Text to speech conversion of text messages from mobile communication devices

Abstract
A method includes providing a user interface, at a mobile communication device, that includes a first area to receive text input and a second area to receive an identifier associated with an addressee device. The text input and the identifier are received via the user interface. A short message service (SMS) message including the text input is transmitted to a Text to Speech (TTS) server for conversion into an audio message and for transmission of the audio message to the addressee device associated with the identifier. An acknowledge message transmitted from the TTS server permits the addressee device to allow delivery of the audio message or to decline delivery of the audio message. The TTS server transmits the audio message in response to the addressee device allowing delivery of the audio message. A confirmation message is received from the TTS server that indicates that a reply voice message has been received from the addressee device in response to the audio message.
Description
BACKGROUND

Different systems use the Internet as a means of transferring data, but such systems are typically not capable of sending text messages from the Internet and converting them into vocal messages on a telephone line.


By means of an IP connection it is possible to download songs, to telephone, to send e-mail messages, and to send SMS messages.


The most common peripheral unit, available for everyone, to be connected to the Internet is the modem. This word is a mixture of two words, modulator and demodulator. The function of a modem is to convert digital data in the form of electric pulses into a form that can be used for transmission on normal telephone lines. Therefore, the modem converts electric signals coming from the computer into sounds and permits their transmission by means of the telephone line. The receiving modem makes the opposite operation: as soon as it receives the sounds from the telephone line, it reconverts them into electric signals in order to make them available to the computer it is connected to. This further operation is called demodulation. Technical evolutions of modems include new peripheral units and digital platforms that send data on a suitably shaped line without any need to convert them into sounds, such as ISDN data transmitting cards. Another resource available to users is the DSL connection. Using this system it is possible to divide the vocal transmission from the data transmission by using particular filters.


Also referring to Internet connections, another available technology for users is the system of connection by satellites. Thanks to these systems even people who are not experts at hardware and software can surf on the Internet, send e-mail messages, send SMS messages, and send and receive fax and other related operations. By means of data transmitting cards, permitting the transmission of complex data in audio and even video forms, also called technological platforms, many companies develop more and more complex programs and applications in order to provide firms with ancillary services.


One of the easiest ways to send communications with a telephone, using the Internet, is writing SMS messages. For this purpose, the user fills in a form on the web writing a text message and sends it to a server/gateway that transfers it to the mobile number the message is directed to.


However, this means of communication has some drawbacks. SMS messages are short and the communication reaches almost exclusively the users of the country where the portal works. In addition, these SMS messages reach neither cordless phones not using the GSM system nor common house telephones. The communication that reaches the final destination is mainly textual, in the form of a message that can be read on a display, not vocal. Another important characteristic is that users cannot verify immediately the result of the SMS message sent on-line.


“Text-to-speech” (TTS) technology exists, which permits some interactions via internet/telephone. By these means, an Internet/telephone service where TTS is in use allows a service subscriber to receive a notification that a message has arrived on the phone or a notification to dial a telephone number and listen to the message in the form of speech. Nevertheless, this system is not convenient, as it needs registrations, and is limited and not easy to be used by an inexpert user. The TTS technology principally reads text and converts the text to speech. TTS technology has been useful for teaching, utility and support purposes, in particular for those who are disabled and blind, but as regards to its use with telephone interactions, it is mostly based on “inbound” applications, i.e., centered in order to support inbound and not outbound communications. Vocal tree menus are an example and are used by companies in order to automatically provide a caller with information.


Other systems permitting communication by voice with another user via the Internet also exist. But with the traditional methods, people holding a single telephone line cannot communicate by voice in a simple and comfortable way through the computer with another telephone. In fact, in order to make a call using the Internet, the user needs software, loudspeakers and microphones. An Internet user is not able to send text messages to the designated telephones, except for the messages appearing on the display of the phone.


Also, e-mails, the most widespread means of communication via the web, cannot give guaranties about the correct receipt of the communication by the addressee. As a matter of fact, a simple automatic acknowledge transmission of the e-mail by the addressee to the sender is not sufficient to say he/she has entirely read the communication or understood its meaning.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.



FIG. 1 is a general diagram that illustrates elements of a communication system.



FIG. 2 is a general diagram that illustrates operation of the system of FIG. 1.



FIG. 3 is a general diagram that illustrates operation of the system of FIG. 1.



FIG. 4A illustrates a display that may be used to send an emergency message.



