This application claims the priority benefit of Taiwan Patent Application Serial Number 098108367, filed on Mar. 16, 2009, the full disclosure of which is incorporated herein by reference.
The invention is related to a method for manufacturing a TFT array substrate, and more particularly to a method for manufacturing a TFT array substrate, wherein this method can solve the problem that the adhesion between the copper conductive line and the glass substrate is not good.
As high technology is developed gradually, a video product (e.g. digital video or image device) has become a popular product in the daily live. According to the digital video or image device, a liquid crystal displaying panel is an important component so as to display the correlative information. The user can read the necessary information from this liquid crystal displaying panel.
Referring to
Recently, a conductive line which is used in the liquid crystal displaying panel is mainly made of aluminum metal (Al metal) or aluminum alloy (Al alloy), because Al metal or Al alloy has low resistance value and is easily made. However, as the liquid crystal displaying panel with big size is popular gradually, the conductive line having much low resistance value must be developed quickly, i.e. maybe the conductive line will be mostly made of copper metal (Cu metal) replacing Al metal or Al alloy.
When the copper conductive line is developed, there is a problem that the adhesion between the copper conductive line and the glass substrate is not good. In order to solve this problem, an adhesive layer is added to be disposed between the copper conductive line and the glass substrate, thereby helpfully increasing the adhesion between the copper conductive line and the glass substrate. However, generally the resistance value of the adhesive layer is not low so as to increase the resistance value of the copper conductive line. Or, the adhesive layer and the copper conductive line do not have similar etching property when the adhesive layer and the copper conductive line are etched. Thus, the manufacture cost can be increased.
In addition, when the copper conductive line is developed, there is another problem that the copper (Cu) of the copper conductive line and the silicon (Si) of the semiconductor layer containing N-type dopant can be diffused to each other.
Accordingly, there exists a need for a method for manufacturing a TFT array substrate capable of solving the above-mentioned problems.
The present invention provides a TFT array substrate including a substrate, at least one gate line and gate electrode, a gate insulating layer, and at least one channel component, source electrode, drain electrode and data line. The gate line and gate electrode are disposed on the substrate, wherein both of the gate line and gate electrode have first and second conductive layers, the first conductive layer is formed on the substrate, the first conductive layer contains molybdenum nitride, the second conductive layer is formed on the first conductive layer, and the second conductive layer contains copper. The gate insulating layer is disposed on the gate line, gate electrode and the substrate. The channel component is disposed on the gate insulating layer. The source electrode and drain electrode are disposed on the channel component, and data line is disposed on the gate insulating layer.
According to the gate line and the gate electrode of the present invention, the gate line and the gate electrode constituted by the copper metal layer and the molybdenum nitride layer can solve the problem that the adhesion between the copper conductive line and the glass substrate is not good. The molybdenum nitride layer can be an adhesive layer disposed between the copper conductive line and the glass substrate, thereby helpfully increasing the adhesion between the copper metal layer and the glass substrate. Furthermore, according to the gate line and the gate electrode of the present invention, the copper metal layer and the molybdenum nitride layer of the gate line and the gate electrode have low resistance value so as not to increase the resistance value of the copper conductive line. Also, the molybdenum nitride layer and the copper metal layer have similar etching property when the molybdenum nitride layer and the copper metal layer are etched. Thus, the manufacture cost can be decreased. In addition, after the copper metal layer of the gate line and the gate electrode is formed, a deoxidizer is provided for removing a copper oxide (CuO), whereby the resistance value of the gate line and gate electrode cannot be increased.
The foregoing, as well as additional objects, features and advantages of the invention will be more apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Embodiments of the present invention are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, wherein elements having the same reference numeral designations represent like elements throughout and wherein:
Referring to
Referring to
Referring to
Referring to
Referring to
According to the gate line and the gate electrode of the present invention, the gate line and the gate electrode constituted by the copper metal layer and the molybdenum nitride layer can solve the problem that the adhesion between the copper conductive line and the glass substrate is not good. The molybdenum nitride layer can be an adhesive layer disposed between the copper conductive line and the glass substrate, thereby helpfully increasing the adhesion between the copper metal layer and the glass substrate. Furthermore, according to the gate line and the gate electrode of the present invention, the copper metal layer and the molybdenum nitride layer of the gate line and the gate electrode have low resistance value so as not to increase the resistance value of the copper conductive line. Also, the molybdenum nitride layer and the copper metal layer have similar etching property when the molybdenum nitride layer and the copper metal layer are etched. Thus, the manufacture cost can be decreased. In addition, after the copper metal layer of the gate line and the gate electrode is formed, a deoxidizer is provided for removing a copper oxide (CuO), whereby the resistance value of the gate line and gate electrode cannot be increased.
According to the drain electrode, the source electrode and the data line of the present invention, the drain electrode, the source electrode and the data line constituted by the copper metal layer and the molybdenum nitride layer can solve the problem that the copper of the copper conductive line and the silicon (Si) of the semiconductor layer containing N-type dopant are diffused to each other. The molybdenum nitride layer can be an adhesive layer disposed between the copper metal layer and the semiconductor layer containing N-type dopant, thereby preventing the copper and the silicon (Si) from being diffused to each other. Furthermore, according to the drain electrode, the source electrode and the data line of the present invention, the copper metal layer and the molybdenum nitride layer of the drain electrode, the source electrode and the data line have low resistance value so as not to increase the resistance value of the copper conductive line. Also, the molybdenum nitride layer and the copper metal layer have similar etching property when the molybdenum nitride layer and the copper metal layer are etched. Thus, the manufacture cost can be decreased. In addition, after the copper metal layer of the drain electrode, the source electrode and the data line is formed, a deoxidizer is provided for removing a copper oxide (CuO), whereby the resistance value of the drain electrode, the source electrode and the data line cannot be increased.
Although the invention has been explained in relation to its preferred embodiment, it is not used to limit the invention. It is to be understood that many other possible modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
98108367 | Mar 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4272775 | Compton et al. | Jun 1981 | A |
5334544 | Matsuoka et al. | Aug 1994 | A |
5366916 | Summe et al. | Nov 1994 | A |
5909615 | Kuo | Jun 1999 | A |
6204535 | Yamazaki et al. | Mar 2001 | B1 |
6255706 | Watanabe et al. | Jul 2001 | B1 |
6376861 | Yaegashi et al. | Apr 2002 | B1 |
6432799 | Hashimoto et al. | Aug 2002 | B1 |
6529251 | Hibino et al. | Mar 2003 | B2 |
6767755 | Yamanaka et al. | Jul 2004 | B2 |
7250337 | Lee | Jul 2007 | B2 |
7462895 | Park et al. | Dec 2008 | B2 |
7586197 | Lee et al. | Sep 2009 | B2 |
7662676 | Park et al. | Feb 2010 | B2 |
7687327 | Cleeves et al. | Mar 2010 | B2 |
7759738 | Kim et al. | Jul 2010 | B2 |
7795690 | Misaki | Sep 2010 | B2 |
7820368 | Park et al. | Oct 2010 | B2 |
7932537 | Subramanian et al. | Apr 2011 | B2 |
7943519 | Park et al. | May 2011 | B2 |
20090085095 | Kamath et al. | Apr 2009 | A1 |
20090090942 | Kim et al. | Apr 2009 | A1 |
20090160741 | Inoue et al. | Jun 2009 | A1 |
20090173944 | Chen et al. | Jul 2009 | A1 |
20090184323 | Yang et al. | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100230676 A1 | Sep 2010 | US |