Therapeutic ultrasound system

Information

  • Patent Grant
  • 10722262
  • Patent Number
    10,722,262
  • Date Filed
    Friday, October 5, 2018
    6 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
  • Inventors
  • Original Assignees
    • Flowcardia, Inc. (Franklin Lakes, NJ, US)
  • Examiners
    • Hall; Deanna K
Abstract
A method of assembling an ultrasound catheter includes providing an elongated catheter body having a proximal end, a distal end, and at least one lumen extending longitudinally therethrough; coupling a proximal housing to the proximal end of the elongated catheter body, the proximal housing having a distal bore; inserting an ultrasound transmission member through the lumen of the catheter body; positioning a sonic connector on the proximal end of the ultrasound transmission member for connecting the ultrasound transmission member to a separate ultrasound generating device at a connection location, the sonic connector having a proximal section and a front portion, the proximal portion provided for connection to the separate ultrasound generating device; connecting the front portion of the sonic connector to the proximal end of the ultrasound transmission member; and retaining an absorber inside the distal bore of the proximal housing wherein the absorber substantially surrounds the ultrasound transmission member.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention pertains to medical equipment, and more particularly, to a therapeutic ultrasound system for ablating obstructions within tubular anatomical structures such as blood vessels.


Description of the Related Art

A number of ultrasound systems and devices have heretofore been proposed for use in ablating or removing obstructive material from blood vessels. However, all of these systems and devices generally encounter some problems which are not always adequately addressed by these systems and devices.


A first type of problem relates generally to the effective transmission of ultrasound energy from an ultrasound source to the distal tip of the device where the ultrasound energy is applied to ablate or remove obstructive material. Since the ultrasound source, such as a transducer, is usually located outside the human body, it is necessary to deliver the ultrasound energy over a long distance, such as about 150 cm, along an ultrasound transmission wire from the source to the distal tip. Attenuation of the acoustical energy along the length of the transmission wire means that the energy reaching the distal tip is reduced. To ensure that sufficient energy reaches the distal tip, a greater amount of energy must be delivered along the transmission wire from the source to the distal tip. This transmission of increased energy along the transmission wire may increase the fatigue experienced by the transmission wire at certain critical locations, such as at the connection between the transducer and the transmission wire.


In addition to the above, it is important to be able to conveniently connect and disconnect the ultrasound transmission member from the transducer without creating unnecessary stresses on the ultrasound transmission wire, or weakening the ultrasound transmission wire. Since the transducer is a nonsterile unit, and the ultrasound transmission wire is a sterile unit, a transducer can be used with numerous different ultrasound transmission wires in numerous different procedures. Therefore, there is also a need to provide a removable connection between the ultrasound transmission wire and the transducer that can effectively transmit ultrasound energy while maintaining the integrity of the ultrasound transmission wire.


A second type of problem relates to the need for accurately positioning the ultrasound device inside a patient's vasculature, and in particular, where the vasculature contains smaller and more tortuous vessels. To address this need, flexible and low-profile ultrasound devices have been provided which allow the device to be navigated through small and tortuous vessels. However, these devices have not been completely satisfactory in meeting these navigational needs.


A third type of problem relates to the removal of particles that are produced when the obstructive material is ablated or broken up. It is important that these particles be removed from the patient's vascular system to avoid distal embolization and other clinical complications.


Thus, there still exists a need for improved ultrasound systems having ultrasound devices or catheters which address the aforementioned problems.


SUMMARY OF THE INVENTION

The terms “ultrasound transmission wire” and “ultrasound transmission member” shall be used interchangeably herein, and are intended to mean the same element.


It is an object of the present invention to provide an ultrasound device that provides an improved connection between the ultrasound transmission member and the transducer.


It is another object of the present invention to provide an ultrasound device that has a removable connection between the ultrasound transmission member and the transducer.


It is yet another object of the present invention to provide an ultrasound device with a distal end that can effectively navigate smaller and more tortuous vessels.


It is yet another object of the present invention to provide an ultrasound device that effectively removes particles from the patient's vascular system.


In order to accomplish the objects of the present invention, there is provided an ultrasound system having a catheter including an elongate flexible catheter body having at least one lumen extending longitudinally therethrough. The catheter further includes an ultrasound transmission member extending longitudinally through the lumen of the catheter body, the ultrasound transmission member having a proximal end connectable to a separate ultrasound generating device and a distal end coupled to the distal end of the catheter body. In one embodiment, the distal end of the catheter body is deflectable. The ultrasound system of the present invention can incorporate one of several embodiments of sonic connectors that connect the ultrasound transmission member to an ultrasound transducer. The ultrasound system of the present invention also provides a method for reverse irrigation and removal of particles.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an ultrasound system according to the present invention.



FIG. 2 is a cross-sectional view of the distal end of an ultrasound catheter that ca be used with the system of FIG. 1.



FIG. 3 is a cross-sectional view of the distal end of another ultrasound catheter that can be used with the system of FIG. 1.



FIG. 4 is a cross-sectional view of the catheter of FIG. 3 shown with the distal end deflected.



FIG. 5 is cross-sectional view of one embodiment of a sonic connector assembly that can be used with the system of FIG. 1.



FIG. 6 is an enlarged cross-sectional view of the sonic connector in FIG. 5.



FIGS. 7-11 are cross-sectional views of different embodiments of sonic connector assemblies that can be used with the system of FIG. 1.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices, compositions, components, mechanisms and methods are omitted so as to not obscure the description of the present invention with unnecessary detail.



FIG. 1 illustrates an ultrasound system according to the present invention for use in ablating and removing occlusive material inside the vessel of an animal or human being. The ultrasound system includes an ultrasonic catheter device 10 which has an elongate catheter body 12 having a proximal end 14, a distal end 16, and defining at least one lumen extending longitudinally therethrough. The ultrasound catheter device 10 is operatively coupled, by way of a proximal connector assembly 20, to an ultrasound transducer 22. The ultrasound transducer 22 is connected to a signal generator 24. The signal generator 24 can be provided with a foot actuated on-off switch 26. When the on-off switch 26 is depressed, the signal generator 24 sends an electrical signal to the ultrasound transducer 22, which converts the electrical signal to ultrasound energy. Such ultrasound energy subsequently passes through the catheter device 10 is delivered to the distal end 16. A guidewire 28 may be utilized in conjunction with the catheter device 10, as will be more fully described below.



