Theft deterrent system

Information

  • Patent Grant
  • 8485391
  • Patent Number
    8,485,391
  • Date Filed
    Friday, May 22, 2009
    15 years ago
  • Date Issued
    Tuesday, July 16, 2013
    11 years ago
Abstract
Systems for deterring theft of retail products. Systems of this invention provide theft deterrent dispensing modules for dispensing products and may incorporate theft deterrent measures including mechanical deterrents, time delays and sound. The dispensing modules may include one or more pusher assemblies for dispensing product. Certain systems of this invention may also include a lockout feature, so that only one pusher assembly may be activated to dispense a product at one time.
Description
BACKGROUND

1. Field of the Invention


The invention relates generally to theft deterrent systems for dispensing products. More specifically, the invention relates to dispensing devices that incorporate theft deterrent measures, such as time delays and sound.


2. General Background


Theft of small items in retail stores is an all too common problem. Items that are in high demand by thieves include over-the-counter (OTC) products such as analgesics and cough and cold medications, razor blades, camera film, batteries, videos, DVDs, smoking cessation products and infant formula. Shelf sweeping is a particular problem for small items. Shelf sweeping occurs when individuals or groups remove all the shelf stock and exit the store, similar to a “smash and grab” shoplifting technique. Shelf sweeping relies on excessive quantities of product being available on the shelf. Retailers must keep substantial inventory on shelf or incur the cost of constantly restocking.


In addition to preventing theft, retail stores may want to limit the purchase of certain items. For example, to make methamphetamine, large quantities of cold medication are needed. Pseudoephedrine, the sole active ingredient in many cold medicines and decongestants, is also a key ingredient in methamphetamine, a powerful and highly addictive stimulant.


Retailers are constantly challenged to balance the needs of legitimate consumers' access to high theft items with measures to minimize the incidence of theft. It has long been known to place items such as cigarettes, sodas and newspapers in vending machines. Such machines require complete self-service by the customer. The customer places money into the vending machine and the machine dispenses the desired item. Typical vending machines, however, do not allow for variation in product size and can only vend the particular item that they were designed for. Additionally, typical vending machines may be inconsistent with the way that people currently purchase items; many people prefer to use credit or debit cards instead of cash. Many vending machines also occupy a great deal of space. Finally, typical vending machines do not employ any mechanism to prevent a purchaser from quickly dispensing all the items in the vending machine.


Because theft has become so rampant in certain product categories, such as razors and infant formula, many retail stores are taking the products off the shelves and placing them behind the counter or under lock and key. Customers must request the products in order to make a purchase. This requires additional labor costs to provide individual service to customers who would normally not require it. It also makes it difficult for customers to compare products. Furthermore, it may be impossible where the space behind the counter is limited and is needed for prescription medications. In some cases, products are simply unavailable due to high pilferage rates. Therefore, a device or dispensing apparatus that minimizes the incidence of product theft is needed.


A common problem at pharmacies and grocery stores is ensuring that consumers have access to cold medication or razors, but at the same time deterring theft or multiple purchases for the production of drugs. A solution to the problem of sweeping is to limit the amount of product each customer is allowed to purchase. However, this requires additional labor and is not feasible where many stores now allow customers the option to check themselves out without the help of a cashier. Furthermore, this solution also keeps lawful products out of the hands of lawful consumers. Finally, legislation may be required in order to limit such purchases. A device or dispensing apparatus that minimizes the likelihood of sweeping or unusually high numbers of multiple purchases is needed.


Such a device or dispensing apparatus should also be able to fit within common grocery, drug store or other retail environment shelves. It is also desirable that the device or dispensing apparatus effectively display the products so consumers can easily identify the products. It is also preferable that the dispensing apparatus be easy to use.


SUMMARY

Embodiments of this invention provide a system for dispensing product that deters theft of the product while also providing a dispensing system that is easy to use.


Embodiments of this invention may include one or more cabinet assembly units, which includes one or more dispenser modules. Each dispenser module generally includes a door assembly, a lockout assembly and side panels and houses at least one pusher assembly. Cabinet assembly units of this invention are easily adjustable, so that they may easily be restocked and reconfigured.


Certain embodiments of systems of this invention may incorporate a time delay feature, which requires someone who wants to remove more than one product from a dispenser to wait for several seconds between removal of each product. Certain systems of this invention may also include a lockout feature, so that only one pusher assembly may be activated to dispense a product at one time. In addition, some embodiments of this invention may include a drop down door, keyed locks and other mechanisms that prevent access to the product storage portion of the system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of a cabinet assembly of a theft deterrent system according to certain embodiments of the invention.



FIG. 2 is an exploded view of the assembly of FIG. 1.



FIG. 3 is a front perspective view of the assembly of FIG. 1, in a starting position before products, which are shown by broken lines, are dispensed.



FIG. 4 is a front view of the assembly of FIG. 1.



FIG. 5 is a top view of the assembly of FIG. 1.



FIG. 6 is an end view of the assembly of FIG. 1.



FIG. 7 is a front perspective view of one anti-theft module assembly according to certain embodiments of the invention.



FIG. 8 is an exploded view of the module assembly of FIG. 7.



FIG. 9 is a top view of the module assembly of FIG. 7.



FIG. 10 is an exploded perspective view of the lockout assembly of FIG. 8.



FIG. 11 is an exploded perspective view of the front door assembly of FIG. 7.



FIGS. 12 and 13 are perspective views of the slide assemblies of FIG. 7.



FIG. 14 is a perspective view of the right side door assembly of the module assembly of FIG. 7.



FIG. 15 is a perspective view of a divider of FIG. 7.



FIG. 16 is a perspective view of a pusher assembly of FIG. 8.



FIG. 17 is a top view of the pusher assembly of FIG. 16.



FIG. 18 is an exploded perspective view of the pusher assembly of FIG. 16.



FIG. 19 is an end view of the pusher assembly of FIG. 16.



FIG. 20 is a perspective view of the button of FIG. 16.



FIG. 21 is a bottom view of the pusher assembly of FIG. 16, shown without the motor.



FIG. 22 is a perspective view of the motor of the pushing device of FIG. 16.



