The present invention is directed to hair styling tools having the ability to distribute a therapeutic agent into the hair via a porous material.
Use of brushes and/or combs to deliver therapeutic agents to the hair or skin (e.g., scalp) is generally well known in the art, as a means to treat a variety of conditions, including hair color fade, dry hair, dandruff, and the like. For example, Ikemoto et al., U.S. Pat. No. 5,483,719 discloses a brush having a replaceable rod that is placed into the head of the brush and allows delivery of a therapeutic agent to the hair, where the rod holds the therapeutic agent. However, such brushes allow for only one therapeutic agent to be delivered and the large rod is prone to having pieces break off into the user's hair. Furthermore, the design modifications necessary to protect the rod when not in use can catch in the user's hair and make the brush cumbersome to operate.
Accordingly, it can be seen that needs exist for improved delivery mechanisms for a therapeutic agent using a brush or comb without adding cumbersome or fragile structural components. It is to such solutions that the present invention is primarily directed.
The invention is directed to a hair styling tool, such as a brush or comb, having the capability to distribute a therapeutic agent via a porous material. In a specific embodiment, the styling tool may distribute more than one therapeutic agent. In various embodiments, the brush or comb has a removable and/or replaceable plastic porous material containing one or more therapeutic agents. These agents may include jojoba oil, carrot oil, tea tree oil, olive oil, ceramide, questamide, scented oil, ceramics, carbon, silver flake, salicylic acid, behentrimonium methosulfate, cetearyl alcohol, lactamide MEA, wheat amino acids, burdock root citrus bioflavinoids, meadowfoam oil, stearalkonium chloride, PVP/VA copolymer, dimethicone copolyol, cyclomethicone, polysorbate-20, chamomile extract, and birch bark extract, copper, copper oxide or lecithin.
In a related embodiment, one or more of the therapeutic agents may be replaceable/rechargeable in the porous material. In still another embodiment, the porous material may be rod-shaped and may lie parallel to the surface of the brush in a C-shaped cavity. In another aspect, the invention includes one or more of the infused porous elements (including the porous material loaded with one or more of the therapeutic agents) by themselves, which can be provided as replacement items for use on existing hairstyling tools.
While the method and device described herein are susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the disclosure.
Disclosed herein are hair styling tools that have the capability to distribute therapeutic agents via porous materials embedded in the styling tool, where the therapeutic agent is released or deposited when the hair is brushed. The porous material may be synthetic (e.g., a resin or plastic), metallic (e.g., metal-plated and/or alloys), and/or a natural material (e.g., cellulose).
Contemplated specific embodiments for brushes according to the present disclosure include, but are not limited to, the following:
1) a brush embedded with at least one porous material capable of distributing at least one therapeutic agent;
2) a brush having alternating or intermingled porous materials with different therapeutic agents; and
3) a brush with replaceable heads and/or porous materials (e.g., all materials replaced at one time and/or individual materials replaced individually).
As used herein, the term “therapeutic agent” means any agent capable of improving a condition of the hair and/or skin of the user. Nonlimiting examples of such agents include jojoba oil, tea tree oil, olive oil, carrot oil, ceramide, questamide, scented oils, ceramics, color protectants, antidandruff agents, antistatic agents, conditioning agents, agents that increase shine of the hair, carbon and/or other agents that decrease odor of the hair, silver flake, salicylic acid, copper oxide, and copper. Some or all of these agents may include ingredients that are heat activated, such as, for example, wax, powder, or other transitional state substances.
Conditioning agents that may be used typically fall within a group of six major categories: moisturizers, reconstructors, acidifiers, detanglers, thermal protectors, glossers, and oils, such as EFAs—essential fatty acids. Moisturizers can be concentrated with humectants or reconstructors. Humectants are compounds that attract and hold moisture into the hair. Reconstructors normally contain protein. Hydrolyzed human hair keratin protein is a preferred source of protein because it contains all 19 amino acids found in the hair. Human hair keratin protein also has a low molecular weight, which enables it to penetrate the hair shaft (the cortex). A reconstructor is often used to strengthen the hair. Nonlimiting examples of reconstructors include behentrimonium methosulfate, cetearyl alcohol, lactamide MEA, wheat amino acids, burdock root citrus bioflavinoids, meadowfoam oil, stearalkonium chloride, and lecithin.