FIG. 4B illustrates a display that may be used to send a job related message.



FIG. 4C illustrates a display that may be used to send a message to a new friend.



FIG. 4D illustrates a display that may be used to communicate.



FIG. 5 is a general flow diagram to illustrate a method of communicating.





DETAILED DESCRIPTION


FIG. 1 shows a system that includes hardware (1), used by the user for writing messages and sending them; a connection to Internet (2), by a modem (6) or ISDN connecting card, net card or alternative systems connecting to Internet; a server (3) where a software is installed, directing the various functions and changes text messages into speech, sending them by means of voice modem and/or technological platforms for transmitting vocal data (4) by a telephone line (5) to a telephone (7) of the addressee of the communication. The addressee, if he wishes, can interact with the vocal message received by using a keyboard or a keypad associated with the telephone (7) or by speaking into the telephone. This possible interaction will be sent (8) on the server and filed for the sender who can then read and/or listen to it.


The text written by a user, by an IP connection, gets to a server, where it is converted into speech and sent to a telephone number by a telephone line. The entire executing process is then saved on a file that can be read by means of an IP connection. This system involves hardware, data transmission systems, telephone lines, specialized software, receiving apparatus and many technical details.


Referring to FIG. 2, a flowchart shows the steps of the system in the case that the user uses a form found on the Internet. On a web page, the user can find a form to write text. This form may contain several details. The user writes a message (B) and presses enter to send the message to the server (C). The server receives the message, encodes it using software (D), such as a “voice engine”, and changes the text into speech using text-to-speech (TTS) technology. The telephone number of the addressee is received by the software that is configured to send the communication by means of a peripheral, such as a voice modem and/or a technological platform (E). The peripheral sends the message to the addressee by a normal telephone line (F). The addressee receives the communication, which was originally sent in the form of text and then converted into speech. In addition, the addressee (G) can interact with the caller, using the keyboard, by the DTMF system or directly via the microphone of the telephone. So doing, he can answer questions and/or send communications that will be saved in log files available for data analysis and decoding.


Referring to FIG. 3, a flowchart briefly shows the action of the Internet user in the case that he has downloaded software to run the system. The Internet surfer (A) writes the message (A1) directly into a table of the software installed on his/her hardware, without using a form on-line as in the previous case. The communication starts and gets to the web server (B) that records it. The software (C) changes the text into speech and, by means of a voice modem (D) and/or other data transmitting/receiving cards, sends it to the designated number by a telephone line (E). The communication reaches the addressee's telephone (F). The addressee has the possibility of answering with various options (G). For this system, the surfer uses software specifically provided, connects to the Internet, writes a message via the software interface, sends it to a web server, which converts it into speech by means of sophisticated software, and sends the communication to the addressee. By means of the software, the user can also send pre-recorded communications filed at the server.



FIGS. 4A, 4B, 4C, 4D schematically show how the user can write a message and send it. In particular, they describe some practical examples. In these examples, it is possible to send and/or receive the communication to and/or from an alias as well as to a telephone number. Additionally, it is possible to send/or receive the communication in a desired language. In particular, FIG. 4A shows the system used for social utility or emergency cases; FIG. 4B shows the system used to look for a job; FIG. 4C shows the system used to look for new friends; FIG. 4D shows the system for everyday use. These illustrated examples are simply practical examples but are not to be considered restrictive.



FIG. 5 is a flowchart that describes a system showing how the text-to-speech (TTS) technology works in a particular case. Using TTS technology, words and text are fragmented into phonemes and are analyzed by characters, figures, sums, inflections and punctuation. The final result is an audio form.


The system and method of the present disclosure allows Internet surfers, or more generally users that have a modem and/or even a more developed analog or digital card transmitting and receiving data, to be able to write a text on a form found on the web site and/or by means of an interface downloaded from software, to send this message to a telephone number and make it known to the addressee in real time and/or by pre-recording. This system also constitutes a valid alternative to communicate vocally with another person with a single telephone line simply by writing a text, with no need of loudspeakers and microphones or subscriptions to services permitting calling via the Internet.


This disclosure aims at transmitting on a common telephone vocal messages obtained by the conversion of text messages written by the user and sent via the Internet.


In a particular embodiment, a system of the present disclosure involves use of hardware and software devices, telematic instruments and systems for the transmission of data, which together allow the receipt of a vocal message sent originally by the Internet in the form of text.


