A computer readable XML file entitled “GWPCTP20220801328_Sequence listing.xml”, that was created on Oct. 21, 2022, with a file size of about 7,461 bytes, contains the sequence listing for this application, has been filed with this application, and is hereby incorporated by reference in its entirety.
The present application relates to the treatment of coronavirus SARS-CoV-2 infection and more particularly to a gold compound that inhibits the replication of SARS-CoV-2 while suppressing the cytokine storm syndromes.
Note that the points discussed below may reflect the hindsight gained from the disclosed inventions, and are not necessarily admitted to be prior art.
Coronavirus diseases, especially COVID-19, are infectious diseases that have spread worldwide and have caused great damage to the economies of the world. It is commonly recognized that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. Symptoms of COVID-19 include high fever, cough, trouble breathing, persistent pain or pressure in the chest, new confusion, inability to wake or stay awake, bluish lips or face, and organ failure. It is believed that many of the symptoms are caused by cytokine storm phenomena during which multiple cytokines, such as TNF-α, IL-1, IL-6, IL-12, IFN-α, IFN-β, IFN-γ, MCP-1, and IL-8, are rapidly and massively produced in the body fluid when the body’s immune system is over-activated by the virus infection. Cytokine storm has been an important cause of acute respiratory distress syndrome and multiple organ failures. Once a cytokine storm occurs, it can quickly cause single or multiple organ failure and becomes eventually life-threatening.
Many studies have been conducted in searching the cures for COVID-19. Current drug design strategies focus either on identifying antibodies or chemical drugs that can either inhibit virus replication or suppress inflammatory cytokines. Generally, chemical drugs are of unique advantages in dealing with the COVID-19 pandemic: chemical drugs can be easily produced on a large scale at a low cost and thus can satisfy the treatment demands for a large number of COVID-19 patients in a short time. More importantly, chemical drugs allow for efficient handling, storage, and distribution to patients living in environments unsuitable for biological agents. However, despite the tremendous global efforts in identifying suitable chemical drugs for the treatment of COVID-19, no chemical drug has been demonstrated to be able to treat COVID-19 infections effectively. For example, the FDA-approved drug REMDESIVIR was shown to only inhibit SARS-CoV-2 replication but failed to protect lungs from inflammation injury in patients with severe infections. On the other hand, RUXOLITINIB and ACALABRUTINIB were shown to suppress inflammatory cytokine spikes but failed to inhibit virus replication.
It would be more effective and desirable if an active ingredient chemical compound of a medicament can both inhibit virus replication and suppress cytokine storms. In this application, such novel therapeutic agents for potential treatment of COVID-19 are identified.
Gold compounds have been used for the treatment of rheumatoid arthritis (RA) through both oral route and parenteral route. Among them, AURANOFIN (AF) and aurothioglucose (also known as gold thioglucose), sodium aurothiomalate (gold sodium thiomalate) are FDA-approved drugs, all inhibiting inflammatory cytokines associated with rheumatoid arthritis, but they have side effects that can be severe for some patients. Recently, the present inventor in U.S. Pat. No. 9,993,562 (it entirety is hereby incorporated by reference) demonstrated that gold cluster compounds were able to achieve therapeutic outcomes that are comparable to AURANOFIN (AF), but were without some of AURANOFIN’s side effects.
The present application further shows that gold compounds for rheumatoid arthritis treatment can also counter lung inflammations in COVID-19 animals. In addition, the gold compounds AURANOFIN (AF) and gold cluster GA are shown to form Au-S bonds in the active pockets of the viral cysteine protease Mpro. Because the viral 3-chymotrypsin-like cysteine protease (3CLpro, also called Mpro) enzyme controls the coronavirus replication and it is essential for its life cycle, Mpro has been a drug discovery target in seeking a treatment for COVID-19. In GA-treated COVID-19 mice and rats, not only were the replications of SARS-CoV-2 significantly reduced, but also were the inflammatory cytokines of IL-6, IL-1β, and TNF-α suppressed, and no significant side effects were observed even at relatively high doses.
One aspect of the invention relates to a therapeutic composition for treatment of coronavirus infection in an animal, comprising: a gold compound stored in a liquid form as an active ingredient wherein a gold atom forms an Au—S bond in the coronavirus’ protease active pocket.
In one embodiment of the invention, the gold compound is AURANOFIN having molecule formula C20H34AuO9PS, C6H11AuO5S, or C4H5AuO4S.
In another embodiment of the invention, the gold compound is a gold cluster complex, wherein multiple gold atoms and multiple peptides or proteins or polymers form a complex molecule. Preferably, the gold compound has a chemical formula Aum(SG)n, wherein Au represents gold atoms, SG represents a small peptide, m is an integer between 3-200 and n is an integer between 2-220, more preferably, m is an integer between 10-43 and n is an integer between 10-42.
In another embodiment of the invention, SG represents a glutathione peptide (SEQ ID NO. 1) or SV peptide (SEQ ID NO. 6).