FIG. 2 illustrates one non-limiting configuration for the distal end 16 of the catheter body 12 of the catheter device 10. The catheter body 12 is formed of a flexible polymeric material such as nylon (Pebax™) manufactured by Atochimie, Cour be Voie, Hauts Ve-Sine, France. The flexible catheter body 12 is preferably in the form of an elongate tube having one or more lumens extending longitudinally therethrough.


Referring now to FIG. 2, the catheter body 12 has a lumen 18. Extending longitudinally through the lumen 18 of the catheter body 12 is an elongate ultrasound transmission member 30 having a proximal end which is removably connectable to the ultrasound transducer 22 such that ultrasound energy will pass through the ultrasound transmission member 30. As such, when the foot actuated on-off switch 26 operatively connected to the ultrasound transducer 22 is depressed, ultrasound energy will pass through the ultrasound transmission member 30 to the distal end 16 of the catheter body 12. More particularly, the ultrasound transmission member 30 serves to transmit the ultrasound energy from the proximal connector assembly 20 to a distal head 34 mounted on the distal end 16 of the catheter body 12.


The distal head 34 has a substantially rigid member affixed to the distal end 16 of the catheter body 12. In the embodiment shown, the distal head 34 has a generally rounded configuration, and has a proximal portion 34b whose outer diameter is slightly less than the outer diameter of the distal portion 34a of the distal head 34, so as to define an annular shoulder 38 to which a distal end 42 of a coil 40 is attached. The proximal end 44 of the coil 40 is attached to the open distal end 46 of the catheter body 12 such that the proximal portion 34b is not received inside the catheter body 12 but is spaced-apart therefrom. Preferably, the outer diameter of the coil 40 is about the same as the outer diameter of the catheter body 12 and the distal portion 34a, thereby forming a generally smooth outer surface at the juncture of the distal head 34, the coil 40 and the catheter body 12, as shown in FIG. 2.


The attachment of the coil 40 to the distal head 34 and the catheter body 12 may be accomplished by any suitable manner. One manner is through the use of an adhesive which is applied to the interfacing surfaces to be attached. The adhesive may comprise any suitable adhesive, such as cyanoacrylate (e.g., Loctite™ Corp., Ontario, Canada or Aron Alpha™, Borden, Inc., Columbus, Ohio) or polyurethane (e.g., Dymax™, Dymax Engineering Adhesive, Torrington, Conn.). As an alternative to the use of adhesives, various mechanical or frictional connections, such as screw threads, lugs, or other surface modifications formed on one surface, can also be used, with corresponding grooves, detents, or surface modifications formed in the interfacing surface to be attached.


In addition, a guidewire tube 80 defining a guidewire lumen extends through the lumen 18, the coil 40 and a bore 82 formed through the distal head 34. The guidewire tube 80 can be bonded or attached at a location 84 to the bore 82 according to one of the attachment or bonding methods described above. The guidewire tube 80 can extend along the length of the catheter body 12 if catheter device 10 is an “over-the-wire” catheter device. If catheter device 10 is a “monorail” catheter device, as shown in FIG. 1, the guidewire tube 80 terminates at a guidewire aperture 86 adjacent but slightly proximal from the distal end 16 of the catheter body 12, at which the guidewire 28 exits the catheter body 12 (as shown in FIG. 1).


The distal head 34 may be formed of any suitable rigid material, such as metal or plastic. The distal head 34 is preferably formed of radiodense material so as to be easily discernible by radiographic means. Accordingly, the distal head 34 may preferably be formed of metal or, alternatively, may be formed of plastic, ceramic, glass, or rubber materials, optionally having one or more radiodense markers affixed thereto or formed therein. For example, the distal head 34 may be molded of plastic, such as acrylonitrile-butadine-styrene (ABS) and one or more metallic foil strips or other radiopaque markers may be affixed to such plastic distal head 34 in order to impart sufficient radiodensity to permit the distal head 34 to be readily located by radiographic means. Additionally, in embodiments wherein the distal head 34 is formed of molded plastic or other non-metallic material, a quantity of radiodense fillers, such as powdered Bismuth or Barium. Sulfate (BaSO4) may be disposed within the plastic or other non-metallic material of which the distal head 34 is formed so as to impart enhanced radiodensity thereto.


The ultrasound transmission member 30 extends through the lumen 18 and the coil 40, and is inserted into a bore 62 which extends longitudinally into the proximal portion 34b of the distal head 34. The distal end of the ultrasound transmission member 30 is firmly held within the bore 62 by the frictional engagement thereof to the surrounding material of the distal head 34, or by other mechanical or chemical affixation means such as but not limited to weldments, adhesive, soldering and crimping. Firm affixation of the ultrasound transmission member 30 to the distal head 34 serves to facilitate direct transmission of the quanta of ultrasonic energy passing through the ultrasound transmission member 30 to the distal head 34. As a result, the distal head 34, and the distal end 16 of the catheter device 10, are caused to undergo ultrasonic vibration in accordance with the combined quanta of ultrasonic energy being transmitted through the ultrasound transmission member 30.


The coil 40 can be a single coil, a braid, a multilead coil, a cross-wound coil, a rounded wire coil, a flat wire coil, or any combination thereof. The coil 40 is preferably elastic and is made of a material having high elongation so as to conform to the configuration of the distal end 16 and to vibrate with the distal head 34 upon application of ultrasound energy. The coil 40 can be embedded inside a polymer jacket or coating, such as but not limited to PTFE, polyurethane, polyamide or nylon. The length of the coil 40 can range from 0.1 to 150 cm. Thus, the coil 40 provides several benefits. First, the coil 40 provides an elastic attachment of the distal head 34 to the catheter body 12. Second, the coil 40 allows the distal head 34 to freely vibrate independent of the catheter body 12. Third, the coil 40 provides an additional connection between the catheter body 12 and the distal head 34 since the coil 40 will hold the distal head 34 to the catheter device 10 in the event that the ultrasound transmission member 30 breaks or fractures.


In the preferred embodiment, the ultrasound transmission member 30 may be formed of any material capable of effectively transmitting the ultrasonic energy from the ultrasound transducer 22 to the distal head. 34, including but not necessarily limited to metal, plastic, hard rubber, ceramic, fiber optics, crystal, polymers, and/or composites thereof. In accordance with one aspect of the invention, all or a portion of the ultrasound transmission member 30 may be formed of one or more materials which exhibit super-elasticity. Such materials should preferably exhibit super-elasticity consistently within the range of temperatures normally encountered by the ultrasound transmission member 30 during operation of the catheter device 10. Specifically, all or part of the ultrasound transmission member 30 may be formed of one or more metal alloys known as “shape memory alloys”.


