The present invention will be described in the following detailed description with reference to the following drawings:
a is an exploded view in side elevation of the heating or warming laminate of
a and 2b are schematic representations in top plan view of another embodiment of the laminate of the invention;
c is a schematic representation in top plan view of still another embodiment of the laminate of the invention;
a and 3b are schematic representations in top plan view of another embodiment of the laminate of the invention;
a and 6b are schematic perspective views of yet another alternate embodiment of the laminate of the invention; and
The heating and warming laminates disclosed herein include at least two layers, and may be formed to have a substantially flat top and bottom surface. Electrically conductive elements preferably are formed with electrically conductive ink or paste applied onto a surface of a first layer. The electrically conductive elements are then sandwiched between the first layer and a second layer to form the laminate.
Referring first to the embodiment of
The laminate 10 further comprises electrical conductors 30, 30′ (e.g., “bus wires”), which provide electrical contact with the patterned electrical elements 20, 20′, 20″ and 20′″. The electrical conductors 30, 30′ (bus wires) are selected from copper wire of circular, flat or another cross selection shape, such as a ribbon conductor, and may be multi-stranded or braided wire as well. A fine-strand braided copper wire with an equivalent of 26 AWG is one example. The electrical conductors have low electrical resistivity, e.g., 0.1 ohm/meter to 100 ohm/meter.
An adhesive composition applied between confronting surfaces of the layers of the laminate 10 bonds the outer layers 40, 50 and electrical conductors 20, 30 together in a sandwich style configuration, with the electrical conductors 20, 30 between the confronting surfaces of the outer layers 40, 50. Each element in the laminate is generally bonded to at least one other element of the laminate. For example, an adhesive may be applied to the confronting surface to which the patterned elements are applied and in turn adhered to the confronting surface of the outer layers. The adhesive may also be applied directly to the conductive bus wire 30 and 30′. The adhesive composition can, for example, constitute from about 5% to 70% of the weight of the composite laminate. Suitable adhesive compositions can, for example, be hot melt adhesives, such as styrene-based block copolymers, including styrene/isoprene and styrene/butadiene block copolymers. Bonding the laminate together by other methods may be possible, such as heat source lamination, laser or ultrasonic welding, where such techniques can be carried out without harming the patterned element 20 of conductive ink or paste.
Electrically conducting adhesives optionally may be used to bond the electrical conductors 30, 30′ to the patterned electrically conductive elements 20, 20′, 20″, 20′″ to enhance contact between the conductors and conductive elements.
The patterned electrically conductive elements 20, 20′, 20″ and 20′″, represented in
The electrical conductor means (e.g., bus wires) are connected to a power source to supply electrical power to the electrical resistance heating elements (e.g., conductive ink pattern). The power source may be an external source of electrical power which may be alternating current (AC), but more typically will be direct current (DC), such as from a battery (not shown). Preferably for certification by Underwriters Laboratories Inc. (UL®), the voltage supplied by the power source to the electrical resistance heating elements of the pattern is lower than 25 volts, e.g., a Class II UL® certified transformer may be used to step down a 110v power supply to 25 volts or under.
The electrically conductive elements 20, 20′, 20″ and 20′″ may be formed from an electrically conductive paste or ink which is patterned (image-wise formed) on an inner or confronting surface of one or both nonconductive sheet component outer layers 40 and 50. A useful means to image-wise form elements 20, 20′, 20″ and 20′″ is screen-printing the pattern onto a surface of a layer (e.g., layer 40 in
Suitable electrically conductive inks include, but are not limited, those inks sold by DuPont iTechnologies, Wilmington, Del. as silver ink 5021 or silver ink 5096, or Xink conductive inks offered by Acheson Electronic Materials, and the like.
Another embodiment of the laminate is represented by 100 in
Each patterned element 200-2007 of laminate 100 is provided with at least one aperture or through-hole 230 passing entirely through the laminate. The through-holes 230-2307 remove a portion of the conductive ink or paste and can break the bus wires 30, 30′ so as to create an electrical discontinuity in the conductive path of the patterned element. Such discontinuity ensures that the patterned elements can together create a circuit path for conducting electricity. Such through holes may be punched or cut in a separate step after the laminate is formed. The laminate 100 shown in
Alternatively, where through holes are not desired, an insulator material 240 may be deposited or applied at discrete locations between the conductive pattern ink and the bus wires, as shown in
Another embodiment of the laminate is represented by 105 in
In another alternate embodiment of the invention laminate 110 represented in
In yet other embodiments of the invention 120, 130 represented in
A garment, wearable, heating pad or electric blanket may incorporate one or more of the laminates according to the invention. For example, an electric blanket may include a plurality of the laminates 10 as shown in
A garment sleeve or leg or arm cuff 500 may incorporate one or more laminates according to the invention as shown, for example, in
Another embodiment 600 of the invention is shown in
In this embodiment 600, substantially cylindrical symmetry is achieved by bringing bus wires 30, 30′ closely together when overlapping the edges of the laminate surfaces 40. With such symmetry, the laminate structure forms a cuff or sleeve that may be placed on a person's arm or leg or other limb, or may be placed around another substantially cylindrical body. Bringing bus wires 30, 30′ closely together better facilitates an electrical connection to an external current supply.
