The role of brain arousal in resting-state functional MRI

Information

  • Research Project
  • 10252780
  • ApplicationId
    10252780
  • Core Project Number
    R01NS113889
  • Full Project Number
    5R01NS113889-02
  • Serial Number
    113889
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    9/15/2020 - 4 years ago
  • Project End Date
    8/31/2025 - 7 months from now
  • Program Officer Name
    BABCOCK, DEBRA J
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    8/24/2021 - 3 years ago

The role of brain arousal in resting-state functional MRI

Project Summary Resting-state functional magnetic resonance imaging (rsfMRI) is being widely used to measure functional connectivity and dynamics of large-scale brain networks in both healthy subjects and patient groups, despite the neural bases of rsfMRI-based connectivity/dynamics measures remain largely unclear. Converging evidence has suggested the contributions from arousal-related factors given large rsfMRI changes seen across distinct brain states, however, a systemic understanding of the role of arousal factors in rsfMRI research is missing. The lack of this knowledge hampers the correct interpretation and proper use of rsfMRI-based measures of brain connectivity and dynamics. To bridge this critical gap, the major goal of this application is to develop an arousal measure based on spatiotemporal fMRI dynamics and then use it to elucidate and control for the influences of the arousal on rsfMRI-based measures of brain connectivity and dynamics. The research objective will be achieved through three specific aims. Aim 1 is to map spatiotemporal fMRI dynamics associated with a recently discovered event of arousal modulation and utilize this information to improve fMRI-based arousal measure. The working hypothesis is that transient arousal modulations are associated with a specific sequence of fMRI activations, and this spatiotemporal dynamic can be utilized to greatly improve fMRI-based arousal measurements. Aim 2 is to assess the contribution of arousal-related fMRI changes to the relationship between rsfMRI connectivity and non-neuronal signals, including physiological signals and head motions. It is hypothesized that the arousal modulation mediates spurious relationships between rsfMRI connectivity and the non-neuronal noise. In Aim 3, the contributions of arousal factors to rsfMRI-based quantifications of brain dynamics and their correlations with behavioral measures will be assessed. The working hypothesis is that the arousal effects on rsfMRI dynamics can be decomposed into the ?state? and ?trait? effects that have preferential impacts on the sensory/motor brain areas and higher-order cognitive networks respectively. The arousal ?trait? related to intrinsic individual difference in arousal regulation mediates a part of correlations between certain aspects of rsfMRI dynamics and human behavior. The proposed research is innovative because it will combine local experiments and big data analyses to systemically study the direct effect of arousal modulations on rsfMRI connectivity and dynamics, as well as indirect effects of mediating their correlations with physiology and behavior. It will also focus on spatiotemporal brain dynamics at transient arousal modulations and utilize this information for an fMRI-based arousal measure. The impact of this research is significant because a clear understanding of the effects of the arousal on rsfMRI-based connectivity/dynamics measures is critical for proper interpretation and correct use of these metrics. An accurate fMRI-based arousal measure is not only important for controlling the arousal effects and thus improve rsfMRI-based quantifications but also for future neuroimaging studies that are interested in the arousal and its role in various brain diseases.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R01
  • Administering IC
    NS
  • Application Type
    5
  • Direct Cost Amount
    245917
  • Indirect Cost Amount
    103356
  • Total Cost
    349273
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
    BIOMED ENGR/COL ENGR/ENGR STA
  • Funding ICs
    NINDS:349273\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    NPAS
  • Study Section Name
    Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section
  • Organization Name
    PENNSYLVANIA STATE UNIVERSITY-UNIV PARK
  • Organization Department
    BIOMEDICAL ENGINEERING
  • Organization DUNS
    003403953
  • Organization City
    UNIVERSITY PARK
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    168021503
  • Organization District
    UNITED STATES