In another embodiment of the invention, the gold compound is selected from Au10-12(SG)10-12, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au22(SG)18, Au25(SG)18, Au25(SG)9, Au29(SG)20, Au29(SG)27, Au30(SG)28, Au33(SG)22, Au35(SG)22, Au38(SG)24, Au39(SG)24, Au18(SG)11, Au21(SG)12, Au25(SG)14, Au28(SG)16, Au32(SG)18, Au39(SG)23, and Au43(SG)37. Preferably, the gold compound is a gold cluster complex having a molecular formula Au29(SG)27, wherein SG represents a glutathione peptide (SEQ ID NO. 1) and Au represents a gold atom.
Yet in another embodiment of the invention, the coronavirus infection is COVID-19 and the coronavirus is SARS-CoV-2.
Another aspect of the invention relates to the use of a therapeutic composition in the manufacture of a medicament for treating or preventing a coronavirus infection in an animal.
In one embodiment of the invention, the use comprises the step of: preparing the therapeutic composition and administering sufficient amount of said therapeutic composition to said animal.
In another embodiment of the invention, said step of administering is through an intranasal spray, intraperitoneal injection, intramuscular injection, intravenous injection, or nasal inhaling method.
In another embodiment of the invention, said step of preparing a therapeutic agent further comprises the step of reacting gold (I) or gold (III) salt with glutathione peptide (SEQ ID NO. 1) solutions.
Yet in another embodiment of the invention, wherein the sufficient amount is in the range of 1 mg/kg.bw to 30 mg/kg.bw of the animal.
Further another aspect of the invention relates to a therapeutic composition for treatment of coronavirus infection in an animal, the coronavirus encoding a conserved papain-like main protease critical for its replication, comprising: a gold cluster compound stored in a liquid form having a molecular formula chemical Aum(SG)n wherein Au represents gold atoms, SG represents a small peptide, m is an integer between 3-200 and n is an integer between 2-220 wherein SG represents glutathione peptide (SEQ ID NO. 1) or SV peptide (SEQ ID NO. 6) wherein said gold cluster compound functions as an active ingredient that both forms Au—S bond in the active pocket of the main protease and suppresses cytokine expressions in the animal’s body.
In one embodiment of the invention, the gold cluster compound is administered to said animal for at least 4 days.
In another embodiment of the invention, the gold cluster compound is administered to said animal through a nasal spray method.
In another embodiment of the invention, the gold cluster compound is administered to said animal through transdermal absorption.
For treatment of COVID-19, in one embodiment, a sufficient amount of liquid suspension of gold compound molecules is intranasally administered to COVID-19 patients to reduce the symptoms of COVID-19.
In another embodiment, a sufficient amount of gold compound molecules are administered to COVID-19 patients via parenteral injection or to reduce the symptoms of COVID-19.
The disclosed application will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:
The numerous innovative teachings of the present application will be described with particular reference to presently preferred embodiments (by way of example, and not of limitation). The present application describes several embodiments, and none of the statements below should be taken as limiting the claims generally.
For simplicity and clarity of illustration, the following figures illustrate the general manner of construction, description and details of well-known features and techniques that may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the figures are not necessarily drawn to scale, some areas or elements may be expanded to help improve understanding of the embodiments of the invention.
In the present application, the animal may also be human being.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and the claims, if any, may be used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms used are interchangeable. Furthermore, the terms “comprise,” “include,” “have,” and any variations thereof, are intended to cover non-exclusive inclusions, such that a process, method, article, apparatus, or composition that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, article, apparatus, or composition.
The term “COVID-19” refers to the infectious disease that is at least RT-qPCR tested positive for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 symptoms may include high fever, cough, trouble breathing, persistent pain or pressure in the chest, new confusion, inability to wake or stay awake, bluish lips or face, and/or organ failure. Coronaviruses are a family of enveloped, positive-strand RNA viruses responsible for a wide range of diseases in a diverse range of animal hosts. Seven human coronaviruses (HCoVs) have been identified to cause respiratory diseases of varying severities: HCoV-OC43, HCoV-229E, HCoV-NL63, HCoVHKU1, SARS-CoV, MERS-CoV and SARS-CoV-2. Among these seven HCoVs, four (HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoVHKU1) are common co-circulating, seasonal coronaviruses that cause mild respiratory tract infections generally associated with cases of the common cold. Unlike other coronaviruses, SARS-CoV-2 disease can specifically cause systemic inflammation which can develop further into acute cardiac injuries, sepsis, abnormal organ functions, and heart failure. Other distinctive clinical features of SARS-CoV-2 include sore throat, hypoxaemia, dyspnoea, sneezing, and diarrhoea.