FIG. 23 is a perspective view of the spring of FIG. 16.



FIG. 24 is a perspective view of a pushing device according to embodiments of the invention.



FIG. 25 is a side view of the pushing device of FIG. 24.



FIG. 26 is a rear view of the pushing device of FIG. 24.



FIG. 27 is an enlarged detail view taken at A in FIG. 24.



FIG. 28 is a perspective view in partial cross-section of the pushing device of FIG. 24.



FIG. 29 is a perspective view of an alternative embodiment of a pusher assembly of this invention.



FIG. 30 is an exploded perspective view of the pusher assembly of FIG. 29.



FIG. 31 is a side view of a portion of a cabinet assembly for use with the alternative embodiment of the pusher assembly shown in FIG. 29.



FIG. 32 is an enlarged detail view taken at B in FIG. 31.





DETAILED DESCRIPTION

Embodiments of the invention will now be described more fully with reference to the drawings.


Theft deterrent systems of this invention include one or more cabinet assembly units for dispensing products and for deterring theft of products. Theft deterrent systems of this invention may be configured so that only one product per dispenser may be removed at a time and only when the product is at the front of the assembly. This requires someone who wants to remove more than one product from a dispenser to wait for several seconds between removal of each product, which has been found to be a substantial deterrence to product theft.


A theft deterrent system of this invention may include a cabinet assembly, which includes one or more dispenser modules. In certain embodiments as shown in the drawings, the cabinet assembly 50 includes four dispenser modules 52. In other embodiments, cabinet assembly units may include various numbers of dispenser modules. As shown in FIG. 2, two dispenser modules 52 are separated from two additional dispenser modules 52 by a shelf 54. Additional shelves 54 form the top and bottom of the cabinet assembly 50. Shelves 54 may be fastened to the dispenser modules 52 using any suitable securing mechanism, such as a lock nut and truss head screw.


A cabinet assembly of this invention may be pre-manufactured and pre-assembled, obviating the need to use existing store shelves. As shown in FIG. 2, hangers 60 attached to the rear wall of cabinet assembly 50 may be used to install the cabinet assembly 50. Hangers 60 are sized to fit into existing standard shelving backs. According to certain alternative embodiments, a cabinet assembly may include a single dispenser unit and may be formed to fit into existing shelving, or may be formed as a “free standing” unit.


A single dispenser module 52 is shown in detail in FIGS. 7-9. Dispenser module 52 includes a lockout assembly 62, a door assembly 64, side panel members 66, and a plurality of pusher assembly units 68 which are separated by dividers 70 (also shown in FIG. 15). The lockout assembly 62, door assembly 64 and side panel members 66 may be joined using any suitable mechanical fastener, such as blind rivets 72, as shown in the drawings.


As shown in exploded view in FIG. 10, lockout assembly 62 includes slide lock cover 74, which is connected to front bottom member 76 using fasteners 77. In this manner, slide lock cover 74 and front bottom member 76 enclose slide lock member 78. Flange 80 on slide lock cover 74 projects into centering notch 82 on the slide lock member 78 so that slide lock member 78 is self-centering. Projections in centering notch 82 create a close tolerance fit and hold the slide lock member 78 in position.


Hinge components 86 on the front lockout door 88 connect with alternating hinge components 90 and 92 on each of the slide lock cover 74 and the front bottom member 76. In this manner, front lockout door 88 is joined to both of the slide lock cover 74 and the front bottom member 76. In some embodiments, all of the hinges are integrally formed on those components. Lockout door 88 may be closed over the row of actuators (further described below), so that no product is accessible without the assistance of store personnel. Directions of use may be printed on the inside surface 96 of the lockout door 88 to aid a user when the lockout door 88 is open. Alternatively, other pertinent information may be printed on the inside surface 96 of the lockout door 88.


Each aperture 98 of front bottom member 76 is sized to receive a pin 100 that projects from a bottom surface of a pusher assembly unit 68 (further described below). Pin 100 passes through aperture 98 of front bottom member 76 and into channel 104 of the slide lock member 78. When the actuator 234 is depressed, the pin 100 moves toward the back of the cabinet in the channel 104. As shown in FIG. 10, channels 104 are shaped so that as a pin 100 is forced through a channel 104, the slide lock member 78 shifts to one side, blocking access to any other channels 104. Channels 104 vary in position and direction. Thus, only one pin 100 may be forced through any channel at a time. In this manner, only one pusher assembly unit 68 may be activated at a time.


A plurality of rear slots 106 of front bottom member 76 trap extended tabs (not shown) on the divider 70 and extended tabs 108 on the pusher assembly 68 (FIG. 21), securing the dividers 70 and pusher assembly units 68 in position. The dispenser module may easily be reconfigured to accommodate a variety of sizes and quantities of pusher assembly units. This ensures that the optimum amount of shelf space is utilized, providing maximum density and profitability to the retailer.


Door assembly 64, shown in exploded view in FIG. 11, includes a front panel 110, a main door member 112 having two side plates 114, an upper door 116, a front lower 118, a top cover 120, and two slide assembly components 122 (shown in FIGS. 12 and 13). Preferably, at least main door member 112, upper door 116, front lower 118 and front panel 110 are clear, so that the encased products can be viewed easily by purchasers. According to certain embodiments, components are constructed of a clear plastic or other material to allow viewing of the product and to take advantage of its lightweight, yet shatterproof properties. Preferably, the components are made of polycarbonate.


Certain embodiments of the theft deterrent system of this invention may be easily reconfigured and/or restocked by unlocking the front panel 110 of the door assembly 64. Keyed locks 124 are mounted in front panel 110. Arm 125 of lock 124 engages slot 126 of side plate 114 when in a locked position. Hinge components 128, 130 on each of the front panel 110 and the main door 112 are integrally formed on those components and join the two components together. In this manner, the front panel 110 easily swings downward to a fully open position to provide access to the modules when unlocked.