Examples of super-elastic metal alloys which are usable to form the ultrasound transmission member 30 of the present invention are described in detail in U.S. Pat. No. 4,665,906 (Jervis); U.S. Pat. No. 4,565,589 (Harrison); U.S. Pat. No. 4,505,767 (Quin); and U.S. Pat. No. 4,337,090 (Harrison). The disclosures of U.S. Pat. Nos. 4,665,906; 4,565,589; 4,505,767; and 4,337,090 are expressly incorporated herein by reference insofar as they describe the compositions, properties, chemistries, and behavior of specific metal alloys which are super-elastic within the temperature range at which the ultrasound transmission member 30 of the present invention operates, any and all of which super-elastic metal alloys may be usable to form the super-elastic ultrasound transmission member 30.


In particular, the present invention provides an ultrasound transmission member 30, all or part of which may be made of a super-elastic metal alloy which exhibits the following physical properties:

















PROPERTY
UNIT
VALUE









Nickel
Atomic Weight
Min. 50.50-Max. 51.50




Weight Percent
Min. 55.50-Max. 56.07



Titanium
%
Remainder



Total gas
%
 0.15 Max



content (O, H, N)



Carbon Content
%
0.010 Max



Maximum Tensile
PSI
220K



Strength



Elongation
%
10-16



Melting Point
Celsius
1300-1350



Density
g/cm3
6.5










This alloy provides an ultrasound transmission member 30 that experiences minimum attenuation of ultrasound energy, and which has the ability to be navigated through the complex bends of tortuous vessels without experiencing any permanent deformation which would otherwise result in transmission losses.


Referring now to FIG. 1, the proximal connector assembly 20 of the catheter device 10 has a Y-connector 320. The frontal portion of the Y-connector 320 is connected to the proximal end 14 of the catheter body 12. The proximal end of the rear portion of the proximal connector assembly 20 is attached to a sonic connector assembly 66 which is configured to effect operative and removable attachment of the proximal end of the ultrasound transmission member 30 to the horn of the ultrasound transducer 22. The sonic connector assembly or apparatus is preferably configured and constructed to permit passage of ultrasound energy through the ultrasound transmission member 30 with minimal lateral side-to-side movement of the ultrasound transmission member 30 while, at the same time, permitting unrestricted longitudinal forward/backward vibration or movement of the ultrasound transmission member 30. A more detailed description of the sonic connector assembly 66, and the operative removable attachment of the ultrasound transmission member 30 to the ultrasound transducer 22, are described below.


In the ultrasound system according to the present invention, an injection pump 68 or IV bag is connected, by way of an infusion tube 70, to an infusion port or sidearm 72 of the Y-connector 320. The injection pump 68 is used to infuse coolant fluid (e.g., 0.9% NaCl solution) into and/or through the catheter device 10, and more particularly into the lumen 18 of the catheter body 12. Such flow of coolant fluid may be utilized to prevent overheating of the ultrasound transmission member 30 extending longitudinally through the lumen 18. Due to the desirability of infusing coolant fluid into the catheter body 12, at least one fluid outflow channel 74 extends longitudinally through the distal head 34 to permit the coolant fluid to flow from the lumen 18 out of the distal end 16 of the catheter body 12. See arrows 94 in FIG. 2. Such flow of the coolant fluid through the lumen 18 serves to bathe the outer surface of the ultrasound transmission member 30, thereby providing for an equilibration of temperature between the coolant fluid and the ultrasound transmission member 30. Thus, the temperature and/or flow rate of coolant fluid may be adjusted to provide adequate cooling and/or other temperature control of the ultrasound transmission member 30.


In addition to the foregoing, the injection pump 68 may be utilized to infuse a radiographic contrast medium into the catheter device 10 for purposes of imaging. Examples of iodinated radiographic contrast media which may be selectively infused into the catheter device 10 via the injection pump 68 are commercially available as Angiovist 370 from Berlex Labs, Wayne, N.J. and Hexabrix from Malinkrodt, St. Louis, Mo.


Although the catheter device 10 in FIG. 1 is illustrated as a “monorail” catheter device, the catheter device 10 can be provided as an “over-the-wire” catheter device without departing from the spirit and scope of the present invention. The structural and operative principles of “monorail” and “over-the-wire” guidewire techniques are well known to those skilled in the art, and are not further discussed herein.


The catheter body 12 illustrated in FIG. 2 is deployed with the use of a guidewire as either a “monorail” or an “over-the-wire” catheter device. On the other hand, the catheter body 12 can be deployed without the use of a guidewire, as illustrated in FIG. 3, where catheter body 12x and its distal end 16x are essentially the same as catheter body 12 and its distal end 16, except that the channel 74, the guidewire tube 80 and the bore 82 are omitted from the distal head 34x. The coils 40x and ultrasound transmission member 30x can be the same as the coils 40 and ultrasound transmission member 30 in FIG. 2. FIG. 3 further illustrates the provision of a deflection wire 88 that extends from the distal head 34x through the lumen 18x and exits the catheter body 12x via an exit port adjacent the proximal end 14 of the catheter body 12x (see FIG. 1). The deflection wire 88 can be rounded or flat, and can be made from a flexible and strong material such as stainless steel or nylon. The deflection wire 88 has a distal end which is secured to the distal head 34x by bonding, welding, fusing and similar mechanisms, and a proximal end that is connected to a stretching knob 90 that is provided at the proximal end of the wire 88. When the knob 90 is pulled, the deflection wire 88 will stretch, thereby causing the distal end 16x to deflect, as shown in FIG. 4. When the pulling motion on the knob 90 is released, the wire 88 will relax and return to its normally straight orientation.


It is also possible to provide a deflecting distal end 16x by shaping the distal end 16 or 16x of the catheter body 12 or 12x. Shaping the distal end 16 or 16x at predetermined angles with respect to the catheter body 12 or 12x provides the same function as deflecting the distal end 16x. According to the present invention, shaping the distal end 16 or 16x can be accomplished by radiofrequency, steam or other heat generated methods. It is important that the shaping or pre-shaping of the distal end 16 or 16x not induce stresses or damage to the ultrasound transmission member 30 or 30x. The shaping of the distal end 16 or lox can be done prior to the actual medical procedure or can be done by the manufacturer or the physician using shaping techniques that are well-known in the art. The shaped catheter body 12 or 12x can then be re-shaped as desired using the same methods.