In a particular embodiment, the system for sending text messages converted into speech comprises: means to write and send messages, by a data input device including hardware showing a table where users can write a text message and/or order the transmission of a pre-recorded message, indicate the telephone number(s) of the addressee or a database where addressees' telephone numbers can be found, and send it to a server; means to connect the data input device with the server, including a connection to the Internet by modem, data transmitting and receiving cards, similar apparatus or kits for satellite connection; means to receive and process the text message, by the server, where a program is installed that is able to convert the text message into a vocal message and set it up for transmission on the phone, and comprising other applications capable of controlling and filing the data relative to the entire telephone transaction; means to transmit the vocal message on the telephone line by a voice modem or other technological peripherals for the transmission of at least vocal data; and means to receive the message, including a common phone.


Conveniently, it is possible to reply to the vocal messages received by means of a suitable keyboard connected to the phone using DTMF keys and tones. Conveniently, the addressee can send a reply vocal message to the sender, so that it is then filed on the server.


Conveniently, on the computer through which data is input, software is installed, which permits the transmission of text messages by modem, or otherwise. The computer can also include digital and/or analog cards for transmitting and receiving pre-recorded communications. The software program installed by the user may be represented by an icon within the browser, in case the user is surfing on the Internet or is not using it at that particular moment.


Conveniently, on the computer through which data is input, there is a table, either created by installed software or an HTML form or similar form, which comprises a suitable interface used to write a message and send the message to the server carrying out the transaction until the message reaches its destination. By this interface, the user can write many messages to various people and send them by means of an automatic connection to the Internet.


The table is also used to send pre-recorded communications loaded on an external server to various addressees and at specific hours.


Conveniently, the table through which messages are written includes an area for an optional input of the sender's telephone number or his/her “alias” or nickname.


Conveniently, the table through which messages are written includes an area for the necessary input of the addressee's telephone number or his/her “alias” or nickname.


Conveniently, the table through which messages are written includes an area for the input of the language the user wants to use to send the message to the designated telephone number. Conveniently, the table through which messages are written includes an area for the selection of the pre-recorded message to send.


The system permits the transmission from the web of both text and pre-recorded messages in different forms, thanks to a system for compressing and converting data. Nowadays, the transmission of pre-recorded messages for telemarketing campaigns and the conversion of the text into speech have some technical limits. Particularly recorded messages converted into files often take such wide dimensions that they are not easy to send to the addressee. In addition, the “voice engines”, which are the engines that change the text into speech, cannot be easily used, as they need a computer background on operating systems and the small amount of information available cannot be easily understood by all users.


Conveniently, the audio messages registered in professional forms, as well as the text files for the conversion in audio using “text-to-speech” technology, are converted into smaller files and sent to the addressee simply using voice modems and not necessarily sophisticated data transmitting cards. As a matter of fact, files that are too large would not allow the telephone message to be transmitted immediately. The user on the phone could wait several minutes before receiving the communication and could hang up. The larger the file to send is, the longer the wait may be. The system of the present disclosure avoids this drawback thanks to particular technical solutions: first, inserting an initial immediate “beep”, starting when the receiver is connected, which allows the addressee to hear a signal and hold it waiting, in case he needs less time to listen to the communication; second, converting the forms into automatically smaller files, thanks to a particular system for the compression of audio files, which makes them in an average mono quality, sufficient for the reception level of the phone; and third, is the possibility to insert at the beginning of the call a “confirmation file”, i.e., an acknowledge vocal message, which causes the user to interact with the telephone keyboard for listening or declining the arriving communication.


Conveniently, the text communication can be addressed to an “alias” and not to a particular telephone number. The server will be able to identify the alias and connect the communication to a specific telephone number, providing the privacy of the users.


This system also allows all users, under authorization, to use the most applications and functions available, thanks to the database on the web server. An Internet user, with his/her password, will be able to send various communications to various addressees, simply by indicating the required preferences.


Conveniently, the server holds a file archive with a database and multiple support that allows authorized users to import files with telephone numbers, write a text or retrieve pre-recorded messages, record them in a different audio form, send them to the addressees, and file everything on the server database, all using a simple connection to the Internet, without particular programs or the help of experts in this field.


