Textile composite material

Information

  • Patent Grant
  • 6429153
  • Patent Number
    6,429,153
  • Date Filed
    Tuesday, November 25, 1997
    26 years ago
  • Date Issued
    Tuesday, August 6, 2002
    21 years ago
Abstract
The invention relates to a textile composite material used to stabilize, consolidate or reinforce soils and layers of earth, and which can also be used as a load-carrying drainage or filtering layer and comprises at least one nonwoven fabric (1). The disadvantage of nonwovens, used alone or in textile composites made of various plastic nonwovens, lies in their limited load-carrying capacity. To create a low cost textile composite material comprising at least one nonwoven fabric, having a high tear resistance in a main load direction and the ability to absorb high tensile forces without undue stretching, exclusively parallel, straight, load-carrying plastic filament yarns (2) are knitted, sewed or Raschel-knitted onto the nonwoven (1).
Description




FIELD OF THE INVENTION




The invention relates to a textile composite material used to stabilize, consolidate or reinforce soils and layers of earth and as a load-carrying filtering layer, e.g. to cover a drainage layer, and comprising a nonwoven.




BACKGROUND ART




Nonwovens, especially plastic nonwovens, are used frequently in geotechnical engineering—for example, in waste impoundment construction—and in hydraulic engineering to separate two layers of soil having different particle size distributions. Different filtration characteristics can be obtained, depending on the thickness and strength of the nonwoven. Plastic nonwovens made from coarse fibers are suitable for use as drainage layers and are often combined with filtering nonwovens.




The disadvantage of nonwovens, used alone or in textile composites made of various plastic nonwovens, lies in their limited load-carrying capacity. Compared to textiles made of filament yarns (e.g. wovens or knits), nonwovens have much greater stretchability with lower tear resistance. Even textiles such as wovens and knits that possess high tear resistance, which are also used in geotechnical engineering, usually exhibit unfavorable load-carrying behavior, since the application of forces to such textiles initially causes elongation of the material due to the stretching of the yarns, which extend in curved paths as a result of the stitch formation or interweaving. Higher load-carrying capacity develops only after the material has undergone considerable stretching.




DE-A 37 28 255 discloses a ground anchoring strip that includes a loose nonwoven as a drainage material, fastened to the upper side of which, by clamping or sewing, is a textile strip comprising tensile-load-carrying warp strands. The textile strip must be manufactured on a weaving or knitting machine in a separate production step and then brought together with and joined to the nonwoven in a second production step.




SUMMARY OF THE INVENTION




The task of the invention is to create a low-cost textile composite material comprising at least one nonwoven fabric and which exhibits high tear resistance in a main load direction and can absorb high tensile forces without undue stretching.




This task is accomplished according to the invention in that exclusively parallel, load-carrying, straight, plastic filament yarns are woven, knitted, sewed or Raschel-knitted onto the nonwoven.




In the use of textile composites in geotechnical and hydraulic engineering, there is nearly always a fly established main load direction, e.g. the direction of inclination of a slope. By the simple expedient of applying exclusively parallel, straight, load-carrying strands made of plastic material, the textile composite material can be rendered highly tear-resistant in one direction, the main load direction. Since the strands lie straight against the nonwoven, when force is applied they are immediately stretched in opposition to their intrinsic elasticity, rather than being initially stretched with much lower resistance, as in the case of wovens and knits.




The plastic filament yarns extending in the warp direction can be applied to the nonwoven inexpensively, on sewing, knitting or Raschel-knitting machines, in a width that corresponds to the width of a web of nonwoven. Suitable plastic filament yarns can be selected according to the field of application and the required load-carrying capacity of the textile composite. One especially low-cost solution is to use split polypropylene yarn as the load-carrying strand and optionally also as the binding yarn for fastening the load carrier to the nonwoven, which can also be made of polypropylene.




The cross section of the strands can range from 2 to 100 mm


2


, depending on the material of the load-carrying strands and the distance therebetween. The load-carrying strands preferably have a cross section of 4 to 50 mm


2


and are separated by a distance of 1 to 100 mm.




In an especially preferred embodiment of the invention, the load-carrying strands are Raschel-knitted onto the nonwoven in respective pairs, the distance between two pairs being 1 to 100 mm. This reduces the amount of binding yarn needed to secure the load-carrying strands. Of course, the connection between the nonwoven and the load-carrying strands is looser in this case than when the load-carrying strands are fastened individually, but such fixing of the load-carrying strands to the nonwoven is adequate. Once installed, both the load-carrying strands and the nonwoven are held in position by the pressure of the superjacent layers of earth.