The present invention further provides a sonic connector assembly 66 that effectively connects the ultrasound transmission member 30 to the transducer 22 in a manner which reduces step sonic amplification and provides a smooth connection transition of the transmission member 30, thereby reducing the stress and fatigue experienced by the transmission member 30. The sonic connector assembly 66 includes a sonic connector that functions to grip or otherwise retain the proximal end of the ultrasound transmission member 30, and which can be removably connected to the transducer 22. In other words, the sonic connector serves as an attaching element that couples the ultrasound transmission member 30 to the transducer 22. The present invention provides several different embodiments of sonic connectors that can be used with the sonic connector assembly 66. Each of these sonic connectors functions to removably connect an ultrasound catheter to a transducer 22 in a manner which minimizes transverse movement at the connection area while maintaining longitudinal ultrasound energy propagation. In this regard, longitudinal vibrations are desirable, while transverse vibrations may cause breakage in the ultrasound transmission member 30. Since the greatest amount of transverse motion occurs at the connection area between the ultrasound transmission member 30 and the transducer 22, elimination of transverse movements at the connection area between the ultrasound transmission member 30 and the transducer 22 is crucial in protecting the integrity of the ultrasound transmission member 30 and minimizing the potential for breakage of the ultrasound transmission member 30.


In one embodiment illustrated in FIG. 5, the sonic connector assembly 66 has a sonic connector 200 housed inside the proximal bore 300 of a knob housing 302. The sonic connector 200 is enlarged in FIG. 6 for greater clarity. The proximal bore 300 in the knob housing 302 has a rear section 301 that has a proximal opening into which a transducer horn (not shown) may be inserted to engage the sonic connector 200. An enlarged bore 322 is provided at the distal end of the knob housing 302, with the enlarged bore 322 communicating with a channel 310. The structure and characteristics of the knob housing and the transducer horn are well-known in the art, and are not described in greater detail herein. For example, the knob housing and transducer horn can be the same as those illustrated in U.S. Pat. No. 5,989,208 to Nita, whose entire disclosure is incorporated by this reference as though set forth fully herein.


The sonic connector 200 has a central portion 210 having a vertical through-bore 212 which receives a locking pin 306. The locking pin 306 is inserted through an opening 308 in the knob housing 302 and is received inside the through-bore 212 to retain the sonic connector 200 at a pre-determined position inside the proximal bore 300 of the knob housing 302, as best illustrated in FIG. 12 of U.S. Pat. No. 5,989,208. The sonic connector 200 further includes a front shaft 218 extending distally from the central portion 210. The sonic connector 200 also has a threaded stem 226 extending proximally from the central portion 210 to permit the distal end of the transducer horn to be threadably screwed onto and removably attached to the sonic connector 200.


The distal end of the front shaft 218 has a bore 220 that terminates before the central portion 210. The proximal end of the ultrasound transmission member 30 extends through the channel 310 in the knob housing 302 and through the bore 220, and is dimensioned to be snugly fitted inside the bore 220. The proximal end of the ultrasound transmission member 30 is secured inside the inner bore 220 by welding, bonding, crimping, soldering, or other conventional attachment mechanisms. As one non-limiting example, the proximal end of the ultrasound transmission member 30 is crimped to the front shaft 218 at location A.


An intermediate member 224 is seated in the enlarged bore 322 and has a bore that receives (i.e., circumferentially surrounds) the ultrasound transmission member 30. In other words, the intermediate member 224 is positioned between the ultrasound transmission member 30 and the enlarged bore 322. The intermediate member 224 is preferably made of an elastic material, and non-limiting examples include a polymer or rubber. The intermediate member 224 functions to absorb transverse micro-motions, thereby minimizing the undesirable transverse vibrations.


The proximal end of the Y-connector 320 can be threadably engaged to the opening of the enlarged bore 322. Thus, the intermediate member 224 is spaced apart from the crimp location A by a distance of about one-quarter wavelength.



FIG. 7 illustrates another embodiment of a sonic connector 200b that is similar to the sonic connector 200 in FIG. 5. As a result, the same numerals are utilized to designate the same elements in both FIGS. 5 and 7, except that the same element in FIG. 7 includes a “b” in the designation. The sonic connector 200b has a separate tubular member 234 which is spaced-apart from the distal-most end of the front shaft 218b. The tubular member 234 has a bore that retains an intermediate member 224b, which in turn surrounds a portion of the ultrasound transmission member 30. Thus, the intermediate member 224b is now provided inside a tubular member 234 as opposed to being provided in the knob housing 302 (as in FIG. 5). The tubular member 234 can be crimped to the ultrasound transmission member 30. Thus, there are two connection locations A and B in FIG. 7. The crimp location A involves a crimp of the front shaft 218b and the ultrasound transmission member 30. The crimp location B involves a crimp of the tubular member 234, the intermediate member 224b, and the ultrasound transmission member 30. In this manner, these two connection locations actually provide two spaced-apart connection locations, with one location (i.e., B) being separate from the actual sonic connector 200b and acting as a transverse absorber.


The sonic connector is normally attached to the transducer at the highest displacement point of the transducer, which is at the connection with the sonic connector. Studies have shown that one area where the ultrasound transmission member 30 experiences a great amount of stress is about one-quarter wavelength from the connection with the sonic connector. Therefore, the embodiment in FIG. 7 provides a transverse absorber (i.e., 224b) that is positioned at a location along the ultrasound transmission member 30 that is about one-quarter wavelength from the connection with the sonic connector. The configuration in FIG. 7 eliminates a greater amount of transverse energy at the proximal end of the ultrasound transmission member 30, thereby minimizing potential breakage of the ultrasound transmission member 30. In addition, reduced transverse movements propagating towards the distal end of the catheter 10 will result in the generation of less heat so that an ultrasound transmission member 30 with a smaller cross-sectional area can be used. This will in turn result in a more flexible catheter 10 that allows the catheter 10 to run a continuous wave mode (since pulsing is one method of reduce heat). The combined use of a continuous wave mode of operation and pulsing would allow for the ultrasound ablation of a larger variety of tissues (e.g., soft, hard, fibrous).