The term “gold cluster compound” refers to gold-atom cluster molecules comprised of a defined number of multiple gold atoms in a structured complex with a defined number of multiple gold binding molecules that have a thiol or selenol or phosphine or amine or arginine group, and such gold cluster molecules can characteristically emit fluorescent lights under excitation lights. The method of making such “gold cluster” molecules is described in US 8383919 B2 to XueyunGao, and the entirety of which is hereby incorporated by reference. These gold cluster compounds have been found to have a variety of biological effects. For example, gold-cluster molecules were found to cause the apoptosis of cancer cells, see e. g. US 9090660 B2 to XueyunGao, the entirety of which is hereby incorporated by reference; to mitigate bone loss in animals, see e. g. US 10029019 B1 to XueyunGao, the entirety of which is hereby incorporated by reference; to mitigate rheumatoid arthritis symptoms for rheumatoid arthritic animals, see e. g. US 9993562 B2 to XueyunGao. In this instant application, gold cluster compounds can be represented by the chemical formula of AuxPeptidey, wherein Au represents gold atom, peptide represents peptide or/and protein molecules, x=3-200, y=2-220. Preferably, the gold cluster compounds is Aum(SG)n, wherein m=3-200 and n=2-220, wherein Au represents a gold atom, SG represents a small peptide, m is the number of gold atoms and n is the number of peptides in gold cluster complex. Preferably, m=10-43 and n=10-42.In an embodiment of present disclosure, there is providedAu10-12(SG)10-12, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au22(SG)18, Au25(SG)18, Au25(SG)9, Au29(SG)20, Au29(SG)27, Au30(SG)28, Au33(SG)22, Au35(SG)22, Au38(SG)24, Au39(SG)24, Au18(SG)11, Au21(SG)12, Au25(SG)14, Au28(SG)16, Au32(SG)18, Au39(SG)23 or Au43(SG)37. In this application, GA refers to the gold cluster molecule having a molecule formula Au29(SG)27 with a measured molecular weight of 13,983 Da by electrospray ionization mass spectrometry, and it comprises of 29 Au atoms and 27 glutathione molecules formed in a cluster structure, for illustration purpose, as illustrated in
The term AURANOFIN (AF) is a prescribed medicine drug refers to the gold salt having a molecule formula C20H34AuO9PS0 with a structure illustrated in
The term “SARS-CoV-2” strain used in this research refers to a virus that is isolated from a COVID-19 patient (BetaCoV/Wuhan/IVDC/-HB -01/2020, EPI_ISL_402119) and passaged on Vero cells. In particular, the viral RNA was extracted from 100 µL supernatant of infected cells using the automated nucleic acid extraction system (TIANLONG, China) by following the manufacturer’s recommendations. For SARS-CoV-2 virus detection was performed using the One Step PrimeScript RT-PCR kit (TAKARA, Japan) on the LIGHTCYCLER 480 REAL-TIME PCR system (Roche, Rotkreuz, Switzerland). The replicase gene of SARS-CoV-2 was used for the detection which comprises two open reading frames, ORFla and ORF1ab. The primers targeting SARS-COV-2 ORFla were used in the study: Forward primer (SEQ ID NO. 2): 5′-AGAAGATTGGTTAGATGATGATAGT-3′; Reverse primer (SEQ ID NO. 3): 5′-TTCCATCTCTAATTGAGGTTGAACC-3′; Probe (SEQ ID NO. 4): 5′-FAM-TCCTCACTGCCGTCTTGTTGACCA-BHQ1-3′.
The term “Mpro” refers to SARS-CoV-2 main protease, which is the papain-like protease(s) responsible for processing the polyproteins that are translated from SARS-CoV-2 viral RNA. “Mpro” is also called coronavirus protease nsp5 or 3CLprothat is an approximately 30 kDa, three-domain cysteine protease conserved in structure and function in all known coronaviruses and serves as the main protease for proteolytic processing of the replicase polyproteins (ppla and pplab). Typically, coronaviruses code for two or three proteases to process the replicase polyprotein: one or two papain-like proteases (PLPs) encoded within nsp3, and one main protease, nsp5 (3CLpro or Mpro). PLPs are responsible for cleavage events between nsp1 and the N terminus of nsp4, whereas all remaining pp1a/pp1ab cleavage events are mediated by nsp5. The name ‘main protease’, or Mpro, refers to the critical role of this protease in coronavirus gene expression and replicase processing, and its other name 3C-like protease (3CLpro) refers to the similarities between this protease and 3C proteases seen in picorna viruses, namely their similar substrate specificities and core structural homology. Among coronaviruses, nsp5 proteases within the same genus generally exhibit sequence identity of greater than 80% whereas proteases in different genera are far more divergent with sequence identity much closer to 50% despite high tertiary and quaternary structural conservation, especially in domains 1 and 2. Sequence analysis of the SARS-CoV and SARS-CoV-2 proteases reveals only 12 residue differences (approximately 96% identity) spread throughout the structure of the protease, with the majority of these residues distant from the active site (including along the distal surface of domain 1 and within domain 3), which strongly supports the prospect of developing active-site inhibitors that target both proteases.
The term “intranasal administering” refers to the process of dropping or dripping or spraying drug substance into nasal cavities where nasal mucosa absorbs the drug substance.
The surface of the nasal mucosa in humans is around 150 cm2, a tissue that is well supplied by blood vessels. This ensures rapid absorption of most of the drug, allowing generating high systemic blood levels and avoiding the first-pass metabolism which needs to be taken into account following oral administration. In this application, the efficiency of intranasal administration is tested.