Conveniently, the users will be able to write simple messages and send them with synthesized voices and possibly real voices and with an image, chosen among figures at pleasure, like robots, actors, singers, football players and other. With a simple photo and a nickname of the addressee, it is possible to send him/her a communication on the phone without knowing his/her number, and also relations between foreign companies might develop thanks to the possibility of a translator that converts the text into the desired language and sends it to the addressee. Anyone that has difficulties in speaking will have a new means of communication. People can talk together saving time and money, because operational and telephone costs will be covered by sponsors and advertising. New jobs related to services, information and public utility will be created.


Conveniently, the table through which messages are written includes an area for the insertion of the time and date to send the message.


Conveniently, the table through which messages are written includes an area for the selection of the tone of voice to use to send the message. Conveniently, the table through which messages are written includes an area for the selection of the transmission and/or reception of the messages to several telephone numbers.


Conveniently, the table through which messages are written includes an area for the selection of an automatic repeat of the number, in case the number called is engaged and/or free but without answer, choosing how many calls to try.


Conveniently, the table through which messages are written includes an area permitting to decide that in case there is an answering machine and/or a call transfer, the message can be transmitted anyway.


Conveniently, the user can send and/or receive the communication anywhere and to any telephone number. Conveniently, this system allows the user to receive an acknowledgement of the receiving message by e-mail or a message on the phone.


Conveniently, this system permits monitoring of every call made by the user, and the relative results are filed, so that the user can later verify and check the history of the message. Conveniently, the user has a password in order to send and/or receive the communication and is authorized to send and/or receive the communication as the server automatically detects it.


Conveniently, the user is authorized by an identification system to use the database and the functions of the system found on the web server and, thanks to the program installed on the server, can import data onto his hardware, input them on the server database, make operations in order to send messages to several addressees, select pre-recorded messages, select options, times and dates, and file and save data on the server.


Conveniently, the data transmission for the outbound calls is not performed via cable, but through an analog or digital telephone line.


Conveniently, this system permits a user to send and/or receive communications in real time and/or pre-recorded messages filed on the server in such a form suitable to be received by the addressee.


With regards to the reception, the addressee of the message can interact through telephone, using the keyboard or answering the message by voice. The server registers the answers and/or interactions left by the addressee, so that the sender, by means of a specific interface, can connect to the server, decode the meaning of the DTMF tones and/or listen to the vocal messages left by the addressee.


Conveniently, writing a text inside a banner and/or form, the user can send and/or receive a pre-recorded communication with the initial and/or final addition of the written text converted into speech.


Conveniently, an acoustic signal is transmitted as soon as there is a telephone connection with the addressee, avoiding immediate disconnection in case of a brief waiting period before the transmission of the communication.


Conveniently, if the transmitting file is too large, it is automatically converted and reduced to such an extent that the addressee can correctly receive it.


A method to convert text messages into vocal messages and send them by telephone line is disclosed and is characterized in that it comprises the following steps: decoding of the text received by the user; conversion of the text into speech; extension of the size of the vocal file created; adjustment of the vocal message in such a form to be read by the data transmitting card; interaction with the transmitting card; dialing of the number(s) indicated; transmission of the message on the phone; recording of the data of the telephone call and filing of the data on a server database; and during conversion, compress the file if wider and not suitable for a perfect transmission.


This method creates more audio files that are arranged by number and sent, following the order of configuration, all together in the same telephone call, to allow the addressee to listen on the phone to several vocal messages arranged in order but included in a single call.


Conveniently, the first stage of conversion of words is called “standardization of the text”, the second stage is the “standardization of the pronunciation”, the third stage is the pronunciation itself that puts in order more phonemes. Specific algorithms are used in order to fragment words and find the sound produced by a specific letter. The last stage of this process is the “prosody”, which is the speed of reading, with possible pauses and other details for the perfection of the audio. At this stage, the voice modem and/or a technological platform converts the text to voice.


The possibility to send long and wide text messages, later converted into vocal messages, to telephone numbers all around the world, permits a user to send easily and rapidly any kind of communication, no matter the length of the text. This operation can reduce costs and gives the sender a better assurance than previous systems, permitting a complete confirmation of the receipt by the addressee.


This acknowledgment is much more complete using the system of the present disclosure, which permits a user to check the complete or partial receipt of the communication, registering the opinions and interactions of the addressee. The system of the present disclosure has other advantages: for example, it allows people who have problems with communication, e.g., autistic, deaf and dumb, to communicate vocally on the phone with anyone without using their own voice, sending messages, help calls and other services by phone, so that the written text arrives to the addressee in the form of speech. Another application of this disclosure is to translate the text in any language by means of a simultaneous translator that changes the written text into the desired language and sends it to the addressee in the form of speech.