The intermediate members 224, 224b function as absorbers that minimize undesirable transverse vibrations. To be effective in minimizing transverse vibrations, the absorber needs to be seated tightly around the ultrasound transmission member 30 so as to impact the micro-transverse motions vibrations or motions experienced by the ultrasound transmission member 30. This tight seat, fit or grip is generally accomplished by creating an additional force, or squeezing the absorber against the ultrasound transmission member 30, which can be performed using one of two methods. In a first method, the absorber is squeezed longitudinally. Unfortunately, this longitudinal force may deform the absorber and may create a non-uniform grip which might in turn provide an inconsistent grip around the ultrasound transmission member 30. Fortunately, this inconsistency can be overcome by providing a plurality of O-rings around the ultrasound transmission member 30, as described below in connection with FIG. 8. A second method uses a perpendicular (i.e., transverse) force to compress the absorber around the ultrasound transmission member 30, and the crimping techniques described in FIGS. 5 and 7 herein are examples of this second method.



FIG. 8 illustrates how the sonic connector 200 shown in FIG. 6 can be used with a slightly different knob housing to overcome the inconsistent grip around the ultrasound transmission member 30 provided by a longitudinal gripping force. The knob housing 302c in FIG. 8 is similar to the knob housing 302 in FIG. 5, so the same numerals are utilized to designate the same elements in both FIGS. 5 and 8, except that the same element in FIG. 8 includes a “c” in the designation. In the knob housing 302c, the bore 300c is provided as a single bore, without the channel 310 and the enlarged bore 322. The ultrasound transmission member 30 extends through the Y-connector 320 and into the bore 300c, and a plurality of O-rings 330 are provided around the ultrasound transmission member 30 inside the bore 300c. Thus, the O-rings 330 function like the absorbers 224 and 224b, and are seated tightly around the ultrasound transmission member 30 adjacent the connection area of the ultrasound transmission member 30 and the transducer 22 so as to impact the micro-transverse motions vibrations or motions experienced by the ultrasound transmission member 30 at this location where transverse motion is the greatest. In addition, the length of the combined plurality of O-rings 330 extends across a larger proximal area of the ultrasound transmission member 30 (when compared to the length of the absorbers 224, 224b), so that the embodiment of FIG. 8 is better suited for use in applications where the transverse motions are greater. In contrast, the embodiments in FIGS. 5 and 7 may be better suited for use in applications where the transverse motions are lesser.



FIG. 9 illustrates a modification that can be made to the knob housing 302e in FIG. 8. In the knob housing 302c in FIG. 9, the O-rings 330 are replaced by a single absorber member 332 retained inside the bore 300c and around the ultrasound transmission member 30. The absorber member 332 can have the same features, characteristics and materials as the intermediate members 224 and 224b described above. The length of the absorber member 332 can be provided such the absorber member 332 covers the distance from the distal end 334 of the absorber member 332 to the sonic connector 200, which is about one-quarter wavelength. The embodiment in FIG. 9 shares the same benefits as the embodiment in FIG. 8.



FIG. 10 illustrates another modification that can be made to the knob housings 302c in FIGS. 8 and 9. In particular, a combination of O-rings 330d and absorber members 332d can be retained inside the bore 300c and around the ultrasound transmission member 30. In FIG. 10, a group of O-rings 330d can be positioned between two separate absorber members 332d, although different arrangements of O-rings 330d and absorber members 332d can be utilized as well. The O-rings 330d and absorber members 332d can be the same as the O-rings 330 and absorber member 332 described above. Again, the embodiment in FIG. 10 shares the same benefits as the embodiments in FIGS. 8 and 9.



FIG. 11 illustrates modifications that can be made to the knob housing 302 in FIG. 5, borrowing on the principles illustrated in FIGS. 8-10. The knob housing 302 in FIG. 11 is identical to the knob housing 302 in FIG. 5, so the same numerals are used to designate the same elements of the knob housing 302 in FIGS. 5 and 11. In FIG. 11, a first plurality of O-rings 330e can be retained inside the bore 300 and around the ultrasound transmission member 30, and a second plurality of O-rings 3301 can be retained inside the enlarged bore 322, and around the ultrasound transmission member 30. In addition, an intermediate member 224e can be retained inside the bore 338 of the Y-connector 320 (at the connection location between the enlarged bore 322 and the proximal end of the Y-connector 320) and around the ultrasound transmission member 30. The O-rings 330e, 3301 and intermediate member 224e can be the same as the O-rings 330 and intermediate member 224 described above. The distance from the intermediate member 224e to the sonic connector 200 can be about one-quarter wavelength.


The provision of the sonic connectors and knob housings illustrated in FIGS. 5 and 7-11 are so effective in reducing stresses on the ultrasound transmission member 30 that they facilitate the use of a deflectable distal end 16x as described hereinabove. Previously-known ultrasound catheters have not been able to enjoy the luxury of a deflectable distal end because any bending at the distal end of the ultrasound transmission member 30 would cause the ultrasound transmission member 30 to bend too, thereby adding to the stresses already experienced by the ultrasound transmission member 30, resisting longitudinal propagation of ultrasound energy, and creating an additional source of heat, all of which would increase the potential of breakage of the ultrasound transmission member 30. Thus, the implementation of the sonic connectors illustrated in FIGS. 5 and 7-11 allows for the distal end of the ultrasound transmission member 30 to be bent without experiencing many of these drawbacks.


The present invention further provides for reverse irrigation to remove particles that have been ablated during the ultrasound procedure. Referring to FIG. 2, irrigation fluid can be injected through a guiding catheter 240 (and along the outer strike of the catheter body 12) as shown by the arrows 242. The irrigation fluid will travel to the distal head 34 of the catheter 10, and will carry the particles through the channel 74 in a reverse direction (i.e., from distal to proximal) and through the lumen 18. The irrigation fluid and particles will travel in a proximal direction along the lumen 18 to the infusion tube 70, and is collected into a bottle or container 69 that can be connected to the infusion tube 70. During this operation, the injection pump 68 can serve as a negative pressure pump.


As yet a further alternative, particles can be removed by applying a vacuum to remove the particles via the lumen of the guidewire tube 80. For example, in an “over-the-wire” catheter embodiment, particles can be removed via the lumen of the guidewire tube 80 using a pump or a syringe.


While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.