Acidifiers may be used to create shine and add elasticity without weighing down the hair, making acidifiers important for people with fine-textured hair. Hair is elastic because of hydrogen bonds (H-bonds), which are electromagnetic bonds and may be broken by nearly any aqueous substance or compound. Hydrogen bonds are also affected by pH and electrolytes. Water breaks H-bonds and causes them to be in a “beta” state (point of greatest weakness); H-bonds devoid of most moisture arrive at an “alpha” state (point of greatest strength). Acidic solutions also add a positive electron to the bonds, creating elasticity. Electrolytic solutions such as potassium, magnesium, sodium, and many others add a positive electron to the H-bond that creates this elasticity. Behentrimonium Methosulfate, Cetearyl Alcohol, Lactimide MEA, Panthenol, Wheat Amino Acids, Burdock Root, Citrus Bioflavinoids, Meadowfoam Oil, Stearealkonium Chloride, Lecithin, are possible ingredients for Acidifiers.
Detanglers are typically acidifiers with a low pH of about 2.5 to about 3.5. They close the cuticle of the hair, which prevents tangles. Wheat protein, botanicals, and lipids are examples of detanglers. Some detanglers “shield” the hair shaft with polymers. Most detanglers are categorized as acidifiers due to their lower pH value but may also contain polymers that prevent individual hairs from tangling up with one another. Additives such as silicone and propylene glycol allow the hair to avoid tangling. Some detanglers are instant, while others may need about 1-5 minutes to be effective.
Thermal protectors safeguard the hair against heat. Use of thermal protectors is of particular importance in instances where hair is exposed to heat from hairdryers, curling irons, flat irons, hot rollers or similar techniques. Thermal protectors are normally heat absorbent polymers that distribute heat to minimize heat damage to hair. Nonlimiting examples of thermal protectors include PVP/VA copolymer, dimethicone copolyol, cyclomethicone, polysorbate-20, chamomile extract, and birch bark extract.
Glossers typically contain dimethicone or cyclomethicone. Used in small amounts, glossers reflect light and/or can control “frizzies.” A nonlimiting example of a glosser includes oils (EFAs), as they are similar in nature to the scalp's sebum (natural oil secretion of the scalp), and sebum contains EFAs. Dry hair, especially dry hair due to chemical treatment of the hair, e.g., hair color, perms, and relaxers, typically is lacking in natural oils or sebum. EFAs can transform very dry and porous hair into soft pliable hair. Vanilla bean is an example of this conditioner type.
The amount of therapeutic agent loaded into the porous material is selected based on the type of agent, the desired end use, expected useful life, expected time from manufacture to sale, and the like. In addition, the amount of therapeutic agent that can be loaded into the porous material is limited by the porosity and total volume of each section or piece of the porous material. In a typical commercial embodiment the porous material has a porosity of about 40% (meaning it is about 40% air by volume), so the amount of therapeutic agent that could be loaded into the porous material would be about 40% by volume of the porous material. In other embodiments the porous material has a porosity of about 30% to about 90%, so the amount of therapeutic agent that could be loaded into the porous material would be within that range. In still other embodiments the porous material has a porosity of about 5% to about 90%, though the amount of therapeutic agent that is loaded into the porous material is preferably of about 5% to about 40%.
In an application filed simultaneously herewith the same title and priority claim, which application is incorporated herein by reference in its entirety, styling tools with therapeutic agents in the bristles were disclosed. The present application is used preferably for styling situations in which heat is used. For example, if a blow dryer is used, pads associated with bristles may melt. For this reason, styling tools with porous materials may be used in many situations, but the primary heat styling brushes, such as hot rounds and vented, are logical uses.
Styling tools using the disclosed porous materials are preferably injection molded, as the tools themselves may be made of plastic. Wooden styling tools may also be produced. Porous materials may be obtained from Micropore (Atlanta, Ga. USA) or Porex (Duluth, Ga. USA). The porous plastic material may be any thermoplastic polymer with the ability to distribute a liquid or transitional-state substance, preferably in the PE family. Materials such as high density polyethylene, ultra-high molecular weight polyethylene, low density polyethylene, polypropylene, polycarbonate, polyvinylidine difluoride, ethylene vinyl acetate and hermoplastic polyurethane may be used. The minimum pore size is preferably about 5 microns (μm). There is no maximum, though at some point the pore size could become too large to effectively retain the therapeutic agent. In a particular embodiment, ultra-high molecular weight polyethylene with a 35 μm pore size may be used.