The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be reduced. Although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the description. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.


The Abstract of the Disclosure is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A non-transitory computer-readable storage medium comprising instructions that, when executed by the processor, cause the processor to: provide a user interface at a mobile communication device;receive a text input and an identifier associated with an addressee device via the user interface;transmit a message including the text input from the mobile communication device to a server for conversion into an audio message and for transmission of the audio message to the addressee device associated with the identifier;receive a reply message from the server, wherein the reply message includes a message from the addressee device in response to the audio message;provide a repeat transmission option via the user interface in response to the addressee device not accepting delivery of the audio message or declining delivery of the audio message; andautomatically attempt one or more additional transmissions of the audio message to the addressee device in response to a selection of the repeat transmission option.
  • 2. The non-transitory computer-readable storage medium of claim 1, further comprising instructions that, when executed by the processor, cause the processor to transmit a request from the mobile communication device to the server to receive the reply message.
  • 3. The non-transitory computer-readable storage medium of claim 2, wherein the reply message is a voice message, the computer-readable storage medium further comprising instructions that, when executed by the processor, cause the processor to play the voice message at the mobile communication device in response to receipt of the voice message from the server.
  • 4. The non-transitory computer-readable storage medium of claim 1, wherein the reply message is an email message that includes a voice message attached to the email message.
  • 5. The non-transitory computer-readable storage medium of claim 1, wherein the one or more additional transmissions are automatically attempted when the addressee device is busy.
  • 6. The non-transitory computer-readable storage medium of claim 1, wherein the user interface further comprises a selectable input to specify a tone of voice associated with the audio message.
  • 7. The non-transitory computer-readable storage medium of claim 1, wherein the identifier includes a telephone number, and wherein the user interface is operable to receive one or more telephone numbers.
  • 8. The non-transitory computer-readable storage medium of claim 1, wherein the user interface further comprises a banner interface area configured to receive a selection of a pre-recorded communication, and wherein the selected pre-recorded communication is sent with the audio message.
  • 9. The non-transitory computer-readable storage medium of claim 1, wherein the one or more additional transmissions are automatically attempted when the addressee device is free but does not answer a call attempting delivery of the audio message.
  • 10. The non-transitory computer-readable storage medium of claim 1, wherein the user interface provided at the mobile communication device includes an affordance whereby a user of the mobile communication device can select the repeat transmission option.
  • 11. A method comprising: receiving, at a server, a message and an identifier associated with a destination device from a mobile communication device, the message including text input received at the mobile communication device;converting the text input into an audio message;transmitting the audio message from the server to the destination device;in response to a determination that the audio message was not received by the addressee device, automatically attempting one or more additional transmissions of the audio message to the addressee device;receiving, at the server, a reply message from the destination device in response to the audio message; andtransmitting the reply message from the server to the mobile communication device in response to receiving the reply message.
  • 12. The method of claim 11, further comprising: receiving a request from the mobile communication device for the reply message; andtransmitting the reply message from the server to the mobile communication device in response to the request.
  • 13. The method of claim 11, wherein the reply message is an email message that includes a voice message attached to the email message.
  • 14. The method of claim 11, wherein the message further comprises a language identifier specifying a language to which the text input is to be translated, and wherein the method further comprises translating the text input from a first language to a second language before the text input is converted into the audio message.
  • 15. The method of claim 11, wherein the message received at the server further includes information associated with a selection of a pre-recorded communication from a plurality of pre-recorded communications presented at the mobile communication device via a banner interface of a web site, wherein the selected pre-recorded communication is included in the audio message transmitted from the server to the destination device.
  • 16. The method of claim 11, further comprising determining that the audio message was not received by the addressee device, wherein determining that the audio message was not received includes determining that the addressee device is free but does not answer a call attempting delivery of the audio message.
  • 17. The method of claim 11, further comprising determining that the audio message was not received by the addressee device because the addressee device was busy.
  • 18. A method comprising: providing a user interface to a display device of a mobile communication device;receiving a text input and an identifier associated with an addressee device via the user interface;transmitting a message including the text input from the mobile communication device to a server for conversion into an audio message and for transmission of the audio message to the addressee device associated with the identifier;receiving, at the mobile communication device, a reply message from the server, the reply message indicating that a reply voice message has been received at the server from the addressee device in response to the audio message;providing a repeat transmission option via the user interface in response to the addressee device not accepting delivery of the audio message or declining delivery of the audio message; andautomatically attempting one or more additional transmissions of the audio message to the addressee device in response to a selection of the repeat transmission option.
  • 19. The method of claim 18, wherein the reply message is an email message, and the reply voice message is attached to the email message.