Claims
  • 1. A method of assembling an ultrasound catheter, comprising: providing an elongated catheter body having a proximal end, a distal end, and at least one lumen extending longitudinally therethrough;coupling a proximal housing to the proximal end of the elongated catheter body, the proximal housing having a distal bore;inserting an ultrasound transmission member longitudinally through the lumen of the catheter body;positioning a sonic connector on the proximal end of the ultrasound transmission member for connecting the ultrasound transmission member to a separate ultrasound generating device at a connection location, the sonic connector having a proximal section and a front portion, the proximal portion provided for connection to the separate ultrasound generating device;connecting the front portion of the sonic connector to the proximal end of the ultrasound transmission member; andretaining an absorber inside the distal bore of the proximal housing wherein the absorber substantially surrounds the ultrasound transmission member.
  • 2. The method of claim 1, wherein the absorber is a single component, the method further comprising positioning the absorber within an area one-quarter wavelength from the sonic connector.
  • 3. The method of claim 1, wherein the absorber has two or more components, the method further comprising positioning the two or more components within an area of one quarter wavelength from the sonic connector.
  • 4. The method of claim 1, comprising positioning a distal end of the ultrasound transmission member at the distal end of the catheter body.
  • 5. The method of claim 1, wherein the absorber substantially surrounding the ultrasound transmission member is configured to absorb transverse motions of the ultrasound transmission member.
  • 6. The method of claim 1, comprising positioning the absorber such that a portion of the absorber abuts a surface of the sonic connector.
  • 7. The method of claim 1, comprising positioning the absorber such that a portion of the absorber abuts a distal facing surface of the sonic connector.
  • 8. The method of claim 1, wherein the sonic connector further includes a central portion extending proximally from the front portion, the method comprising coupling the central portion of the sonic connector to the housing.
  • 9. The method of claim 1, comprising crimping together the front portion of the sonic connector and the ultrasound transmission member.
  • 10. A method of assembling an ultrasound catheter, comprising: providing an elongated catheter body having a proximal end, a distal end, and at least one lumen extending longitudinally therethrough;coupling a proximal housing to the proximal end of the elongated catheter body, the proximal housing having a distal bore;longitudinally extending an ultrasound transmission member through the lumen of the catheter body;positioning a sonic connector on the proximal end of the ultrasound transmission member for connecting the ultrasound transmission member to an ultrasound generating device at a connection location, the sonic connector comprising a proximal section and a front portion, the proximal section being for connection to the ultrasound generating device;connecting the front portion of the sonic connector to the proximal end of the ultrasound transmission member; andpositioning a plurality of O-rings to substantially surround the ultrasound transmission member inside the distal bore of the proximal housing.
  • 11. The method of claim 10, comprising positioning the plurality of O-rings within an area one-quarter wavelength from the sonic connector.
  • 12. The method of claim 10, wherein the plurality of O-rings seat tightly around the ultrasound transmission member.
  • 13. The method of claim 10, wherein the plurality of O-rings impacts micro-transverse motion vibrations of the ultrasound transmission member.
  • 14. The method of claim 10, comprising positioning the plurality of O-rings such that at least one of the plurality of O-rings abuts a surface of the sonic connector.
  • 15. The method of claim 10, comprising positioning the plurality of O-rings such that at least one of the plurality of O-rings abuts a distal facing surface of the sonic connector.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/001,103, filed on Jan. 19, 2016, (now U.S. Pat. No. 10,111,680), which is a continuation of application Ser. No. 14/176,915, filed on Feb. 10, 2014 (now U.S. Pat. No. 9,265,520), which is a divisional of application Ser. No. 12/154,349, filed May 22, 2008, (now U.S. Pat. No. 8,647,293), which is a continuation of application Ser. No. 11/014,606, filed on Dec. 16, 2004 (now U.S. Pat. No. 7,393,338), which is a divisional application of application Ser. No. 10/211,418, filed Aug. 2, 2002 (now U.S. Pat. No. 6,855,123), each of which is incorporated by reference as though set forth fully herein.