The porous material in the present invention may be formed from any conventional porous material. However, in one aspect, the porous material is a sintered porous material, such as a sintered porous thermoplastic material. Some suitable base materials that may be used to provide the porous thermoplastic substrate are described in U.S. Pat. No. 6,551,608 to Yao and pending U.S. Published Application No. U.S. 2003-0062311-A1, both of which are incorporated herein by reference in their entirety. Suitable thermoplastics for use in forming the porous material of the present invention include, but are not limited to, polyolefins, nylons, polycarbonates, poly (ether sulfones), and mixtures thereof, as well as fluoropolymers, such as pvdf and ptfe. A preferred thermoplastic is a polyolefin. Examples of preferred polyolefins include, but are not limited to: ethylene vinyl acetate; ethylene methyl acrylate; polyethylenes; polypropylenes; ethylene-propylene rubbers; ethylene-propylenediene rubbers; poly (1-butene); polystyrene; poly (2-butene); poly (1-pentene); poly (2-pentene); poly (3-methyl-1-pentene); poly (4-methyl-1-pentene); 1,2-poly-1,3-butadiene; 1,4-poly-1,3-butadiene; polyisoprene; polychloroprene; poly (vinyl acetate); poly (vinylidene chloride); and mixtures and derivatives thereof. A preferred polyolefin is polyethylene. Examples of suitable polyethylenes include, but are not limited to, low density polyethylene, linear low density polyethylene, high density polyethylene, ultra-high molecular weight polyethylene, and derivatives thereof. In alternative embodiments the material may also be composed of or formed from sintered metal, steel mesh, woven metal, ceramic materials, non-woven materials, bi-component, continuous, or staple fiber media using an extrusion or pultrusion process.
Examples of polyolefins suitable for use in the invention include, but are not limited to: ethylene vinyl acetate (EVA); ethylene methyl acrylate (EMA); polyethylenes such as, but not limited to, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), and ultra high molecular weight polyethylene (UHMWPE); polypropylenes; ethylene-propylene rubbers; ethylene-propylene-dyne rubbers, poly (1-butene); polystyrene; poly (2-butene); poly (1-pentene); 1,2-poly-1,3-butadiene; 1,4-poly-1,3-butadiene; polyisoprene; polychloropene; poly (vinyl acetate); poly (vinylidene chloride); and mixtures and derivatives thereof.
Sinterable thermoplastics other than those recited herein can also be used in this invention. As those skilled in the art will appreciate, the ability of a thermoplastic to be sintered can be determined from its melt flow index (MFI). Melt flow indices of individual thermoplastics are known or can be readily determined by methods well known to those skilled in the art. For example, an extrusion plastometer made by Tinius Olsen Testing Machine Company, Willow Grove, Pa. can be used. The MFIs of thermoplastics suitable for use in this invention will depend on the particular porous thermoplastic material and/or the method used to prepare it. In general, however, the MFI of a thermoplastic suitable for use in the materials and methods of the invention is from about 0 to about 15. The temperatures at which individual thermoplastics sinter (i.e., their sintering temperatures) are also well known, or can be readily determined by routine methods such as, but not limited to, thermal mechanical analysis and dynamic mechanical thermal analysis.
The characteristics of a sintered porous material can depend on the average size and distribution of the particles used to make it as well as the particles' average shape. In one aspect of the invention, the thermoplastic particles are substantially spherical. This shape provides certain benefits. First, it facilitates the efficient packing of the particles within a mold. Second, substantially spherical particles, and in particular those with smooth edges, tend to sinter evenly over a well defined temperature range to provide a final product with desirable mechanical properties and porosity. Typical pore size starting approximately at 5 μm and up to approximately 500 μm is preferred; however, smaller and larger pore sizes are also possible. For example, the pore sizes can be as low as about 1 μm and as high as about 500 μm, whereas, the porosity can be as low as about 30% and as high as about 90%. Producing porous material with a predetermined pore size and porosity is known to those of ordinary skill in the art and can vary the depending on the process used and/or the starting material selected.
Preferably, a rod or cylinder is molded from sintered porous plastic material. According to an embodiment of the invention a mold having a desired configuration can be filled with sintered porous plastic precursor composition, such as for example, a powder batch, and the particles can be fused together by heating to form the resulting rod or cylinder in the shape of the mold. The particular sintering conditions are known in the art and will depend, in part, upon the particular sintered porous plastic precursor composition. To this end, one of skill in the art will be able to determine the particular sintering conditions without requiring the undue experimentation. Because of such molding process, any desired shape, configuration, or dimensions may be readily formed from a porous material in one continuous and contiguous piece.
The particles used to form the porous plastic to be sintered can be formed by several processes known in the art. One such process is cryogenic grinding. Cryogenic grinding can be used to prepare thermoplastic particles of varying sizes. But because cryogenic grinding provides little control over the sizes of the particles it produces, powders are formed using this technique may be screened to ensure that the particles to be sintered are of a desired average size and size distribution.