  • 20. The method of claim 18, further comprising transmitting a request from the mobile communication device to the server to receive the reply voice message.
  • 21. The method of claim 20, wherein the reply voice message is received at the server in a first language and wherein the server converts the reply voice message from the first language to a second language before transmission to the mobile communication device.
  • 22. A method for sending an audio message to an addressee device, comprising: providing a user interface to a display device of a mobile communication device, the user interface including a repeat transmission option that, when selected, causes one or more additional transmissions of the audio message to be attempted in response to a determination that the audio message has not been received by the addressee device;receiving a text input and an identifier associated with the addressee device via the user interface;transmitting a message including the text input from the mobile communication device to a server for conversion into the audio message and for transmission of the audio message to the addressee device associated with the identifier; andreceiving, at the mobile communication device, a reply message from the server, the reply message indicating that a reply voice message has been received at the server from the addressee device in response to the audio message.
  • 23. The method of claim 22, further comprising causing the one or more additional transmissions of the audio message to be attempted in response to the determination that the audio message has not been received by the addressee device.
  • 24. The method of claim 23, wherein the determination that the audio message has not been received by the addressee device includes a determination that the addressee device did not accept delivery of the audio message.
  • 25. The method of claim 23, wherein the determination that the audio message has not been received by the addressee device includes a determination that the addressee device declined delivery of the audio message.
Priority Claims (1)
Number Date Country Kind
FI01A0199 Oct 2001 IT national
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/628,693, filed Dec. 1, 2009, which is a continuation patent application of and claims priority from U.S. patent application Ser. No. 11/858,775, now U.S. Pat. No. 7,649,877, entitled “Mobile Device for Sending Text Messages”, filed on Sep. 20, 2007, which claims priority from U.S. patent application Ser. No. 10/491,797, now U.S. Pat. No. 7,310,329, entitled “System for Sending Text Messages Converted into Speech Through an Internet Connection to a Telephone and Method for Running It”, filed on Apr. 6, 2004, which claims priority from PCT application PCT/IT02/00673 filed on Oct. 21, 2002 and from Italian Patent Application No. FI0A000199 filed on Oct. 22, 2001, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (655)
Number Name Date Kind
3704345 Coker et al. Nov 1972 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4348553 Baker et al. Sep 1982 A
4653021 Takagi Mar 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4776016 Hansen Oct 1988 A
4783807 Marley Nov 1988 A
4811243 Racine Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4833712 Bahl et al. May 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4878230 Murakami et al. Oct 1989 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4977598 Doddington et al. Dec 1990 A
4992972 Brooks et al. Feb 1991 A
5010574 Wang Apr 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5047614 Bianco Sep 1991 A
5057915 Von Kohorn Oct 1991 A
5072452 Brown et al. Dec 1991 A
5091945 Kleijn Feb 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5142584 Ozawa Aug 1992 A
5164900 Bernath Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5216747 Hardwick et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5282265 Rohra Suda et al. Jan 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5327498 Hamon Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353377 Kuroda et al. Oct 1994 A
5377301 Rosenberg et al. Dec 1994 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390279 Strong Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5424947 Nagao et al. Jun 1995 A
5434777 Luciw Jul 1995 A
5444823 Nguyen Aug 1995 A
5455888 Iyengar et al. Oct 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5475587 Anick et al. Dec 1995 A
5479488 Lennig et al. Dec 1995 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5536902 Serra et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5574823 Hassanein et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581655 Cohen et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5613036 Strong Mar 1997 A
5617507 Lee et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5642464 Yue et al. Jun 1997 A
5642519 Martin Jun 1997 A
5644727 Atkins Jul 1997 A
5664055 Kroon Sep 1997 A
5675819 Schuetze Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5687077 Gough, Jr. Nov 1997 A
5696962 Kupiec Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5721827 Logan et al. Feb 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5737734 Schultz Apr 1998 A
5748974 Johnson May 1998 A
5749081 Whiteis May 1998 A
5759101 Von Kohorn Jun 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5822743 Gupta et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5845255 Mayaud Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5862223 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5884323 Hawkins et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5913193 Huang et al. Jun 1999 A
5915249 Spencer Jun 1999 A
5930769 Rose Jul 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5941944 Messerly Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5974146 Randle et al. Oct 1999 A
5982891 Ginter et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5999908 Abelow Dec 1999 A
6016471 Kuhn et al. Jan 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6052656 Suda et al. Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064960 Bellegarda et al. May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6076051 Messerly et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6088731 Kiraly et al. Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6119101 Peckover Sep 2000 A
6122616 Henton Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6144938 Surace et al. Nov 2000 A
6173261 Arai et al. Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6188999 Moody Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6246981 Papineni et al. Jun 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6285786 Seni et al. Sep 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6334103 Surace et al. Dec 2001 B1
6356854 Schubert et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Bellegarda et al. Apr 2002 B1
6421672 McAllister et al. Jul 2002 B1
6434524 Weber Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6460029 Fries et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6487534 Thelen et al. Nov 2002 B1