Slide assembly components 122, shown in FIGS. 12-13, provide the unit with a “drawer-like” capability. Slide assembly components 122 may be attached to side panel members 66 using any suitable mechanism. In certain embodiments, and as shown in the drawings, tabs 132 of side panels 66 secure slotted rails 134 of each slide assembly 122 to each of side panel members 66. In addition, slide assembly components 122 are attached to top cover 120 using any suitable fastener and are attached to the lockout assembly 62 at the front bottom region using one or more fastening rivets. Outer wall 136 of each slide assembly component 122 fits against an extension 138 on each side panel member 66 so that each outer wall 136 and side panel member 66 form a side of the cabinet assembly 50 (FIG. 7). Top cover 120 is attached to outer wall 136 using fasteners 139.


Slotted rails 134 of slide assembly components 122 slide in travel way 140 of side panel members 66 (shown in FIGS. 8 and 14). Vertical locking tabs 142 attached to side panel members 66 are each perforated by a slot 146 which receives a post 147 of side panel member 66 and which allows vertical locking tabs 142 to slide vertically along the length of slot 146. In order to slide out the door assembly 64 to reconfigure the dispenser module, vertical locking tabs 142 slide up and out of notch 144 in slotted rail 134 and out of travel way 140 so that the door assembly 64 may slide out of the cabinet.


Horizontal locking tabs 148 attached to side panel members 66 provide an additional lockout feature. Horizontal tabs 148 are perforated by a slot 150 which receives post 152 of side panel member 66 and allows horizontal tabs to slide forward and backward along the length of the slot 150. Sliding horizontal tabs 148 forward moves notch 154 of horizontal tab 148 over post 156 (FIG. 11) attached to side plate 114. Post 156 also secures one end of spring 158, further described below. Notch 154 traps post 156, preventing movement of side plate 114 so that door assembly 64 is locked in a closed position. In this manner, access to actuators 234 (further described below) is restricted.


Main door member 112 includes a bottom 162 and two side plates 114. Each side plate 114 is perforated by a slot 126, which receives arm 125 of lock member 124, described above. Each side plate 114 is also perforated by a Y-shaped opening 164 and a curved opening 166, each of which receives one of two pins of upper door 116. First pins 168 of upper door 116 fit into the upper section of the Y-shaped opening 164, while second pins 169 of upper door 170 are received in curved opening 166.


As described above, main door member 112 and front panel 110 are joined by integral hinges 128, 130. As also described above, when the front panel 110 is locked, front panel 110 is secured to main door member 112 and cannot rotate to open on hinge components 128, 130. Thus, when locked, front panel 110 and main door member 112 function and move as a single component. Pulling on handle 172 of front panel 110 causes front panel 110 and main door 112 to pivot open about hinge post 173. First, pins 168 of upper door 116 drop down in the Y-shaped opening 164 and second pins 169 move through the curved opening 166 until the one or both of the pins reach the end point of the either opening. In this manner, the end points of the openings function as a stop preventing the front panel 110 from being fully extended in a forward direction and also limiting the travel of the front panel 110 and the main door 112. Post 175 on side plate 114 provides a point about which downwardly extending sides 177 of upper door 116 rotate when the front panel and main door are opened. Blind rivet 179 is received in a tab (not shown) of top cover 120 and prevents upper door 116 from dislodging during use.


Gear teeth 174 on top curved surface 176 of the side plates 114 engage damper 178. One damper 178 is housed in each damper housing 180 on each slide assembly component 122. Door spring 158 urges the door assembly to a closed position. One end of each door spring 158 is attached to a post (not shown) on each slide assembly component 122 and the remaining end is attached to a post 156 on each side plate 114. In this manner, the dampers 178 prevent the front panel 110 and the main door 112 from slamming shut and also prevent any dispensed product from jamming the unit before it is removed from the product dispensing area.


In certain embodiments and as shown in the figures, each end of the front lower 118 is attached to slide assembly components 122 using blind rivets 119, but may be attached by any suitable means. Front lower 118 is positioned just above the buttons of the pusher assembly units, further described below, and maintains the position of the modules when the slide assembly is closed.


Within each dispenser module is at least one pusher assembly unit 68 for advancing product, shown in FIGS. 16-19. The pusher assembly 68 includes a track 184 on which products are placed. The products are held in place and pushed forward by a pushing ram 188, which is held in tension by constant force spring 190 (FIG. 23). The pushing ram 188 keeps the next product to be dispensed against front lip 192. Thus, as a first product is removed from the shelf unit, the products located behind the one that was removed must move forward.


Pushing ram 188 includes a front surface 194 for engaging product and a rear surface 196. According to embodiments, the pushing ram 188 is rectangular plate, although other suitable shapes and geometries may also be used. Pushing ram 188 includes gusset 198 (shown in FIG. 19), reinforcing pushing ram 188 and providing a housing for spring 190 (further described below). As shown in FIG. 19, extension 202 extends beyond the bottom portion 204 of pushing ram 188. In this manner, extension 202 engages lip 192 of track 184, so that pushing ram 188 is in sliding engagement with track 184.


As shown in FIG. 17, spring 190 extends under the pushing ram 188, along track 184, and passes through front opening 206 in the track 184. End 208 of spring 190 includes aperture 210 that engages post 212 that projects downward from the bottom surface of the track 184. Spring 190 may also be attached to pusher assembly unit 68 in any other suitable manner. Movement of the pushing ram 188 toward the rear of the track 184 unwinds spring 190 so that spring 190 urges pushing ram 188 in the forward direction. The spring may preferably be a constant force spring, such as those sold under the trademark Conforce®, but many other types of springs, such as a variable force spring, may also be used. In certain embodiments, the spring is a stainless steel VULCAN PN# GP5D13AD spring that is 0.0050 inches thick by 0.250 inches wide by 13 inches long. The minimum force is 0.32 pounds and the maximum force is 0.80 pounds. Any other suitable spring may also be used.


Products can be loaded in pushing assembly unit 68 by forcing pushing ram 188 backwards along track 184 and placing multiple units of the product against the pushing ram 188. As described above, spring 190 causes the pushing ram 188 to exert force on the products towards the front of the track 184.


As shown in FIGS. 18 and 21, lifter slide 214 includes a central channel 216 having side walls 218. A gear rack 220 having exposed gear teeth 222 is attached to one of side walls 218 along central channel 216 so that gear teeth 222 project into channel 216 and engage external gear 224 of the motor 226, as further described below. It should be understood that the gear teeth may be positioned in various other manners along the track 184 or lifter slide 214 and maintain the functionality of the pushing assembly.