US Referenced Citations (423)
Number Name Date Kind
3296620 Rodda Jan 1967 A
3433226 Boyd Mar 1969 A
3443226 Knight May 1969 A
3565062 Kurls Feb 1971 A
3585082 Siller Jun 1971 A
3612038 Halligan Oct 1971 A
3631848 Muller Jan 1972 A
3679378 Van Impe et al. Jul 1972 A
3719737 Vaillancourt et al. Mar 1973 A
3739460 Addis et al. Jun 1973 A
3754746 Thiele Aug 1973 A
3823717 Pohlman et al. Jul 1974 A
3835690 Leonhardt et al. Sep 1974 A
3839841 Amplatz Oct 1974 A
3896811 Storz Jul 1975 A
4016882 Broadwin et al. Apr 1977 A
4033331 Guss et al. Jul 1977 A
4136700 Broadwin et al. Jan 1979 A
4337090 Harrison Jun 1982 A
4368410 Hance et al. Jan 1983 A
4417578 Banko Nov 1983 A
4425115 Wuchinich Jan 1984 A
4486680 Bonnet et al. Dec 1984 A
4505767 Quin Mar 1985 A
4535759 Polk et al. Aug 1985 A
4545767 Suzuki et al. Oct 1985 A
4565589 Harrison Jan 1986 A
4565787 Bossle et al. Jan 1986 A
4572184 Stohl et al. Feb 1986 A
4664112 Kensey et al. May 1987 A
4665906 Jervis May 1987 A
4679558 Kensey et al. Jul 1987 A
4700705 Kensey et al. Oct 1987 A
4721117 Mar et al. Jan 1988 A
4750902 Wuchinich et al. Jun 1988 A
4808153 Parisi Feb 1989 A
4811743 Stevens Mar 1989 A
4827911 Broadwin et al. May 1989 A
4838853 Parisi Jun 1989 A
4854325 Stevens Aug 1989 A
4870953 DonMicheal et al. Oct 1989 A
4886060 Wiksell Dec 1989 A
4920954 Alliger et al. May 1990 A
4923462 Stevens May 1990 A
4924863 Sterzer May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936845 Stevens Jun 1990 A
4979952 Kubota et al. Dec 1990 A
5000185 Yock Mar 1991 A
5015227 Broadwin et al. May 1991 A
5026384 Farr et al. Jun 1991 A
5030357 Lowe Jul 1991 A
5046503 Schneiderman Sep 1991 A
5053008 Bajaj Oct 1991 A
5058570 Idemoto et al. Oct 1991 A
5076276 Sakurai et al. Dec 1991 A
5091205 Fan Feb 1992 A
5100423 Fearnot Mar 1992 A
5109859 Jenkins May 1992 A
5114414 Buchbinder May 1992 A
5116350 Stevens May 1992 A
5127917 Niederhauser et al. Jul 1992 A
5131393 Ishiguro et al. Jul 1992 A
5156143 Bocquet et al. Oct 1992 A
5163421 Bernstein et al. Nov 1992 A
5171216 Dasse et al. Dec 1992 A
5180363 Idemoto et al. Jan 1993 A
5183470 Wettermann Feb 1993 A
5195955 Don Michael Mar 1993 A
5215614 Wijkamp et al. Jun 1993 A
5217565 Kou et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5226421 Frisbie et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242385 Strukel Sep 1993 A
5243997 Uflacker et al. Sep 1993 A
5248296 Alliger Sep 1993 A
5255669 Kubota et al. Oct 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5269297 Weng et al. Dec 1993 A
5269793 Simpson Dec 1993 A
5287858 Hammerslag et al. Feb 1994 A
5290229 Paskar Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5312328 Nita et al. May 1994 A
5318014 Carter Jun 1994 A
5318570 Hood et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5328004 Fannin et al. Jul 1994 A
5329927 Gardineer et al. Jul 1994 A
5341818 Abrams et al. Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5362309 Carter Nov 1994 A
5368557 Nita Nov 1994 A
5368558 Nita et al. Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5378234 Hammerslag et al. Jan 1995 A
5380274 Nita Jan 1995 A
5380316 Aita et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5389096 Aita et al. Feb 1995 A
5391144 Sakurai et al. Feb 1995 A
5397293 Alliger et al. Mar 1995 A
5397301 Pflueger et al. Mar 1995 A
5405318 Nita Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417703 Brown et al. May 1995 A
5421923 Clarke et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431663 Carter Jul 1995 A
5443078 Uflacker Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449369 Imran Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451209 Ainsworth et al. Sep 1995 A
5462529 Simpson et al. Oct 1995 A
5465733 Hinohara et al. Nov 1995 A
5474530 Passafaro et al. Dec 1995 A
5474531 Carter Dec 1995 A
5480379 La Rosa Jan 1996 A
5484398 Stoddard Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5498236 Dubrul et al. Mar 1996 A
5507738 Ciervo Apr 1996 A
5516043 Manna et al. May 1996 A
5527273 Manna et al. Jun 1996 A
5540656 Pflueger et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5597497 Dean et al. Jan 1997 A
5597882 Schiller et al. Jan 1997 A
5607421 Jeevanandam et al. Mar 1997 A
5611807 O'Boyle Mar 1997 A
5618266 Liprie Apr 1997 A
5626593 Imran May 1997 A
5627365 Chiba et al. May 1997 A
5649935 Kremer et al. Jul 1997 A
5658282 Daw et al. Aug 1997 A
5685841 Mackool Nov 1997 A
5695460 Siegel et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5715825 Crowley Feb 1998 A
5720724 Ressemann et al. Feb 1998 A
5728062 Brisken Mar 1998 A
5738100 Yagami et al. Apr 1998 A
5797876 Spears et al. Aug 1998 A
5816923 Milo et al. Oct 1998 A
5827203 Nita Oct 1998 A
5827971 Hale et al. Oct 1998 A
5830222 Makower Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5893838 Daoud et al. Apr 1999 A
5895397 Jang et al. Apr 1999 A
5902287 Martin May 1999 A
5904667 Falwell May 1999 A
5916192 Nita et al. Jun 1999 A
5916912 Ames et al. Jun 1999 A
5935142 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5937301 Gardner et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5957882 Nita et al. Sep 1999 A
5957899 Spears et al. Sep 1999 A
5964223 Baran Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971949 Levin et al. Oct 1999 A
5976119 Spears et al. Nov 1999 A
5989208 Nita Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004280 Buck et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6007514 Nita Dec 1999 A
6022309 Celliers et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6030357 Daoud et al. Feb 2000 A
6051010 DiMatteo et al. Apr 2000 A
6066135 Honda May 2000 A
6113558 Rosenschein et al. Sep 2000 A
6123698 Spears et al. Sep 2000 A
6142971 Daoud et al. Nov 2000 A
6149596 Bancroft Nov 2000 A
6159176 Broadwin et al. Dec 2000 A
6165127 Crowley Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6179809 Khairkhahan et al. Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6206842 Tu et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6217543 Anis et al. Apr 2001 B1
6217565 Cohen Apr 2001 B1
6217588 Jerger et al. Apr 2001 B1
6221015 Yock Apr 2001 B1
6231546 Milo et al. May 2001 B1
6231587 Makower May 2001 B1
6235007 Divino, Jr. et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6241703 Levin et al. Jun 2001 B1
6248087 Spears et al. Jun 2001 B1
6277084 Abele et al. Aug 2001 B1
6283983 Makower et al. Sep 2001 B1
6287271 Dubrul et al. Sep 2001 B1
