The µSiM-hNVU - a human BBB platform for the study of brain injury mechanisms during systemic infection

Information

  • Research Project
  • 10252933
  • ApplicationId
    10252933
  • Core Project Number
    R61HL154249
  • Full Project Number
    5R61HL154249-02
  • Serial Number
    154249
  • FOA Number
    RFA-HL-20-021
  • Sub Project Id
  • Project Start Date
    9/3/2020 - 3 years ago
  • Project End Date
    8/31/2022 - a year ago
  • Program Officer Name
    OCHOCINSKA, MARGARET J
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    9/1/2021 - 2 years ago

The µSiM-hNVU - a human BBB platform for the study of brain injury mechanisms during systemic infection

Abstract Long-term cognitive impairment affects more than 70% of sepsis survivors, but the underlying mechanisms remain unknown. Though widely hypothesized, evidence of blood-brain barrier (BBB) dysfunction in septic patients is limited by practical barriers to diagnostic studies in critically ill subjects. While BBB breakdown and cognitive impairment are seen in animal models of sepsis, the complexity of sepsis in vivo and differences between animal and human responses means that animal models cannot unambiguously identify the circulating factors that cause brain injury in human sepsis. Therefore, we propose to develop the µSiM-hNVU as an `on-chip' platform featuring a human iPSC-derived neurovascular unit (NVU; brain microvascular endothelial cells, pericytes and astrocytes). The `blood side' will allow the flow-based introduction of blood- borne cells and molecules with known or hypothesized roles in sepsis related brain injury, and the `brain side' will feature iPSC-derived microglial cells serving as a reporter of the brain inflammatory status. The human NVU will be built on a device platform ? the µSiM ? featuring ultrathin silicon nanomembranes that provide for unhindered solute exchange between `blood' and `brain' compartments and glass-like optical quality for live cell imaging and high-resolution microscopy. In the R61 phase, the device platform will be advanced for ease-of- use including `plug-and-play' modules for flow and barrier measurements (TEER, diffusion), and compatibility with a small-volume, digital-ELISA assay for secreted proteins. The µSiM-hNVU will be validated with functional assays of blood-brain barrier (BBB) function, protein expression studies, and transcriptional analysis. We will also build a iPSC NVU in which each cellular component of the NVU carries the ApoE4 allele. The expression of the ApoE4 lipoprotein drives BBB dysfunction by a known pathway and increases the risk of cognitive impairment in humans and animals experiencing brain inflammation. We will use the ApoE4-NVU as a `diseased BBB on a chip? which we hypothesize will show enhanced vulnerabilities to candidate mechanisms of brain injury identified by our team and others. Specifically, we will test the hypotheses that 1) pre-activated monocytes invade the brain and drive microglial activation; 2) the damage associated molecular pattern (DAMP) complex S100A8/A9 drive BBB breakdown to promote leukocyte infiltration and neuroinflammation; and 3) circulating factors that degrade endothelial glycocaylx (e.g., heparinase) or contribute to systemic inflammation (cell-free hemoglobin) promote CNS infiltration of leukocytes and subsequent neuroinflammation.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R61
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    501887
  • Indirect Cost Amount
    91114
  • Total Cost
    593001
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    839
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NHLBI:593001\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZHL1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    UNIVERSITY OF ROCHESTER
  • Organization Department
    BIOLOGY
  • Organization DUNS
    041294109
  • Organization City
    ROCHESTER
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    146270140
  • Organization District
    UNITED STATES