6499013 Weber Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513063 Julia et al. Jan 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6546388 Edlund et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556983 Altschuler et al. Apr 2003 B1
6584464 Warthen Jun 2003 B1
6598039 Livowsky Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615220 Austin et al. Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6684187 Conkie Jan 2004 B1
6691064 Vroman Feb 2004 B2
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6718324 Edlund et al. Apr 2004 B2
6721728 McGreevy Apr 2004 B2
6735632 Kiraly et al. May 2004 B1
6742021 Halverson et al. May 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757718 Halverson et al. Jun 2004 B1
6766320 Wang et al. Jul 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6792082 Levine Sep 2004 B1
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813491 McKinney Nov 2004 B1
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6859931 Cheyer et al. Feb 2005 B1
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6901399 Corston et al. May 2005 B1
6912499 Sabourin et al. Jun 2005 B1
6924828 Hirsch Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931384 Horvitz et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6964023 Maes et al. Nov 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6996531 Korall et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7020685 Chen et al. Mar 2006 B1
7027974 Busch et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7050977 Bennett May 2006 B1
7058569 Coorman et al. Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7093693 Gazdzinski Aug 2006 B1
7127046 Smith et al. Oct 2006 B1
7127403 Saylor et al. Oct 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7152070 Musick et al. Dec 2006 B1
7177798 Hsu et al. Feb 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7225125 Bennett et al. May 2007 B2
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7266496 Wang et al. Sep 2007 B2
7277854 Bennett et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7299033 Kjellberg et al. Nov 2007 B2
7310329 Vieri et al. Dec 2007 B2
7310600 Garner et al. Dec 2007 B1
7324947 Jordan et al. Jan 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7376556 Bennett May 2008 B2
7376645 Bernard May 2008 B2
7379874 Schmid et al. May 2008 B2
7386449 Sun et al. Jun 2008 B2
7389224 Elworthy Jun 2008 B1
7392185 Bennett Jun 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7415100 Cooper et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7467087 Gillick et al. Dec 2008 B1
7475010 Chao Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7539656 Fratkina et al. May 2009 B2
7546382 Healey et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7558730 Davis et al. Jul 2009 B2
7571106 Cao et al. Aug 2009 B2
7599918 Shen et al. Oct 2009 B2
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7636657 Ju et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7647225 Bennett et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7657424 Bennett Feb 2010 B2
7672841 Bennett Mar 2010 B2
7676026 Baxter, Jr. Mar 2010 B1
7684985 Dominach et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707267 Lisitsa et al. Apr 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7801729 Mozer Sep 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7831426 Bennett Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longé et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7996228 Miller et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8036901 Mozer Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8219407 Roy et al. Jul 2012 B1
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8345665 Vieri et al. Jan 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8447612 Gazdzinski May 2013 B2
20010047264 Roundtree Nov 2001 A1
20020032564 Ehsani et al. Mar 2002 A1
20020046025 Hain Apr 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020198714 Zhou Dec 2002 A1
20040135701 Yasuda et al. Jul 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20050055403 Brittan Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050102614 Brockett et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050114124 Liu et al. May 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20060018492 Chiu et al. Jan 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060117002 Swen Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070088556 Andrew Apr 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070174188 Fish Jul 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20080015864 Ross et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080120112 Jordan et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080300878 Bennett Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090100049 Cao Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20100005081 Bennett Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100138215 Williams Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100228540 Bennett Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100332235 David Dec 2010 A1
20100332348 Cao Dec 2010 A1
20110047072 Ciurea Feb 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110264643 Cao Oct 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110306426 Novak et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120137367 Dupont et al. May 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20130110518 Gruber et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
Foreign Referenced Citations (50)
Number Date Country
681573 Apr 1993 CH
3837590 May 1990 DE
198 41 541 Dec 2007 DE
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0863453 Sep 1998 EP
1245023 Oct 2002 EP
2 109 295 Oct 2009 EP
01A000199 Oct 2001 FI
2293667 Apr 1996 GB
06 019965 Jan 1994 JP
2001 125896 May 2001 JP
2002 024212 Jan 2002 JP
2003 517158 May 2003 JP
2009 036999 Feb 2009 JP
10-2007-0057496 Jun 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10 2008 109322 Dec 2008 KR
10 2009 086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10 2011 0113414 Oct 2011 KR
WO 9502221 Jan 1995 WO
WO 9726612 Jul 1997 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
WO 9956227 Nov 1999 WO
WO 0060435 Oct 2000 WO
WO 0060435 Oct 2000 WO
WO 02073603 Sep 2002 WO
WO 03041364 May 2003 WO
WO 2006129967 Dec 2006 WO
WO 2008085742 Jul 2008 WO
WO 2008109835 Sep 2008 WO
WO 2011088053 Jul 2011 WO
Non-Patent Literature Citations (405)
Entry
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the Calo Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration—heterogeneous—knowledge—sources—calo—query—manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:122, 22 pages.