BRIEF DESCRIPTION OF THE DRAWINGS




Further features and advantages of the invention will emerge from the following description of the drawings, which show:





FIG. 1

a plan view of an embodiment of the textile composite material according to the invention, and





FIG. 2

the textile composite material of

FIG. 1

, cut along section line II—II.











DETAILED DESCRIPTION OF THE INVENTION




The textile composite material depicted in

FIGS. 1 and 2

comprises a nonwoven


1


, This nonwoven


1


can be made of natural materials such as coconut or hemp fiber, or alternatively of plastic fiber, especially polyester, polypropylene or polyethylene fiber. Raschel-knitted onto one side


4


of the nonwoven


1


are paired load-carrying strands


2


of split polypropylene yarn. The strands


2


of split polypropylene yarn are about


3


mm in diameter and are guided onto a Raschel knitting machine as the warp and placed on the nonwoven


1


. A thin binding yarn


3


is guided onto the Raschel knitting machine as a looping warp. Each course of loops overlaps two strands


2


on side


4


of the nonwoven


1


and on the other side


5


of the nonwoven


1


comprises the links to the adjacent course.




LIST OF REFERENCE NUMBERS






1


Nonwoven






2


Load-carrying strands






3


Binding yarn






4


Face side






5


Reverse side



Claims
  • 1. A textile composite material used to stabilize, consolidate or reinforce soils and layers of earth and as a load-carrying drainage or filtration layer, the textile composite material comprising at least one nonwoven (1) having only unidirectional tensile load-carrying plastic filament yarns (2) knitted, sewed or Raschel-knitted to the nonwoven (1), wherein the tensile load-carrying yarns (2) extend in a warp direction of the nonwoven (1).
  • 2. A textile composite material according to claim 1, characterized in that a cross sectional area of the tensile load-carrying yarns (2) is 4 to 50 mm2.
  • 3. A textile composite material according to claim 1, characterized in that a distance between the tensile load-carrying yarns (2) is 1 to 100 mm.
  • 4. A textile composite material according to claim 1, characterized in that the tensile load-carrying yarns (2) are made of split polypropylene yarn.
  • 5. A textile of composite material according to claim 1, further comprising a binding yarn (3), with which the tensile load-carrying yarns (2) are Raschel-knitted, knitted or sewed to the nonwoven (1), and which consists of split polypropylene yarn.
  • 6. A textile composite material according to claim 1, characterized in that the tensile load-carrying yarns (2) are Raschel-knitted to the nonwoven (1) in pairs, the distance between pairs of yarns being 1 to 100 mm.
  • 7. A textile composite material according to claim 1, characterized in that the nonwoven (1), the tensile load-carrying yarns (2) and a binding yarn (3), with which the tensile load-carrying yarns (2) are knitted, sewed or Raschel-knitted, are made of polypropylene.
Priority Claims (1)
Number Date Country Kind
295 09 066 U Jun 1995 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/EP96/02352 WO 00
Publishing Document Publishing Date Country Kind
WO96/38634 12/5/1996 WO A
US Referenced Citations (22)
Number Name Date Kind
H90 Kumar Jul 1986 H
3816231 Marshall Jun 1974 A
4277527 Duhl Jul 1981 A
4435467 Rogers Mar 1984 A
4450196 Kamat May 1984 A
4472086 Leach Sep 1984 A
4497863 Cogan, Jr. Feb 1985 A
4518640 Wilkens May 1985 A
4980930 Cusimano Jan 1991 A
5065599 Groshens Nov 1991 A
5194320 Groshens Mar 1993 A
5201497 Williams et al. Apr 1993 A
5236769 Paire Aug 1993 A
5241709 Kufner et al. Sep 1993 A
5294479 Longo Mar 1994 A
5424110 Tornero et al. Jun 1995 A
5436064 Schnegg et al. Jul 1995 A
5726107 Dahringer et al. Mar 1998 A
5795835 Bruner et al. Aug 1998 A
5866229 Gartner et al. Feb 1999 A
6020275 Stevenson et al. Feb 2000 A
6171984 Paulson et al. Jan 2001 B1
Foreign Referenced Citations (8)
Number Date Country
2217150 Oct 1973 DE
3728255 Mar 1989 DE
3728255 Mar 1989 DE
295 09 066 Oct 1995 DE
510682 Oct 1992 EP
57-96114 Jun 1982 JP
59-88540 May 1984 JP
5988540 May 1984 JP
Non-Patent Literature Citations (1)
Entry
International Preliminary Examination Report for PCT/EP96/02352 published Apr. 7, 1998.