As shown in FIGS. 17-18 and 21, motor 226 is housed in cavity 228 on the bottom side 230 of lifter slide 214. Motor 226 includes a housing 232 and an external gear 224 (FIG. 22) and is positioned in cavity 228 so that external gear 224 extend up into channel 216 of lifter slide 214 and engage gear teeth 222. According to certain embodiments, one such motor is a resistance motor, such as the resistance motor Model #w217 sold by Vigor, although other types of motors may also be used.


Each pusher assembly unit 68 includes a product dispensing actuator, such as a button, lever or knob. According to certain embodiments and as shown in the Figures, the actuator is a mechanical button 234. A user pushes the button 234 to release a product. Button 234 includes slot 236 through which a post and snap member 238 of lifter slide 214, or any other suitable attachment mechanism, passes. In this manner, button 234 is connected to lifter slide 214 and button 234 slides freely along the length of the slot 236.


When button 234 is depressed and thereby moved in a rearward direction, stop 242 of button 234 contacts the forward edge 244 of ramp 246 of lifter slide 214, pushing lifter slide 214 in a rearward direction. As shown in FIG. 21, lifter slide 214 is perforated by a slot 245 through which assembly screw 247 passes, allowing lifter slide 214 to move along the length of slot 245. Assembly screw 247 is threaded to a post (not shown) in track 184, thereby connecting lifter slide 214 and track 184.


Continued depression of button 234 extends lifter springs 248, which are secured to the bottom of the lifter slide 214 and to the track 184. One end 252 of each spring 248 is attached to a hook 250 on track 184, while the second end 254 of each spring 248 is attached to a hook 256 on lifter slide 214, as shown in FIG. 21. In this manner, springs 248 urge lifter slide 214 in a forward direction. It should be noted that pulling on button 234 does not substantially speed up travel of lifter slide 214 to its forward most position, preventing a user from speeding up the time delay feature manually.


Depressing the button 234 forces the lifter slide 214 in a rearward direction so that the lifter 258 is forced to slide up ramp 246 and through track opening 260. Lifter 258 lifts the next product held against lip 192 by pushing ram 188. Because of the tension in the spring 190, pushing ram 188 pushes the lifted product forward over the lip 192 and into the product dispensing area. The user then opens the front panel 110 to remove the product. As described above, opening front panel 110 causes the upper door 116 to drop down and meet main door 112, blocking access to the next product. In this manner, no other products are accessible to the user.


As one product is removed, the force of the spring 190 causes the pushing ram 188 to move forward along the track 184 until the first of the remaining products contact the lifter 258. As the lifter slide 214 returns to its forward most position, the lifter 258 retracts causing the pushing ram 188 to advance the first product until the product contacts the lip 192 and is positioned above the lifter.


The resistance motor 226 substantially reduces the speed at which the lifter slide 214 returns to its forward position. The internal gears of the resistance motor are preferably configured to provide resistance to the forward movement by limiting the rotation of the external gear 224. Because the external gear 224 engages gear teeth 222 of gear rack 220 and the external gear rotation is limited, the movement of the lifter slide 214 toward button 234 is substantially slowed.


In certain alternative embodiments of a pusher assembly of this invention, shown in FIGS. 24-28, the pusher assembly 270 comprises a pushing ram 272, a track 274, and a motor 278. Pushing ram 272 engages product (not shown) and pushes product forward. As shown in FIGS. 25 and 28, pushing ram 272 includes a front surface 280 for engaging product and a rear surface 282. Pushing ram 272 includes gusset 284 (shown in FIG. 25), reinforcing pushing ram 272 and providing a housing for spring 286 (further described below).


As shown in FIG. 26 and similar to the embodiments described above, extension 288 of pushing ram 272 extends beyond the bottom portion of pushing ram 272. In this manner, extension 288 engages lip 292 of track 274, so that pushing ram 272 is in sliding engagement with track 274.


As shown in FIG. 27, track 274 includes a central channel 290 having side walls. Exposed gear teeth 294 on a side wall of the central channel 290 project into channel 290 and engage external gear of the motor 278. It should be understood that the gear teeth may be positioned in various other manners along the track and maintain the functionality of the pushing assembly. Motor 278 is attached to pushing ram 272 and includes a housing and an external gear 298. Motor 278 is positioned on pushing ram 272 so that external gear 298 extend into channel 290 of track 274 and engage gear teeth 294.


As shown in FIG. 28, spring 286 extends through a small slot 300 and an aperture in the end of the spring 286 engages a post 304 on the track 274. Spring 286 may also be attached to pusher assembly in any other suitable manner. Movement of pushing ram 272 toward the back end of the track 274 unwinds spring 286 so that spring 286 urges pushing ram 272 in the forward direction. The spring may preferably be a constant force spring, such as those sold under the trademark Conforce®, but many other types of springs, such as a variable force spring, may also be used.


Product can be loaded into the pusher assembly 270 by forcing pushing ram 272 backwards along track 274 and placing multiple units of the product against the pushing ram 272. A lip or wall may be located at the front of the display device so that the multiple units of product are located between the pushing ram and the lip. As described above, spring 286 causes the pushing ram 272 to exert force on the products towards the front of the track 274. Resistance motor preferably allows pushing ram to be forced backwards freely for loading of the product.


As one product is selected from the front of the pusher assembly 270, the compression of the spring 286 causes pushing ram 272 to move forward and the external gear 298 to rotate along gear teeth 294. This in turn causes the remaining product to move forward along track 274 until the remaining products engage the front lip 292. Resistance motor 278, however, substantially reduces the speed of this forward progression. The internal gears of the resistance motor are preferably configured to provide resistance to the forward movement by limiting the rotation of the external gear. Because the external gear engage the gear teeth of the track and the external gear rotation is limited, the movement of the pushing ram and therefore the remaining product to the front of the track is substantially slowed.