Typically, immediately upon entry into a host cell, the virus translates its replicase gene (ORF1) which consists of two large, overlapping ORFs, ORFla and ORF1ab. Located at the end of ORFla is a ribosome frame-shifting sequence consisting of an RNA pseudoknot that causes the co-translation of two large polyprotein precursors of differing lengths, ppla and pplab. Polyprotein ppla contains non-structural proteins (nsps) 1-11, and polyprotein pplab comprises the complete translated coding region of nsps 1-16. Essential for virus replication is the proteolytic processing of these polyproteins by virus-encoded proteases to yield the mature and functionally active replication machinery of the virus. Once proteolytically processed, the translation products of ppla collectively modulate host cell factors and help prepare the cell for viral RNA synthesis through the formation of replication complexes, while the C-terminal translation products of pplab largely catalyze and/or regulate the processes of RNA replication and transcription driven by the viral RdRp (nsp12). Replication complexes assemble on virus-induced membrane structures such as double-membrane vesicles and convoluted membranes driven by transmembrane nsps 3, 4, and 6. The active replication complex promotes the continuous and discontinuous synthesis of negative-sense RNA templates, which are subsequently used to drive the formation of genomic copies and a nested set of subgenomic RNAs from the downstream ORFs encoding structural and accessory proteins, respectively. Following replication of genomic and subgenomic RNA on double-membraned vesicles, structural proteins like the spike (S), envelope (E), matrix (M), and nucleocapsid (N) proteins are translated by existing positive-strand subgenomic RNAs. S, E, and M become glycosylated within the Golgi before localizing to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) to be assembled into virions.
Proteolytic processing acts as a key regulatory mechanism in the expression of the coronavirus replicase proteins, blocking this process has been demonstrated to block viral replication entirely. Background information can be found in Roe et al., “Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19,” Journal of General Virology, PMID, 33507143, DOI 10.1099/jgv.0.001558 (Jan. 28, 2021), the entirety of which is therefore incorporated by reference.
In the present application purified SARS-CoV-2 Mpro protein was obtained through cloning and expression of Mpro gene in E. coil. The full-length gene encoding SARS-CoV-2 Mpro was optimized and synthesized for Escherichia coli (E. coil) expression through GENEWIZ system. The gene was cloned into a modified pET-28a expression vector with an N-terminal (His) 6-tag followed by a Tobacco etch virus (TEV) cleavage site. The construct was confirmed by DNA sequencing. The plasmid was further isolated and transformed into the Escherichia coli Rosetta (DE3) expression strain of Invitrogen Inc. The E. coli cells containing the plasmids above were grown to an OD600 of 0.8 and induced with isopropyl β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM at 16° C. for 14 hrs. E.coli cells were then harvested by centrifugation at 4600 g, re-suspended in lysis buffer (120 mM Tris/HCl, pH 8.0, 20 mM imidazole and 300 mM NaCl), and lysed by French press, the lysate was centrifuged at 15 000 g for 50 min. Then the supernatant was loaded onto a Ni-NTA column pre-equilibrated with lysis buffer and washed with 20 mM Tris/HCl, pH 8.0, 300 mM NaCl, and 50 mM imidazole. The protein was eluted in 20 mM Tris/HCl, pH 8.0, 150 mM NaCl and 300 mM imidazole. TEV protease was added to the His tag fused protein solution and dialyzed overnight into anion-exchange chromatography buffer A (20 mM Tris/HCl, pH 8.0, 20 mM NaCl, 1 mM DTT, 1 mM EDTA) to cleave off the His(6) tag. The tag-cleaved protein was further purified using a Resource-Q column of AKTA fast protein liquid chromatography of GE Healthcare, Inc by elution with a linear gradient of 20-500 mM NaCl, 20 mM Tris/HCl, 1 mM EDTA, 1 mM DTT, and pH 8.0. The purity of the obtained Mpro was analyzed by SDS/PAGE at each step. The purified and concentrated SARS-CoV-2 Mpro was stored in 20 mM Tris-HCl (pH 7.3), 20 mM NaCl, 1 mM DTT, and 1 mM EDTA for enzyme activity assays and crystallization.
Five µl of the purified Mpro protein was used for Liquid chromatography-mass spectrometry analyses in positive-ion mode with a quadrupole-time-of-flight mass spectrometer combined with a high-performance liquid chromatograph for detecting the molecular weight of the purified Mproprotein. Mass deconvolution was performed using AGILENT MASSHUNTER Qualitative Analysis B.06.00 software with BIOCONFIRM WORKFLOW. The purified Mpro protein mass spectroscopy profile is shown in
The purified Mpro protein was used for crystallization at 22° C. using the sitting-drop vapor-diffusion technique. About 0.7 µl 6 mg/ml protein solution mixed with an equal volume of reservoir solution was used for growing crystals. Initial crystals were found under the crystallization conditions of the PEG/Ion Screen Kit of CRYSTAL SCREEN by Hampton Research. After optimization, the best crystals of Mpro protein were obtained under the condition of 200 mM KF and 15% PEG 3350 after 4 to 5 days. For gold compound treatment, crystals of Mpro proteins were further soaked in reservoir solutions in the presence of 10 mM GA gold cluster compound solution or 10 mM AURANOFIN compound solution for over 15 hr. Mpro crystals treated with GA or AF were then X-ray analyzed for structure changes.
Prior to data collection, all crystals were cryo-protected by plunging them into a drop of reservoir solution supplemented with 10-20% glycerol, then flash frozen in liquid nitrogen. The X-ray diffraction data were collected at the beamlines in Shanghai Synchrotron Radiation Facility and were processed using software HKL3000 or XDS. The initial phase was determined by molecular replacement method using the program PHASER from CCP4 program suit, with the crystal structure of SARS-CoV-2 main protease Mpro in complex with an inhibitor N3 (PDB entry 6LU7) as the initial model. The structure refinement was carried out using PHENIX and REFMAC, model building was carried out by COOT, and MOLPROBITY was used to validate the structure. The locations of Au (I) ions were identified according to the anomalous difference Fourier maps. Data collection and refinement statistics are listed in Table I. Mpro crystal structures were constructed using PYMOL as available at pymol.org.
