ball has only one degree of freedom, to slide on the disk. The conditions are shown in Table 4.
Engine soot obtained from the overhead recovery system of a engine testing facility was used for this test. The soot was made into a slurry with pentane, filtered through a sintered glass funnel, dried in a vacuum oven under an N2 atmosphere and ground to 50 mesh (300 μm) maximum before use. The objective of this action was to make reproducible particles that would give rise to abrasive wear as seen in modern EGR engines.
To prepare the test specimens, the anti-corrosion coating of the PCS Instruments 52100 smooth (0.02 micron Ra), steel discs was removed using heptane, hexane, and isooctane. Then, the discs were wiped clean with a soft tissue and submersed in a beaker of the cleaning solvent until the film on the disc track had been removed, and the track of the disc appeared shiny. The discs and test balls were placed in individual containers and submerged in Chevron 450 thinner. Lastly, the test specimens were ultrasonically cleaned by placing them in a sonicator for 20 minutes.
Wear results from the three bench tests are presented in Table 5 below. Lower values indicate less wear.
aECR Electrical Contact Resistance
bHFRR High Frequency Reciprocal Rig
cMTM Mini Traction Machine
dECR area measured as the sum of 2000 measurements of the voltage across the contacting surface
From the overall results shown in Table 5, the wear performance of the silane-containing blends representing the present invention shows improvement relative to Comparative Example B, prepared with baseline oil and 0.7 wt. % of ZDDP. In fact, Example 2 shows equivalent or better performance in the three out of four areas compared to a Comparative Example D, a commercial CI-4 fully-formulated engine oil. In particular, the ECR result, the MTM result, and the relative film insulation of Example 2 exceeded that of Comparative Example D, a premium product. ECR films show the result of film formation minus film removal processes. The larger the number, the greater film formation dominates relative to the film removal processes. In this comparison, Example 2 shows greater film formation processes than Comparative Example D, suggesting that the insulating film of Example 2 is extremely robust and can be sustained throughout the 20-minute test.
Comparative Example C (oxtyl triethoxy silane), although giving excellent wear scar diameter in the ECR test, was much less effective than Example 2 in the more demanding HFRR and MTM bench tests, as well as the film insulation measurements.