In other alternative embodiments, for example as shown in FIGS. 29-32, the time delay feature is associated with the button and the door assembly, and no motor is used. As shown in the Figures, pusher assembly 310 has button 312 including tab 314. When the button is depressed, the tab 314 is depressed under locking rib 316 on main door 318 (shown in FIGS. 31 and 32). Tab 314 is forced downward and passes under locking rib 316, but springs back up on the rear side of locking rib 316, so that button 312 is locked in a depressed position. When front panel 320 and main door 318 are opened to remove a product, locking rib 316 is raised up, releasing tab 314 and allowing button 312 to return to a ready-to-dispense position. Pusher assembly 310 also includes a pushing ram 322, pin 325 and spring 324 attached to a track 326, a lifter slide 328 and lifter 329, all of which function as described above for the embodiment shown in FIG. 18. Spring 331 functions similar to springs 248 described above to return the lifter slide to the ready to dispense position.


Certain embodiments of the anti-theft system may include a sound to alert store employees that a product is being dispensed. The system preferably includes means for producing a clearly audible sound. For example, the system may include a clicker for providing an audible clicking sound. The clicker may be incorporated into a spring so that the sound is heard when the spring is recoiled after engaging the actuator. As shown in FIG. 12, arm 340 of clicker 342 engages gear teeth 174 of a side plate 114 when the front panel 110 and main door 112 are opened, causing a clicking sound as the arm 340 passes over each of the gear teeth 174. Stop post 344 blocks downward movement of rear arm 346 so that arm 340 is trapped against the gear teeth 174 while the door is being opened.


In other embodiments, the sound producing mechanism may be incorporated into the resistance motor and may produce a ratchet sound. In other embodiments, the system can include an audible beeping sound. For example, engaging the actuator may activate an electronically produced beeping sound or an audible message when a product is dispensed. The audible sound alerts persons in the vicinity that a product is in the position to be removed. This may attract the attention of a store clerk or others and deter thieves or the removal of multiple product units.


In certain embodiments and as shown in FIG. 10, switch 330 and cover 332, interact with the notch of the slide lock, allowing the switch to open and close, sending a signal via a transmitter (not shown) to a PA system. An audible tone then alerts store personnel that the cabinet is being accessed. In another embodiment, an additional switch is provided which is triggered if the front door is opened too long. In one embodiment, a transmitter unit is triggered by opening the dispenser module. The transmitter then transmits a signal to a receiver that may or may not be remotely located.


The foregoing description is provided for describing various embodiments and structures relating to the invention. Various modifications, additions and deletions may be made to these embodiments and/or structures without departing from the scope and spirit of the invention.