In reference to
The binding energies between Au(I) and Mpro protein were calculated by density functional theory (DFT) calculations. According to the crystal structure shown in
Where EAu, Eligands, and Ecomplex were the total energies of the Au atom, ligands of the pocket, and the complex, respectively. Eligands was obtained by single-point energy calculation based on the optimized geometries of complexes with the Au atom removed. DFT calculations confirmed that Au atoms preferred to form S—Au bond with the thiol groups of Cys145 and Cys156 of the Mproprotein binding pockets. In addition, the N atoms of Ser144 and Cys145 and those of Tyr101 and Lys102 have a distance within 5 Å from the corresponding Au atoms, suggesting there may be considerable electrostatic interactions between the respective N atoms and Au atoms. The bond dissociation energies (EBD’s) between Au and the two pockets are calculated to be respectively 46.1 kcal mol-1 and 26.5 kcal mol-1. Such large EBDs suggest that the respective Au atoms are firmly locked inside the pockets, which can cause the effective inhibition of the proteinase activity of Mpro.
In references to
aThe values in parenthesis mean those of the highest resolution shell.
Referring to
EC50 measurements with SARS-CoV-2 were performed under biosafety level 3 (BSL-3) conditions at the Chinese Center for Disease Control and Prevention, China. Vero cells were infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.015 diluted in DMEM/F12 without FCS at 37° C. for 1 h. Cells were washed with DMEM/F12 with 10% FCS and supplemented with AURANOFIN or gold cluster GA in different concentrations. For solvent control, cells were only treated with 1% DMSO 48 hours after infection (h.p.i.), cells supernatant were collected and virus RNA samples were subjected to qRT-PCR measurement. All experiments were performed in triplicate.
In
Compared to the reported IC 50 for the known COVID-19 drug EBSLEN is 0.67 µM, AURANOFIN is shown to be a strong inhibitor for Mpro protease activity. Whereas the EC50 for the known COVID-19 drug REMDESIVIR is about 0.65 µM (
Similar measurements were performed using gold cluster compound GA, as shown in
The inhibitory effect of GA on Mpro protease activity in vivo was further tested on HEK293F cells transiently transfected with a plasmid containing strep-tagged SARS-CoV-2 Mpro gene. The Mpro gene was expressed for 24 hrs in HEK293F cells before GA was added to the culture medium for a final concentration of 500 µM, and cells were cultured for an additional 24 hrs. After cells were harvested, SARS-CoV-2 Mpro proteins were extracted from GA-treated HEK293F cells and were purified and analyzed for enzyme activity by MASS spectroscopy. As shown in
Recently Rothanet al reported that AF well inhibited SARS-CoV-2 replication in infected Huh cells and the EC50 of AF was about 1.4 µM, and they speculated that inhibition of SARS-CoV-2 replication might be induced by gold compound suppressing the thioredoxin reductase activity and inducing ER stress of host cells. See H. A. Rothan, et al, “The FDA-approved gold drug Auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells,” Virology 547, 7-11 (2020). However, based on the crystal structure studies in this application and the Mpro activity data reported herein, it is more likely that the gold compounds inhibit SARS-CoV-2 replication via Au(I) binding to Cys145 and Cys 156 of Mpro, causing the inhibition of its activity in host cells.
To test whether GA and AF are toxic to normal cells, Vero E6, RAW264.7, and 16HBE cell lines were tested. Various doses of AURANOFIN or GA gold cluster were added into cell culture media respectively. After 48 hours of incubation, cell viability was checked by CCK8 (Beyotime, China) following the manufacturer’s instruction, all studies were carried out in triplicate. All cell lines were obtained from ATCC with authentication service.
Referring to
The in vivo toxicity LD50 was measured in mice as follows. 100 adult female BALB/c mice for experiments were conducted in compliance with regulations of the National Act on the use of experimental animals (China) and were approved by the Institutional animal care and ethic committee at the Chinese Academy of Sciences (approved No. SYXK (jing) 2014-0023). Their weights ranged between (18 g-22 g). Mice were housed in plastic cages, each cage contained 10 mice. Animals were kept at a controlled temperature of 25 ± 2° C. for 12 hours under light and 12 hours dark cycle throughout the experiment. The LD50 was studied by a “staircase method” with increasing doses of FA or GA. Ten doses of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 mg/kg b.wt per body weight were given to 10 groups of mice (10 in each) for the determination of intraperitoneal LD50 in female mice. Animals were observed for the 2, 6, and 24 hours for any toxic symptoms. After 24 hours, dead animals were counted in each group and LD50 was determined by the method of Karber. In this study, no mice were dead within 24 hours after various amounts of GA were injected.