As shown in
Optionally, the laminate structure may further include at least one stretch and recovery element bonded between the outer layers 40, 50. One stretch and recovery element and means for introducing such into a laminate structure is shown in PCT Application WO 2005123378 A1, the disclosure of which is incorporated by reference in its entirely for all useful purposes. A laminate with a substantially puckered appearance results when the stretch and recovery element is in a relaxed or unstretched state.
The invention further relates to a method for preparing a laminate adaptable for use in heating and warming applications. Referring to
Stated alternatively, a method for making a laminate according to the invention may include the following steps: (1) providing a length of sheet material having a first surface and a second surface; (2) providing or applying a conductive element onto the first surface; (3) extending and fixing at least a length of bus wire coextensively with the first length of sheet material, such that the extended length the bus wire is secured to the first surface of the length of sheet material along a substantial portion of the fixed length thereof and in contact with the patterned conductive element; (4) providing a second length of sheet material having a first surface, which is the confronting surface, and a second surface; and (5) securing the confronting surface (the first surface) of the second length of sheet material to a confronting surface (the first surface), of the first length of sheet material along a substantial portion of the length thereof to form a laminate with the bus wire sandwiched between confronting surfaces of the sheet materials. Optionally, a third length or additional lengths of sheet material may be provided to the laminate and similarly attached to the second surfaces of the first and second lengths of sheet material. While the method steps have been set forth in a number order above, a different step order may be appropriate in some circumstances and the method according to the invention is not intended to be limited to that set forth herein.
If it is desired to form an alternative laminate structure having stretch and recovery properties, the method further may include (6) extending and fixing at least one length of a stretch and recovery element to at least about 50% of its undeformed recoverable extension limit and securing such extended stretch and recovery element to the first surface of the first length of material, such that the stretch and recovery element is coextensive with the bus wires. Once the first and second lengths of sheet material are bonded together or are bonded to the stretch and recovery element, the extended length of said stretch and recovery element may be substantially relaxed, allowing the laminate to pucker. In one embodiment, the stretch and recovery element may be one or more spandex fibers.
In an embodiment of the present invention the laminate comprises at least first and second portions of substantially electrically insulating materials adhered to one another on confronting surfaces. First and second electrical conductor means and a patterned portion applied to the confronting surface of the first portion of insulating material are provided between confronting surfaces of the insulating materials. The patterned portion is selected to provide electrical conductivity and a portion of the patterned portion electrically contacts the conductor means at regions of intersection. The substantially electrically insulating materials may be sheets of non-woven fabric, woven fabric, woven textile, paper or film, such as polymer. The patterned portion may be formed with conductive ink or paste. The first and second electrical conductor means may be bus wires.
In an embodiment of the present invention the laminate comprises a plurality of patterned portions and the patterned portions are arranged serially and coextensively with a conductor means and define a plurality of regions of intersection. At least one region of intersection comprises a means to selectively interrupt the electrical contact of the at least one conductor means. The selective interruption of the electrical contact with the conductor means comprises at least a void (a hole) extending through the laminate along a substantially vertically aligned axis to the plane of the laminate. Included as an embodiment of the present invention is a method for making the laminate of the present invention comprising providing at least a void extending along a substantially vertically aligned axis to the plane of the laminate. Included as an embodiment of the present invention is a method for making the laminate of the present invention comprising providing a least a void extending along a substantially vertically aligned axis to the plane of the laminate by hole punching.
In an embodiment of the present invention the laminate comprises patterned portions of electrically conductive ink applied onto a confronting surface of at least one of the electrically insulating materials. In an embodiment of the present invention the laminate is adapted to supply heat when connected to a source of electrical power.
In an embodiment of the present invention the laminate comprises a garment or wearable incorporating the laminate. In an embodiment of the present invention the laminate comprises a blanket for heating or a heating pad incorporating the laminate. The laminates of this invention may be formed into garments or components of garments, or as heating pads or heating blankets or components of heating pads or heating blankets. The laminates may be in the form of a tape or band that may be integrally formed as a band or cuff or may be sewn into or onto or adhered onto a textile structure as a component thereof.
A simple test rig 700 for evaluating the resistive heating of various heating and warming laminate structures is shown schematically in
Once the laminate structure 100 to be tested is held within the test rig 700, the constant voltage power supply 702 is activated to apply about 120% of rated power to the laminate structure. The voltage (“V”) is measured across the pad bus wires 30, 30′. The current (“I”) is measured in the bus wires 30, 30′. From these measurements, the power (“P”) delivered to the laminate 100 is calculated as P=V*I. The temperature of the heating and warming laminate is a function of heat flux from the pad and the total element-to-ambient thermal resistance. The thermal resistance of the heat-sink is sufficient to avoid over-heating of the laminate.
Ink for the Examples of
The Cetus® substrate was a nonwoven polyester coated with urethane that had a thickness of 90±15 μm. This is a printable textile fabric available from Dynic USA Corporation of Hillsboro, Oreg.
The Pebax® resin nonwoven is available from Arkema, Inc. of Philadelphia, Pa.
The bus wires were braided copper—part number NE16240T from Cooner Wire Company.
The laminates were substantially flat and formed without gathers or elastic intended to form puckers. No stretch and recovery element was included in these particular example laminates.
Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above described embodiments of the invention may be modified or varied, and elements added or omitted, without departing from the invention, as appreciated by persons skilled in the art in light of the above teachings. It is therefore to be understood that the invention is to be measured by the scope of the claims, and may be practiced in alternative manners to those which have been specifically described in the specification.