Claims
  • 1. A product dispensing system comprising: (a) at least one product dispensing unit;(b) an adjustable product dispensing unit housing that may be reconfigured to house various sized product dispensing units;(c) at least one theft deterring mechanism that provides a time delay after a product is dispensed before the system will dispense a second product, wherein the time delay comprises: (i) a resistance mechanism; and(ii) a button accessible to a user and coupled to the resistance mechanism, the button having a ready position wherein activation of the button from the ready position to an activated position causes a product to be dispensed, and wherein the resistance mechanism delays the button returning to the ready position, wherein the at least one product dispensing unit comprises a plurality of product dispensing units; and(d) a door assembly comprising: (i) a front panel,(ii) a bottom panel and(iii) an upper panel,wherein when the front panel is opened, the bottom panel and the upper panel move together, blocking access to any product inside the housing.
  • 2. The system of claim 1, wherein the system further comprises: (i) a plurality of actuators accessible to a user, each actuator cooperating with a pin, and(ii) a lockout bar comprising a plurality of channels configured to accept a pin associated with an actuator,wherein the channels are shaped so that when a pin associated with an actuator enters a channel, the lockout bar shifts, preventing access to the remaining channels.
  • 3. The system of claim 2, wherein the pusher system further comprises a lifter slide coupled to the track, wherein activation of the system moves the lifter slide from a starting position to an extended position, and wherein when in the extended position, the lifter slide lifts the product lifter.
  • 4. The system of claim 3, wherein the resistance mechanism slows the speed at which the lifter slide returns to the starting position.
  • 5. The system of claim 1, wherein the bottom panel and the front panel are integrally joined.
  • 6. The system of claim 1, wherein the door assembly further comprises a lock associated with the door assembly, the lock having an unlocked position and a locked position, wherein the front panel and the bottom panel are secured together when the lock is in the locked position so that the front panel cannot be opened.
  • 7. A product dispensing system comprising: (a) at least one product dispensing unit;(b) an adjustable product dispensing unit housing that may be reconfigured to house various sized product dispensing units; and(c) at least one theft deterring mechanism that provides a time delay after a product is dispensed before the system will dispense a second product, wherein the time delay comprises: (i) a resistance mechanism; and(ii) a button accessible to a user and coupled to the resistance mechanism, the button having a ready position wherein activation of the button from the ready position to an activated position causes a product to be dispensed, and wherein the resistance mechanism delays the button returning to the ready position,wherein the product dispensing unit further comprises a pusher system, wherein the pusher system comprises:(i) a track comprising an aperture and a front lip;(ii) a pushing ram in sliding engagement with the track and that holds product against the front lip; and(iii) a spring that urges the pushing ram toward the front of the track.
  • 8. The system of claim 7, further comprising a door assembly comprising: (i) a front panel,(ii) a bottom panel and(iii) an upper panel,wherein when the front panel is opened, the bottom panel and the upper panel move together, blocking access to any product inside the housing.
  • 9. The system of claim 7, wherein the pusher system further comprises a product lifter housed under the aperture in the track; and wherein activation of the system lifts the product lifter through the aperture and lifts a product resting on the product lifter above the front lip, allowing the force of the spring to push the product over the top of the front lip.
  • 10. The system of claim 7, further comprising a plurality of product dispensing units.
  • 11. A product dispensing system comprising: (a) at least one product dispensing unit;(b) an adjustable product dispensing unit housing that may be reconfigured to house various sized product dispensing units;(c) at least one theft deterring mechanism that provides a time delay after a product is dispensed before the system will dispense a second product, wherein the time delay comprises: (i) a resistance mechanism; and(ii) a button accessible to a user and coupled to the resistance mechanism, the button having a ready position wherein activation of the button from the ready position to an activated position causes a product to be dispensed, and wherein the resistance mechanism delays the button returning to the ready position,(d) a pusher system, wherein the pusher system comprises: (i) a track;(ii) a pushing ram in sliding engagement with the track; and(iii) a spring that urges the pushing ram toward the front of the track; and(e) a door assembly comprising: (i) a front panel,(ii) a bottom panel and(iii) an upper panel,wherein when the front panel is opened, the bottom panel and the upper panel move together, blocking access to any product inside the housing.
  • 12. The system of claim 11, wherein the pusher system further comprises a product lifter housed under an aperture in the track; and wherein activation of the system lifts the product lifter through the aperture and lifts a product resting on the product lifter above the front lip, allowing the force of the spring to push the product over the top of the front lip.
  • 13. A product dispensing system comprising: (a) at least one product dispensing unit;(b) an adjustable product dispensing unit housing that may be reconfigured to house various sized product dispensing units; and(c) at least one theft deterring mechanism comprising: (i) a plurality of actuators accessible to a user, each actuator cooperating with a pin, and(ii) a lockout bar comprising a plurality of channels configured to accept a pin associated with an actuator,wherein the channels are shaped so that when a pin associated with an actuator enters a channel, the lockout bar shifts, preventing access to the remaining channels so that only one actuator can be activated at one time, andwherein the theft deterring mechanism further comprises providing a time delay after a product is dispensed before the system will dispense a second product.
  • 14. The system of claim 13, wherein the channels vary in position and direction so that only one pin may move through any of the channels at a time.
  • 15. The system of claim 13, wherein the time delay further comprises: (i) a resistance mechanism; and(ii) a button accessible to the user and coupled to the resistance mechanism, the button having a ready position wherein activation of the button from the ready position to an activated position causes a product to be dispensed, andwherein the resistance mechanism delays the button returning to the ready position.
  • 16. The system of claim 13, further comprising a door assembly comprising: (i) a front panel,(ii) a bottom panel and(iii) an upper panel,wherein when the front panel is opened, the bottom panel and the upper panel move together, blocking access to any product inside the housing.
  • 17. The system of claim 13, further comprising a plurality of product dispensing units.
  • 18. The system of claim 16, wherein the bottom panel and the front panel are integrally joined.
  • 19. The system of claim 16, wherein the door assembly further comprises a lock associated with the door assembly, the lock having an unlocked position and a locked position, wherein the front panel and the bottom panel are secured together when the lock is in the locked position so that the front panel cannot be opened.
  • 20. A product dispensing system comprising: (a) at least one product dispensing unit;(b) an adjustable product dispensing unit housing that may be reconfigured to house various sized product dispensing units;(c) a button accessible to a user and coupled to a resistance mechanism, the button having a ready position and wherein activation of the button from the ready position to an activated position causes a product to be dispensed; and(d) a pusher system comprising: (i) a track comprising an aperture and a front lip;(ii) a pushing ram in sliding engagement with the track and that holds product against the front lip;(iii) a spring that urges the pushing ram toward the front of the track;(iv) a lifter slide coupled to the track;wherein activation of the button to the activated position moves the lifter slide from a starting position to an extended position, and wherein the resistance mechanism slows the speed at which the lifter slide returns to the starting position and delays the button returning to the ready position after a product has been dispensed.
  • 21. The system of claim 20, wherein the pusher system further comprises a product lifter housed under the aperture in the track; and wherein activation of the system lifts the product lifter through the aperture and lifts a product resting on the product lifter above the front lip, allowing the force of the spring to push the product over the top of the front lip.
  • 22. The system of claim 21, wherein movement of the lifter slide from the starting position to the extended position causes the lifter slide to lift the product lifter.
  • 23. The system of claim 21, further comprising a door assembly comprising: (i) a front panel,(ii) a bottom panel and(iii) an upper panel,wherein when the front panel is opened, the bottom panel and the upper panel move together, blocking access to any product inside the housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/720,823, filed Sep. 27, 2005, the entire contents of which are herein incorporated by reference. This application is a continuation application of U.S. Ser. No. 11/528,032, filed Sep. 27, 2006, which is a continuation-in-part application of U.S. application Ser. No. 10/967,811, filed Oct. 18, 2004, which claims priority to U.S. Application Ser. No. 60/512,454, filed on Oct. 17, 2003, and which is a continuation-in-part application of U.S. application Ser. No. 11/409,885, filed Apr. 24, 2006, which claims priority to U.S. Application Ser. No. 60/674,880, filed Apr. 25, 2005, the entire contents of all of which are herein incorporated by reference.