In the rheumatoid arthritis rat/mice treatment model, when oral AF was given at a dose of 6-9 mg/kg.bw and an intraperitoneal injection of GA was given at 5 mg/kg.bw, both of the two treatments doses of AF and GA showed significant suppression of inflammatory cytokine levels and were observed to achieve a similar outcome for rheumatoid arthritis treatment. However, the toxicity data on the cellular level, on mice and rats in vivo, and on rheumatoid arthritis model mice/rat treatments, all suggest that gold cluster GA is a safer form of the gold compound, and it may be a better choice as a drug and of higher safety than AF when electing them as treatments COVID19 patients.
Most recently, a clinical study revealed that severe COVID-19 patients have a hyperinflammatory immune response associated with macrophage activation. See Y. Cao, et al. “Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial,” J. Allergy Clin. Immunol. 146, 137-146 (2020). By using RA treatment drugs, RUXOLITINIB, to inhibit the activation of the NFκB pathway in macrophages, down regulation of the expression level of IL-6, IL-1β, and TNF-α were observed and the oxygenation and clinical status of most severe patients on supplemental oxygen were improved relatively rapidly.
Referring to
As shown in
The dose-dependent cytokine expression suppressions are quantitatively shown in
In inflammatory macrophages, the nuclear factor NFκB is the key signaling pathway that regulates the inflammatory mediator genes which involve the inflammatory factors to induce the activation of the IκB kinase (IKK) complex, causing subsequent degradation of IκB proteins, and releasing p-p65 which enters the nuclei to induce the expression of TNF-α, IL-1β, and IL-6. As shown by the Western blots, AF or GA treatment could decrease IKK phosphorylation level, causing suppressed IκB phosphorylation and the inhibition of p65 phosphorylation. In this case, AF at a low dose (1.2 µM) could inhibit phosphorylation of IKK, IκB, and p65, thus suppress the NFκB activation. GA at a relatively high dose (40 µM) could inhibit the phosphorylation of IKK, IκB, and p65, thus suppressing NFκB activation in inflammatory macrophage cells and human bronchial epithelial cells.
As reported in COVID-19 patients, virus-infected bronchial epithelial cells would activate NFκB pathway to express inflammatory cytokine, these cytokines would activate macrophages into inflammatory status. Shown in
The COVID-19 mice model was generated following a recently reported method and detailed procedures are illustrated in
In particular, pathogen-free 6eek-old female BALB/c mice were purchased from SiPeiFu Laboratory Animal Co (Beijing, China). All protocols were approved by the Institutional Animal Care and Use Committees of the National, Institute for Viral Disease Control & Prevention, and the Chinese Center for Disease Control and Prevention. The SARS-CoV-2 strains used in this research were isolated from COVID-19 patients (BetaCoV/Wuhan/IVDC/-HB -01/2020, EPI_ISL_402119) and passaged on Vero cells. The human serotype 5 adenoviral vector expressing human ACE2 under the control of the CMV promoter was a gift kindly provided by Dr. Zhao Juncun.
COVID-19 mice were generated as previously reported. See S. Du, et al., “Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy,” Cell 183, 1-11 (2020). 12 mice were divided into 3 groups with four mice each, at day 0, mice were anesthetized with pentasorbital sodium and transduced intranasally with 2.5×108 FFU of Ad5-ACE2 in 50 µL DMEM. Five days after transduction, 1 hr before infection, these mice received either a dose of 15 mg/kg GA intraperitoneal injection (i.p.) in a volume of 150 µL or an equivalent volume of Normal Saline (NS, 0.9% sodium chloride) administered to control mice. These mice were then infected intranasally with SARS-CoV-2 (1×105 PFU) in a total volume of 50 µL DMEM. Infected mice continued to receive either GA or Normal Saline (NS) i.p. treatment for three days. All mice were weighed every day and euthanized at 4dpi. The mice lungs were collected and weighed, and lung homogenates were prepared in NS (0.1 g tissue with 0.5 mL NS) by crushing for 10 min and then centrifuging at 3000 rpm for 10 min at 4° C. The 100 µL of supernatant of the lung homogenates was collected to extract viral RNA and qRT-PCR was used to assess the SARS-CoV-2 RNA copies in the infected lungs. All mice were euthanized after 4 day’s treatments, the body weight loss, SARS-CoV-2 RNA copies in the lungs, lung pathological changes, and key inflammatory cytokine levels (IL-6, IL-1β, TNF-α) in the lungs were studied.
Experimental mice were anesthetized and the lungs were collected and fixed in 4% (v/v) paraformaldehyde solution for 48 hours, and paraffin sections (3-4 µm) were prepared. The paraffin sections were stained with Hematoxylin and Eosin (H&E) to identify histopathological changes in the lungs. The histopathology images of the lung tissues were observed by light microscopy. All experiments with SARS-CoV-2 were conducted in the Biosafety Level 3 (BSL3) Laboratories of the National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention.
