The Cellular Geography of Therapeutic Resistance in Cancer

Information

  • Research Project
  • 10259732
  • ApplicationId
    10259732
  • Core Project Number
    U2CCA233195
  • Full Project Number
    5U2CCA233195-04
  • Serial Number
    233195
  • FOA Number
    RFA-CA-17-034
  • Sub Project Id
  • Project Start Date
    9/24/2018 - 5 years ago
  • Project End Date
    8/31/2023 - 8 months ago
  • Program Officer Name
    ZHANG, YANTIAN
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    9/1/2021 - 2 years ago

The Cellular Geography of Therapeutic Resistance in Cancer

Most patients who die from cancer do so because their cancer is resistant to available therapies, either intrinsically, or as it evolves in response to treatment. However, the fundamental mechanisms driving resistance remain largely unknown. Tumors are comprised of a complex multicellular ecosystem of malignant and non- malignant cells, and changes in their composition, states, spatial organization and interactions are central to therapeutic resistance. Thus, there is an enormous need to chart an atlas of a tumor's cells, their spatial organization and interactions as those change dynamically in resistance to therapy. Technological breakthroughs in spatial and single-cell genomics, including many innovations by our team, now put an atlas within reach, but harnessing this remarkable opportunity, requires collection of multiple spatial and single cell genomics data in clinical samples; novel study design strategies; new experimental and computational strategies to integrate across cellular and spatial data; algorithms to construct tumor atlases that capture the resistant state; and showing how to use an atlas to formulate and test new predictive models of resistance. The Boston Human Tumor Atlas Network Research Center (HTA-RC) will address each of these challenges by creating three comprehensive atlases of the cellular geography of human cancer to understand how changes in the tumor ecosystem lead to therapeutic resistance in: (1) Primary and acquired resistance to CDK4/6 inhibition in breast cancer; (2) Primary and acquired resistance to immune checkpoint blockade in metastatic melanoma; and (3) Primary resistance to immunotherapy in microsatellite stable (MSS) colorectal carcinoma (CRC) compared with microsatellite instable (MSI) CRC. All three tumors types tackle an unmet clinical need; have an approximately equal rate of resistance and response to allow comparisons between states; and harness significant clinical experience and build on substantial preliminary results at our center. To construct the atlases, we will collect at least 100 biospecimens per year from resections and biopsies of the three tumor types and analyze them with histopathological data, high-resolution spatial multiplex RNA and protein data, single- cell genomics data, and temporal clinical data. Our algorithms will recover key features of each data modality, and integrate them into a single atlas to determine what predicts and underlies resistance. We build on a well-established interdisciplinary team in two major cancer centers (DFCI, MGH) and four research institutions (Broad, Harvard, Stanford, Princeton). Our leadership (Haining, Regev) and Units comprise of foremost experts and pioneers in clinical genomics (Biospecimens; Johnson, Wagle), spatial and single cell genomics (Shalek, Rozenblatt-Rosen, Nolan, Zhuang), and computational biology and data science (Regev, Van Allen, Engelhardt). Our atlases will allow identification of predictive biomarkers of resistance in the tumor ecosystem, and therapeutic target discovery, targeting diverse facets of the complex tumor ecosystem.

IC Name
NATIONAL CANCER INSTITUTE
  • Activity
    U2C
  • Administering IC
    CA
  • Application Type
    5
  • Direct Cost Amount
    2111980
  • Indirect Cost Amount
    412846
  • Total Cost
    2397774
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    353
  • Ed Inst. Type
  • Funding ICs
    NCI:2397774\
  • Funding Mechanism
    OTHER RESEARCH-RELATED
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    DANA-FARBER CANCER INST
  • Organization Department
  • Organization DUNS
    076580745
  • Organization City
    BOSTON
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    022155450
  • Organization District
    UNITED STATES