US Referenced Citations (253)
Number Name Date Kind
691990 Warren Jan 1902 A
1034318 Sobretto et al. Jul 1912 A
1123071 Bell Dec 1914 A
1319084 Hume Oct 1919 A
1533147 Svendsgaard Apr 1925 A
1592720 Butler Jul 1926 A
1614363 Hicks Jan 1927 A
1680275 Albaugh Aug 1928 A
1755655 Langenfeld Apr 1930 A
1813935 Knee Jul 1931 A
1841926 Wray Jan 1932 A
1913843 Marcuse Jun 1933 A
2142053 Hoban Dec 1938 A
2163280 Hibshman Jun 1939 A
2304533 Bright Dec 1942 A
2412368 Tascher Feb 1945 A
2824666 Hausladen Feb 1958 A
2977023 Meyer Mar 1961 A
3161295 Chesley Dec 1964 A
3199724 Domenico et al. Aug 1965 A
3313448 Howard et al. Apr 1967 A
3351233 Chanoch et al. Nov 1967 A
3452899 Libberton Jul 1969 A
3578207 Danow May 1971 A
3583568 Crossien Jun 1971 A
3591048 Myers Jul 1971 A
3749279 Ungerman Jul 1973 A
3752357 Harris Aug 1973 A
3776418 Bookout Dec 1973 A
3777931 Fleming Dec 1973 A
3796345 Fessler Mar 1974 A
3805962 Bendiksen Apr 1974 A
3885706 Lodge May 1975 A
3923159 Taylor et al. Dec 1975 A
3957173 Roudebush May 1976 A
3968900 Stambuk Jul 1976 A
3999662 Barnhardt Dec 1976 A
4007853 Bahneman Feb 1977 A
4010869 Adamo Mar 1977 A
4018100 Moe Apr 1977 A
4190179 Moss et al. Feb 1980 A
4228903 Eckert Oct 1980 A
4275819 Perez Jun 1981 A
4308974 Jones Jan 1982 A
4336892 Cox et al. Jun 1982 A
4369887 Emery Jan 1983 A
4371093 Berger Feb 1983 A
4412607 Collins et al. Nov 1983 A
4474300 Entis Oct 1984 A
4506607 Jacoby Mar 1985 A
4576272 Morgan et al. Mar 1986 A
4679684 Glaser Jul 1987 A
4682826 Mestdagh Jul 1987 A
4779760 Wittern et al. Oct 1988 A
4852767 Humphrey Aug 1989 A
4887737 Adenau Dec 1989 A
4954760 Futch et al. Sep 1990 A
4962867 Ficken et al. Oct 1990 A
4965551 Box Oct 1990 A
5012936 Crum May 1991 A
5046641 Gray Sep 1991 A
5067634 Vidondo Nov 1991 A
5096367 Winski Mar 1992 A
5097611 Smollar et al. Mar 1992 A
5111942 Bernardin May 1992 A
5121854 Trouteaud et al. Jun 1992 A
5150101 Goris et al. Sep 1992 A
5169027 Falk et al. Dec 1992 A
5178298 Allina Jan 1993 A
5199598 Sampson Apr 1993 A
5229749 Yenglin Jul 1993 A
5232102 Ozawa Aug 1993 A
5240126 Foster et al. Aug 1993 A
5248060 Friedman et al. Sep 1993 A
5249705 Gates Oct 1993 A
5252948 Goris et al. Oct 1993 A
5253782 Gates et al. Oct 1993 A
5263596 Williams Nov 1993 A
5269597 Yenglin et al. Dec 1993 A
5285926 Falk et al. Feb 1994 A
5335816 Kaufman et al. Aug 1994 A
5335818 Maldanis Aug 1994 A
5360134 Falk Nov 1994 A
5375735 Huvey et al. Dec 1994 A
5375737 Ficken Dec 1994 A
5385266 Pate Jan 1995 A
5397025 Lee Mar 1995 A
5400919 Gomm et al. Mar 1995 A
5439136 Chatani et al. Aug 1995 A
5450969 Johnson et al. Sep 1995 A
5460294 Williams Oct 1995 A
5462198 Schwimmer Oct 1995 A
5542552 Yablans et al. Aug 1996 A
5632408 Mitchell May 1997 A
5665304 Heinen et al. Sep 1997 A
5709315 Kahler et al. Jan 1998 A
5716114 Holmes et al. Feb 1998 A
5790409 Fedor et al. Aug 1998 A
5813568 Lowing Sep 1998 A
5855281 Rabas Jan 1999 A
5909932 Shih Jun 1999 A
5927540 Godlewski Jul 1999 A
5960984 Weston Oct 1999 A
5960988 Freixas Oct 1999 A
6084511 Kil Jul 2000 A
6131748 Kawasaki Oct 2000 A
6176558 Hlade et al. Jan 2001 B1
6189727 Shoenfeld Feb 2001 B1
6196416 Seagle Mar 2001 B1
6199720 Rudick et al. Mar 2001 B1
6206237 Dillon et al. Mar 2001 B1
6230932 Lowing et al. May 2001 B1
6241121 Yasaka et al. Jun 2001 B1
6263259 Bartur Jul 2001 B1
6301501 Cronin et al. Oct 2001 B1
6318591 Martin Nov 2001 B1
6325242 Izawa et al. Dec 2001 B1
6454107 Belanger et al. Sep 2002 B1
6464089 Rankin Oct 2002 B1
6474478 Huchner et al. Nov 2002 B1
6478187 Simson et al. Nov 2002 B2
6520604 Yasaka et al. Feb 2003 B1
6581798 Liff et al. Jun 2003 B2
6601416 Sanders Aug 2003 B1
6604652 Trautwein Aug 2003 B1
6622979 Valiulis Sep 2003 B2
6659291 Huchner et al. Dec 2003 B2
6684126 Omura et al. Jan 2004 B2
6691891 Maldonado Feb 2004 B2
6694221 Chavez et al. Feb 2004 B2
6735473 Kolder et al. May 2004 B2
D491403 Gervasi Jun 2004 S
6758370 Cooke et al. Jul 2004 B2
6776304 Liff et al. Aug 2004 B2
6786341 Stinnett et al. Sep 2004 B2
6814254 Liff et al. Nov 2004 B2
6814255 Liff et al. Nov 2004 B2
6857539 Parra Feb 2005 B2
6892898 Boone et al. May 2005 B1
6957555 Nagel et al. Oct 2005 B1
7007810 Huehner et al. Mar 2006 B2
7017778 Halbherr Mar 2006 B2
7024894 Salonen Apr 2006 B2
7032776 Hieb Apr 2006 B2
D521363 Copen et al. May 2006 S
7052097 Meek et al. May 2006 B2
7086541 Robertson Aug 2006 B2
7128221 Metcalf Oct 2006 B2
7128239 Skavnak Oct 2006 B2
7131542 Sedon et al. Nov 2006 B2
7149600 Rippolone Dec 2006 B2
7150365 Hardy et al. Dec 2006 B2
7151982 Liff et al. Dec 2006 B2
7152536 Hardy Dec 2006 B2
7175045 Bond Feb 2007 B2