BALB/c female mice and SD rats for experiments were conducted in compliance with regulations of the National Act on the use of experimental animals (China) and were approved by the Institutional Animal Care and Ethics Committee at the Chinese Academy of Sciences (approved No. SYXK (jing) 2014-0023). The experiment mice were intraperitoneally injected with GA at a dose of 15 mg/kg for 4 times (once a day for 4 days). Six hours after the last GA injection, the mice were anesthetized, and half of the organ tissues were analyzed by ICP-MASS to determine the distributions of Au atoms in blood, brain, heart, lung, liver, spleen, and kidney tissues. The other half of the organ tissues were fixed in 4% (v/v) paraformaldehyde solution for 48 hours, and paraffin sections (3-4 µm) were prepared. The paraffin sections were stained with Hematoxylin and Eosin (H&E) to identify histopathological changes. The Au content in the various organ tissues was measured with ICP-MS (Thermo-X7). For male and female SD rats, after intraperitoneal injection or intravenous injection of 5 mg Au/kg.bw, respectively, blood were collected from the jugular vein at different time points. The blood level of Au was analyzed with ICP-MS (Thermo-X7). PK parameters were determined using a noncompartmental analysis with PKSolver.
Referring to
Referring to
Referring to
Referring to
To check the tissue distribution of the Au ingredient and see if the Au ingredient induced tissue side effects, six normal BLAC/C mice in the treatment group were intraperitoneally injected with 15 mg/kg.bw GA 4 times for 1 time/day, and the mice in the control group were injected with NS in the same way. During this study, no side effects in the GA-treated mice were observed on aspects of movement, out-looking, sleeping, and eating behaviors.
In reference to
The Au ingredient distribution in mice organs was analyzed by ICPMASS and the results are shown in Table III. In the lung, the Au element concentration is about 51.07 µg/g, which may account for the GA-related inhibition of virus replication and the suppression of inflammatory cytokine expression. The gold distribution in hearts, livers, kidneys, brains, and spleens can be beneficial for COVID-19 treatment as they may potentially inhibit SARS-CoV-2 replication and suppress the inflammation cytokine level in those organs. As shown in Table III, the Au ingredient is mainly concentrated in the spleen, the heart, and the kidney. The high level of Au in kidney implied the Au ingredient may quickly excrete via urine, which is consistent with the pharmacokinetics data of GA in the rat model shown in Table IV.
The pharmacokinetics parameters of GA gold cluster via intraperitoneal injection of rats were Table IV. After rats were intraperitoneally injected with 5 mg/kg.bw of GA for one time, Au concentrations in the plasma were tested at different time points and kinetic characteristics of the gold cluster in rats were analyzed. According to the calculated parameters, the values of Tmax for GA in male or female rats were 2 hours and the values of Cmax for GA in male or female rats were 29.99 µg/mL or 31.750 µg/mL, respectively. The values of t1/2z for GA in male or female rats were 21.626 hr or 11.068 hr, respectively. Combine the data analysis of intravenous injection of GA at 5 mg/kg.bw, the F values of bioavailability for GA in male or female rats were 92.06% or 96.41%, respectively. These data confirm that GA has a favorable in vivo bioavailability in terms of pharmacological values.
The COVID-19 golden hamster rat model was generated following recently reported methods and detailed procedures. See Sin FunSia, et al, “Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment,” Nature 583, 834-838 (2020). In particular, pathogen-free golden hamster rats were purchased from SiPeiFu Laboratory Animal Co (Beijing, China). All protocols were approved by the Institutional Animal Care and Use Committees of the National, Institute for Viral Disease Control & Prevention, the Chinese Center for Disease Control and Prevention. The SARS-CoV-2 strains used in this research were isolated from COVID-19 patients (BetaCoV/Wuhan/IVDC/-HB -01/2020, EPI_ISL_402119) and passaged on in Vero cells.
REMDESIBIR is an approved drug to treat COVID-19 in clinical. In this study, GA treatment is compared with REMDESIBIR treatment to determine the comparative drug efficiency for COVID-19 treatment. Similar to that described above, the golden hamster rats were divided into five groups. Rats were then infected intranasally using SARS-CoV-2 (1×105 PFU) in a total volume of 50 µL DMEM. One hour after SARS-CoV-2 infection, rats in the NS group received normal saline (0.9% NaCl) via intranasal spray, rats in the REMDESIBIR group received a dose of 25 mg/kg.bw via intranasal spray, and rats in GA5mg/kg groups and GA10mg/kg groups received respectively a dose of GA at 5 mg Au/kg.bw and 10 mg Au/kg.bw via intranasal spray. Rats in the Mock group are not infected by SARS-Cov-2 and were used as control. Referring to
The pathological changes in the rat lung tissues were used as key indicators to examine the therapeutic effects of GA agents and REMDESIBIR. The lungs of the experiment rats were evaluated by scoring the injuries in accordance with the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) scoring standard. As shown in
The levels of SARS-CoV-2 spikes and inflammatory cytokines in the lungs of the experiment rats were measured using immuno-fluorescent imaging. Shown in
Au25(SV)9 was obtained by using SV peptide CysCysTyrGlyGlyProLysLysLysArgLysProGly (SEQ ID NO. 6).
This application describes a therapeutic composition for treatment of coronavirus infection in an animal, comprising: a gold compound stored in a liquid form as an active ingredient wherein a gold atom forms an Au—S bond in the coronavirus’ protease active pocket.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound is AURANOFIN having molecule formula C20H34AuO9PS.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound is Aurothioglucose having molecule formulaC6H11AuO5S.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound is aurothiomalate having molecule formula C4H5AuO4S.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound is a gold cluster complex, wherein multiple gold atoms and multiple peptides or proteins or polymers form a complex molecule.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound has a chemical formula Aum(SG)n wherein Au represents gold atoms, SG represents a small peptide, m is an integer between 2-200 and n is an integer between 3-202.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, SG represents a glutathione peptide (SEQ ID NO. 1) or SV peptide (SEQ ID NO. 6).
