Thalamo-cortical circuitry in PVL

Information

  • Research Project
  • 10237115
  • ApplicationId
    10237115
  • Core Project Number
    R01EY030877
  • Full Project Number
    5R01EY030877-02
  • Serial Number
    030877
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    9/1/2020 - 3 years ago
  • Project End Date
    8/31/2025 - a year from now
  • Program Officer Name
    FLANDERS, MARTHA C
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    8/3/2021 - 2 years ago

Thalamo-cortical circuitry in PVL

Project Summary/Abstract Infants born prematurely are predisposed to hypoxic-ischemic (HI) injury such as periventricular leukomalacia (PVL), resulting in developmental disturbances to the thalamus, white matter, and cerebral cortex. As a consequence, survivors of PVL frequently demonstrate visual impairments to varying degrees. Because the thalamus is critical to visual processing, visual dysfunctions may be more severe if the thalamus is affected as a consequence of the HI insult. Yet, the effects of PVL on the developing thalamo-cortical network are unclear. In particular, it is currently not known how aberrant thalamo-cortical connectivity or altered volume of thalamic nuclei contribute to the deficits in visual processing that are commonly observed in individuals with PVL. To this end, the overall goal of the current study is to address the hypothesis that visual perceptual processing deficits may be more severe in individuals with PVL who have decreased volume of visual thalamic nuclei, distinct changes in myelination of thalamo-cortical networks, or atypical thalamo-cortical connectivity. We have developed a cutting-edge multimodal MRI approach consisting of morphometric analysis of individual thalamic nuclei, diffusion kurtosis imaging (DKI), high angular resolution diffusion imaging (HARDI), myelin water fraction maps, and network connectivity analyses that will be used in conjunction with a battery of tests of visual perceptual functions to determine the link between thalamic neuronal loss, thalamo-cortical connectivity, and visual perceptual processing abilities. A total of 36 individuals with PVL will be recruited, along with a cohort of 36 typically-developing controls. A rigorous statistical plan will use multiple levels of analysis to investigate the differences in behavioral and neuroimaging variables between individuals with PVL and controls, as well as the correlation between outcome measures. A series of regression analyses will evaluate the associations of neuroimaging variables with PVL and functional vision. Models will also consider the effects of age and gender on neuroimaging and behavioral outcomes. The unique combination of neuroimaging modalities utilized in this proposed study will provide complementary insight regarding the complex interplay between preterm HI damage in PVL and the resulting changes in thalamic development, and ultimately relate these findings to visual perceptual deficits. This study will contribute to our understanding of the impact of PVL on the establishment and myelination of the thalamo-cortical networks involved with visual perceptual processes, providing evidence-based biomarkers that can be used to evaluate future therapeutic approaches.

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R01
  • Administering IC
    EY
  • Application Type
    5
  • Direct Cost Amount
    257406
  • Indirect Cost Amount
    153696
  • Total Cost
    411102
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
  • Funding ICs
    NEI:411102\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    MASSACHUSETTS EYE AND EAR INFIRMARY
  • Organization Department
  • Organization DUNS
    073825945
  • Organization City
    BOSTON
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    021143002
  • Organization District
    UNITED STATES