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Sid,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask For,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Dominique, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, May 1999, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications—public/deliverables—public/D1—6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized-restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How Semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T.R., “Collaborating around shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Intraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SennTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: the Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium—presentations/gruber—cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T.R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of The Next Twenty Years Series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al., “NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T.R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T.R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T.R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T.R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Standford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://lsro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, a Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://Isro.epfl.ch/p.-34241.html, 6 pages.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-freevoice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk—d2.2.pdf, 69 pages.
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, Al Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, (http://tomgruber.org/writing/ksl-95-69.pdf, Sep. 1995.) CHI '96 Proceedings: Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, Vancouver, BC, Canada, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16...rep..., 4 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Sid Smarter,” Oct. 18, 2011, Technology Review, http:// www.technologyreview.conn/printer—friendly—article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.ldc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV Remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU—20, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail ‘By Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul. 30, 2009, http://www.youtube.com/watch?v=0tEU61nHH4, 1 page.
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr. 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber).
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by The Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in the Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paper.ps.Z 1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA-80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Bulyko, I. et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System,” © 2004 Elsevier B.V., specom.2004.09.009, 18 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, Al Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chai, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 Pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Cox, R. V., et al., “Speech and Language Processing for Next-Millennium Communications Services,” Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DTL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Davis, Z., et al., “A Personal Handheld Multi-Modal Shopping Assistant,” 2006 IEEE, 9 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of US Patent No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of US Patent No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSS Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems-Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “Team: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System,” 1983, Proceedings of the First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students' Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The Sphinx-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of Eurospeech, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 36, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.SRI.com/demos/ATIS.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Kats, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “Rextor: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” Sigart Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr., 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr., 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM '98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages. Best Copy Available.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, Online, Copyright © 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages. Best Copy Available.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougmoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-Ig/9605015.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, EUROSPEECH, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System.”
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (Interact'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2009, 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOD Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH -Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 ACM, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages. Best Copy Available.
Weizenbaum, J., “Eliza—A Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of the Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkeley.EDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris- France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., ED, Directions and Challenges,15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of a Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7, 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” in Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” in Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 53430 4, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 14-17, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties, dspGuro, Digital Signal Processing Central,” http://www.dspguru.com/dsp/taqs/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, a., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)-An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993IEEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)-An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” in International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-Harpy Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the Hicom Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, a+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” BYTE, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat.. & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Universite de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel—scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum phase, 8 pages.
Wolff, M., “Poststructuralism and the Artful Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages. (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Related Publications (1)
Number Date Country
20130190021 A1 Jul 2013 US
Continuations (3)
Number Date Country
Parent 12628693 Dec 2009 US
Child 13729847 US
Parent 11858775 Sep 2007 US
Child 12628693 US
Parent 10491797 US
Child 11858775 US