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound are Au10-12(SG)10-12, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au25(SG)18, Au25(SG)9, Au29(SG)20, Au29(SG)27, Au30(SG)28,Au33(SG)22, Au35(SG)22, Au38(SG)24, Au39(SG)24, Au18(SG)11, Au21(SG)12, Au25(SG)14, Au28(SG)16, Au32(SG)18, and Au39(SG)23, Au43(SG)37 wherein SG represents a glutathione peptide (SEQ ID NO. 1) or SV (SEQ ID NO. 6) peptide.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold compound is a gold cluster complex having a molecular formula Au29(SG)27 wherein SG represents a glutathione peptide (SEQ ID NO. 1) that Au represents a gold atom
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the coronavirus infection is COVID-19 and the coronavirus is SARS-CoV-2.
This application also describes a method for treating a coronavirus infection in an animal, said method comprising steps of: preparing a therapeutic composition of Claim 1, and administering a sufficient amount of said therapeutic composition to said animal.
According to one embodiment of the method for treating a coronavirus infection in the present application, the step of administering is carried out through an intranasal spray method.
According to one embodiment of the method for treating a coronavirus infection in the present application, said step of administering is carried out through intraperitoneal injection or intramuscular injection, or an intravenous-injection method
According to one embodiment of the method for treating a coronavirus infection in the present application, the step of administering is carried out through a nasal inhaling method.
According to one embodiment of the method for treating a coronavirus infection in the present application, the step of preparing a therapeutic agent further comprises the step of reacting gold (I) or gold (III) salt with glutathione peptide (SEQ ID NO. 1) solutions
According to one embodiment of the method for treating a coronavirus infection in the present application, the sufficient amount is in the range of 1 mg/kg.bw to 30 mg/kg.bw of the animal.
This application describes a therapeutic composition for treatment of coronavirus infection in an animal, the coronavirus encoding a conserved papain-like main protease critical for its replication, comprising: a gold cluster compound stored in a liquid form having a molecular formula chemical Aum(SG)n wherein Au represents gold atoms, SG represents a small peptide, m is an integer between 2-200 and n is an integer between 3-202 wherein SG represents glutathione peptide (SEQ ID NO. 1) or SV peptide (SEQ ID NO. 6) wherein said gold cluster compound functions as an active ingredient that both forms Au—S bond in the active pocket of the main protease and suppresses cytokine expressions in the animal’s body.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold cluster compound is administered to said animal for at least 4 days.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold cluster compound is administered to said animal through a nasal spray method.
According to one embodiment of the therapeutic composition for treatment of coronavirus infection in the present application, the gold cluster compound is administered to said animal through transdermal absorption.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly, the scope of patented subject matter is not limited by any of the specific exemplary teachings given. It is intended to embrace all such alternatives, modifications, and variations that fall within the spirit and broad scope of the appended claims.
Additional general background, which helps to show variations and implementations, may be found in the following publications, all of which are hereby incorporated by reference herein for all purposes.
Under no circumstances the description in the present application should be read as implying that any particular element, step, or function is an essential element that must be included in the claim scope. The scope of patented subject matter is defined only by the allowed claims. Moreover, none of these claims are intended to invoke paragraph six of 35 USC section 112 unless the exact words “means for” are followed by a participle.
The claims as filed are intended to be as comprehensive as possible, and NO subject matter is intentionally relinquished, dedicated, or abandoned.
Number | Date | Country | Kind |
---|---|---|---|
202110109926.4 | Jan 2021 | CN | national |
This application is a U.S. National Phase Application under 35 U.S.C. 371 of International Application No. PCT/CN2021/094868, filed on May 20, 2021, The entire disclosure of the above application is expressly incorporated by reference herein. Priority is claimed to the U.S. Provisional Pat. Application No. 63/030,526, filed on May 27, 2020, entitled “Molecules inhibit the enzyme activity of 3-chymotrypsin-like cysteine protease of SARS-CoV-2 virus,” the entirety of which is hereby incorporated by reference for all purposes. Priority is also claimed to the U.S. Provisional Pat. Application No. 63/045,128, filed on Jun. 28, 2020, entitled “Au ions bind the Cys145 and Cys156 residue of the 3-chymotrypsin-like cysteine protease of SARS-CoV-2 and inhibit its activity”, the entirety of which is hereby incorporated by reference for all purposes. Priority is also claimed to the U.S. Pat. Application No. 17/181,597, filed on Feb. 22, 2021, entitled “Therapeutic Agents for Treatment of Coronavirus Infection,” the entirety of which is hereby incorporated by reference for all purposes. Priority is also claimed to the China Patent Application No. 202110109926.4, filed on Jan. 27, 2021, entitled “The use of gold complexes in the manufacture of drugs for preventing coronavirus disease 2019”, the entirety of which is hereby incorporated by reference for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/094868 | 5/20/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63030526 | May 2020 | US | |
63045128 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17181597 | Feb 2021 | US |
Child | PCT/CN2021/094868 | WO |