Underwater pelletizing can also be used to form thermoplastic particles suitable for sintering. Although typically limited to the production of particles having diameters of greater than about 36 μm, underwater pelletizing offers several advantages. First, it provides accurate control over the average size of the particles produced, in many cases thereby eliminating the need for an additional screening step and reducing the amount of wasted material. A second advantage of underwater pelletizing, which is discussed further herein, is that it allows significant control over the particles' shape.
Referring to
In the depicted embodiment, the porous material 50 may be a plastic, and may be in the shape of an elongate cylinder or rod. In other embodiments, the porous material may be formed into other shapes, such as knobs, strips or the like. The styling tool may have indentations, channels, or other cavities 80 in the brush head 30 that receive and/or grip the piece of porous material 50. For example, these indentations 80 may be of a C-shape that generally conforms to the profile of the porous material rods 50 and receives them with a loose fit, with the brush including retaining elements that hold the rods within the indentations, so that the rods are free to rotate and dispense therapeutic agent as the brush is rotated during styling. Additionally or alternatively, the indentations 80 may be curved in an arc of over 180 degrees, so that at the surface of the brush head each well is narrowed to form opposing retaining elements that keep the cylinder or rod in place within the indentation on the face of the brush head. These embodiments may include other retaining elements to “trap” the ends of the rods 50, such as retainer wells 70. In one embodiment, the styling tool may have a removable brush cap 60 with a retainer well 70 that will trap the top end of the rods 50. In such an embodiment the cap may be removed to replace the porous material rod 50. For example, a silicone ring/friction fit may be used to attach the brush cap 60 to the round-type styling tool or brush, as shown in
In the embodiment shown in
Referring to
Referring to
Referring to
In another aspect, the invention includes one or more of the infused porous elements 50 (including the porous material infused with one or more of the therapeutic agents) by themselves, which can be provided as replacement items for use on existing hairstyling tools. The infused porous elements 50 can be packaged individually or in a set and sold for use with any of the hairstyling tools described above or with other hairstyling tools. In this way, upon the depletion of the therapeutic agent in the infused porous elements 50 originally provided on a hairstyling tool, the user can purchase more infused porous elements by themselves and replace them on the tool. Or the infused porous elements 50 and the hairstyling tools can be sold separately, with various models of the infused porous elements containing different therapeutic agents, so that users can select the hairstyling tool and the infused porous element that best suit their needs, and subsequently mount the selected infused porous elements onto the selected tool for use.
The infused porous elements 50 each include a body that is made of a porous material, infused with at least one therapeutic agent, and formed into a shape and size for mounting onto a hair styling tool, as described above. In the embodiment depicted in
While the present invention has been described with reference to specific examples, which are intended to be illustrative only and not to be limiting of the invention, it will be apparent to those of ordinary skill in the art that changes, additions or deletions may be made to the disclosed embodiments without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/863,234 under 35 USC §119 or 120, filed 27 Oct. 2006, the contents of which is incorporated by reference as if fully expressed fully herein.
Number | Name | Date | Kind |
---|---|---|---|
912719 | McMurran | Feb 1909 | A |
1352346 | Benson | Sep 1920 | A |
1596358 | Jones | Aug 1926 | A |
1782080 | Thomas et al. | Nov 1930 | A |
1794130 | Whalen | Feb 1931 | A |
2226663 | Hill et al. | Dec 1940 | A |
2547834 | Perwas | Apr 1951 | A |
2569276 | Baptist | Sep 1951 | A |
2594721 | Beebe | Apr 1952 | A |
2943602 | Rundle | Jul 1960 | A |
3833008 | Blackett, Jr. | Sep 1974 | A |
4370072 | Moffitt, Jr. | Jan 1983 | A |
4585018 | O'Connor | Apr 1986 | A |
4826340 | Rothweiler et al. | May 1989 | A |
5261426 | Kellett et al. | Nov 1993 | A |
5325878 | McKay | Jul 1994 | A |
5338124 | Spicer et al. | Aug 1994 | A |
5483719 | Ikemoto et al. | Jan 1996 | A |
5614578 | Dong et al. | Mar 1997 | A |
5758984 | Doherty | Jun 1998 | A |
5813785 | Baudin et al. | Sep 1998 | A |
6071029 | Weinstock | Jun 2000 | A |
6745779 | Piatetsky | Jun 2004 | B2 |
6962456 | Larsen | Nov 2005 | B2 |
20020187176 | Yao | Dec 2002 | A1 |
20060086370 | O'Meara | Apr 2006 | A1 |
20060171981 | Ricahard et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
497080 | Aug 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20080105270 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60863234 | Oct 2006 | US |