7178678 Mansfield et al. Feb 2007 B2
7197902 Barkdoll Apr 2007 B1
7207447 Medcalf et al. Apr 2007 B2
7213722 Nagelski et al. May 2007 B2
7246711 Metcalf Jul 2007 B1
7249761 Graef et al. Jul 2007 B2
7264138 Collins et al. Sep 2007 B2
7269983 Mchatet Sep 2007 B1
7293672 Mori Nov 2007 B2
7299934 Hardy et al. Nov 2007 B2
7303095 Nagelski et al. Dec 2007 B2
7347335 Rankin et al. Mar 2008 B2
7348884 Higham Mar 2008 B2
7389886 Hardy et al. Jun 2008 B2
7451881 Hardy et al. Nov 2008 B2
7458473 Mason Dec 2008 B1
7469791 Phoy Dec 2008 B2
7497341 Hardy et al. Mar 2009 B2
7533784 Vlastakis et al. May 2009 B2
7564351 Nagelski et al. Jul 2009 B2
7621409 Hardy et al. Nov 2009 B2
7641072 Vlastakis et al. Jan 2010 B1
7661545 Hardy et al. Feb 2010 B2
7669722 Hardy et al. Mar 2010 B2
7675421 Higham Mar 2010 B2
7768399 Hachmann et al. Aug 2010 B2
7823734 Hardy Nov 2010 B2
7828158 Colelli et al. Nov 2010 B2
8013740 Irmscher et al. Sep 2011 B2
8038016 Yuama et al. Oct 2011 B2
8047385 Hardy Nov 2011 B2
8056734 Menz et al. Nov 2011 B2
8056740 Weshler et al. Nov 2011 B2
8090473 Higham Jan 2012 B2
8146471 Hansen et al. Apr 2012 B2
8146753 Yuyama Apr 2012 B2
8190289 Lockwood et al. May 2012 B2
20030029816 Huchner et al. Feb 2003 A1
20030121929 Liff et al. Jul 2003 A1
20030178435 Yamaguchi Sep 2003 A1
20030189058 Liff et al. Oct 2003 A1
20040026344 Sedon et al. Feb 2004 A1
20040059464 Veenstra et al. Mar 2004 A1
20040060944 Gervasi Apr 2004 A1
20040084386 Huchner et al. May 2004 A1
20040104239 Black et al. Jun 2004 A1
20040149768 Scoville et al. Aug 2004 A1
20040238557 Chirnomas Dec 2004 A1
20050029205 Mansfield et al. Feb 2005 A1
20050029283 Pedigo Feb 2005 A1
20050065645 Liff et al. Mar 2005 A1
20050189369 Vlastakis Sep 2005 A1
20050189370 Carter et al. Sep 2005 A1
20050199644 Barili et al. Sep 2005 A1
20050205596 Kelly Sep 2005 A1
20050252925 Kelly Nov 2005 A1
20060138915 Goldberg Jun 2006 A1
20060157431 Nagelski et al. Jul 2006 A1
20060163272 Gamble Jul 2006 A1
20060219730 Handfield et al. Oct 2006 A1
20060237381 Lockwood Oct 2006 A1
20060266762 Andrews Nov 2006 A1
20070029340 Nagelski et al. Feb 2007 A1
20070078561 Sansone Apr 2007 A1
20070080175 Peterson Apr 2007 A1
20070119796 Barkdoll May 2007 A1
20070199863 Knoettgen-Nap Aug 2007 A1
20070221679 Chandler et al. Sep 2007 A1
20070251900 Hardy Nov 2007 A1
20070273513 White Nov 2007 A1
20070278164 Lang et al. Dec 2007 A1
20070283615 Vlastakis et al. Dec 2007 A1
20080092394 Freitag et al. Apr 2008 A1
20080142538 Miller Jun 2008 A1
20080246375 Berg Oct 2008 A1
20080283477 Wamsley et al. Nov 2008 A1
20090084745 Goehring Apr 2009 A1
20090166304 Hardy et al. Jul 2009 A1
20090184069 Hardy Jul 2009 A1
20090184129 Vlastakis et al. Jul 2009 A1
20090184130 Miller et al. Jul 2009 A1
20090242582 Vlastakis et al. Oct 2009 A1
20090321373 Hardy Dec 2009 A1
20100017025 Lockwood Jan 2010 A1
20100079240 Higham Apr 2010 A1
20100147783 Hardy Jun 2010 A1
20100188221 Irmscher et al. Jul 2010 A1
20100237093 Lockwood Sep 2010 A1
20110017763 Colelli et al. Jan 2011 A1
20110042331 Johnson et al. Feb 2011 A1
20110042332 Hardy Feb 2011 A1
20110094975 Hardy Apr 2011 A1
20110210084 Hardy Sep 2011 A1
20110220597 Sherretts et al. Sep 2011 A1
20110240569 Kahl et al. Oct 2011 A1
20110284488 Hardy Nov 2011 A1
20110315706 Lockwood Dec 2011 A1
20120000869 Hardy Jan 2012 A1
Foreign Referenced Citations (16)
Number Date Country
20 2005 010 088 Oct 2005 DE
20 2005 019 621 Mar 2006 DE
20 2007 011 927 Dec 2007 DE
1 541 064 Jun 2005 EP
1579789 Sep 2005 EP
01144185 Jun 1989 JP
02219194 Aug 1990 JP
09319937 Dec 1997 JP
2005049965 Jan 2005 JP
2006285930 Oct 2006 JP
WO 8912873 Dec 1989 WO
WO2004028311 Apr 2004 WO
WO 2007054042 May 2007 WO
WO 2006085211 Aug 2007 WO
2010094778 Aug 2010 WO
2010141552 Dec 2010 WO
Non-Patent Literature Citations (3)
Entry
Annex to Form PCT/ISA/206—Communication Relating to the Results of the Partial International Search dated Aug. 20, 2010 in Application No. PCT/US2010/037026.
International Search Report and Written Opinion dated Nov. 26, 2010 in Application No. PCT/US2010/037026.
International Preliminary Report on Patentability dated Dec. 15, 2011 in Application No. PCT/US2010/037026.
Related Publications (1)
Number Date Country
20090242582 A1 Oct 2009 US
Provisional Applications (3)
Number Date Country
60720823 Sep 2005 US
60512454 Oct 2003 US
60674880 Apr 2005 US
Continuations (1)
Number Date Country
Parent 11528032 Sep 2006 US
Child 12470649 US
Continuation in Parts (2)
Number Date Country
Parent 10967811 Oct 2004 US
Child 11528032 US
Parent 11409885 Apr 2006 US
Child 10967811 US