6287285 Michal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6296620 Gesswein et al. Oct 2001 B1
6298620 Hatzinikolas Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6309358 Okubo Oct 2001 B1
6315741 Martin et al. Nov 2001 B1
6315754 Daoud et al. Nov 2001 B1
6331171 Cohen Dec 2001 B1
6346192 Buhr et al. Feb 2002 B2
6379378 Werneth et al. Apr 2002 B1
6387109 Davison et al. May 2002 B1
6387324 Patterson et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398736 Seward Jun 2002 B1
6409673 Yock Jun 2002 B2
6416533 Gobin et al. Jul 2002 B1
6423026 Gesswein et al. Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6433464 Jones Aug 2002 B2
6434418 Neal et al. Aug 2002 B1
6450975 Brennan et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500141 Irion et al. Dec 2002 B1
6508781 Brennan et al. Jan 2003 B1
6508784 Shu Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6533766 Patterson et al. Mar 2003 B1
6544215 Bencini et al. Apr 2003 B1
6547754 Evans et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6551337 Rabiner et al. Apr 2003 B1
6554846 Hamilton et al. Apr 2003 B2
6555059 Myrick et al. Apr 2003 B1
6558502 Divino, Jr. et al. May 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6573470 Brown et al. Jun 2003 B1
6576807 Brunelot et al. Jun 2003 B1
6582387 Derek et al. Jun 2003 B2
6589253 Cornish et al. Jul 2003 B1
6595989 Schaer Jul 2003 B1
6596235 Divino, Jr. et al. Jul 2003 B2
6602467 Divino, Jr. et al. Aug 2003 B1
6602468 Patterson et al. Aug 2003 B2
6605217 Buhr et al. Aug 2003 B2
6607698 Spears et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6613280 Myrick et al. Sep 2003 B2
6615062 Ryan et al. Sep 2003 B2
6616617 Ferrera et al. Sep 2003 B1
6622542 Derek et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6635017 Moehring et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6660013 Rabiner et al. Dec 2003 B2
6676900 Divino, Jr. et al. Jan 2004 B1
6682502 Bond et al. Jan 2004 B2
6685657 Jones Feb 2004 B2
6689086 Nita et al. Feb 2004 B1
6695781 Rabiner et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6695810 Peacock, III et al. Feb 2004 B2
6702748 Nita et al. Mar 2004 B1
6702750 Yock Mar 2004 B2
6719715 Newman et al. Apr 2004 B2
6719725 Milo et al. Apr 2004 B2
6729334 Baran May 2004 B1
6733451 Rabiner et al. May 2004 B2
6758846 Goble et al. Jul 2004 B2
6761698 Shibata et al. Jul 2004 B2
6866670 Rabiner et al. Mar 2005 B2
6936025 Evans et al. Aug 2005 B1
6936056 Nash et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6955680 Satou et al. Oct 2005 B2
7004173 Sparks et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7131983 Murakami Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7149587 Wardle et al. Dec 2006 B2
7150853 Lee et al. Dec 2006 B2
7166098 Steward et al. Jan 2007 B1
7220233 Nita et al. May 2007 B2
7267650 Chow et al. Sep 2007 B2
7297131 Nita Nov 2007 B2
7335180 Nita et al. Feb 2008 B2
7341569 Soltani et al. Mar 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7421900 Karasawa et al. Sep 2008 B2
7425198 Moehring et al. Sep 2008 B2
7494468 Rabiner et al. Feb 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7540852 Nita et al. Jun 2009 B2
7604608 Nita et al. Oct 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7648478 Soltani et al. Jan 2010 B2
7771358 Moehring et al. Aug 2010 B2
7771452 Pal et al. Aug 2010 B2
7775994 Lockhart Aug 2010 B2
7776025 Bobo, Jr. Aug 2010 B2
7819013 Chan et al. Oct 2010 B2
7850623 Griffin et al. Dec 2010 B2
7918819 Karmarkar et al. Apr 2011 B2
7935108 Baxter et al. May 2011 B2
7938819 Kugler et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
8038693 Allen Oct 2011 B2
8043251 Nita et al. Oct 2011 B2
8083727 Kugler et al. Dec 2011 B2
8133236 Nita Mar 2012 B2
8221343 Nita et al. Jul 2012 B2
8226566 Nita Jul 2012 B2
8246643 Nita Aug 2012 B2
8257378 O'connor Sep 2012 B1
8308677 Nita et al. Nov 2012 B2
8414543 Mcguckin, Jr. et al. Apr 2013 B2
8506519 Nita Aug 2013 B2
8613751 Nita et al. Dec 2013 B2
8617096 Nita et al. Dec 2013 B2
8632560 Pal et al. Jan 2014 B2
8663259 Levine et al. Mar 2014 B2
8668709 Nita et al. Mar 2014 B2
8690818 Bennett et al. Apr 2014 B2
8690819 Nita et al. Apr 2014 B2
8764700 Zhang et al. Jul 2014 B2
8790291 Nita et al. Jul 2014 B2
8974446 Nguyen et al. Mar 2015 B2
8978478 Ishioka Mar 2015 B2
9107590 Hansmann et al. Aug 2015 B2
9282984 Nita Mar 2016 B2
9314258 Nita et al. Apr 2016 B2
9381027 Nita et al. Jul 2016 B2
9421024 Nita et al. Aug 2016 B2
9770250 Nita et al. Sep 2017 B2
10004520 Nita et al. Jun 2018 B2
20020049409 Noda et al. Apr 2002 A1
20020188276 Evans et al. Dec 2002 A1
20020189357 Lai et al. Dec 2002 A1
20030009153 Brisken et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040762 Dorros et al. Feb 2003 A1
20030199817 Thompson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20040019349 Fuimaono et al. Jan 2004 A1
20040024393 Nita et al. Feb 2004 A1
20040054367 Teodoro, Jr. et al. Mar 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040193033 Badehi et al. Sep 2004 A1
20050033311 Guldfeldt et al. Feb 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050165388 Bhola Jul 2005 A1
20050171527 Bhola Aug 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20060074441 Mcguckin, Jr. et al. Apr 2006 A1
20060149169 Nunomura et al. Jul 2006 A1
20060206039 Wilson et al. Sep 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20070032749 Overall et al. Feb 2007 A1
20080071343 Mayberry et al. Mar 2008 A1
20080208084 Horzewski et al. Aug 2008 A1
20080221506 Rodriguez et al. Sep 2008 A1
20080294037 Richter Nov 2008 A1
20100004558 Frankhouser et al. Jan 2010 A1
20100023037 Nita et al. Jan 2010 A1
20100076454 Bos Mar 2010 A1
20100121144 Farhadi May 2010 A1
20110105960 Wallace May 2011 A1
20110130834 Wilson et al. Jun 2011 A1
20110237982 Wallace Sep 2011 A1
20110313328 Nita Dec 2011 A1
20120010506 Ullrich Jan 2012 A1
20120109021 Hastings et al. May 2012 A1
20120130475 Shaw May 2012 A1
20120311844 Nita et al. Dec 2012 A1
20120330196 Nita Dec 2012 A1
20140236118 Unser et al. Aug 2014 A1
20140243712 Humayun et al. Aug 2014 A1
20150073357 Bagwell et al. Mar 2015 A1
20150105621 Farhadi Apr 2015 A1
20150133918 Sachar May 2015 A1
20150150571 Nita et al. Jun 2015 A1
20150157443 Hauser et al. Jun 2015 A1
20150190660 Sarge et al. Jul 2015 A1
20150297258 Escudero et al. Oct 2015 A1
20150359651 Wübbeling Dec 2015 A1
20160128717 Nita May 2016 A1
20160183956 Nita Jun 2016 A1
20160271362 Van Liere Sep 2016 A1
20160328998 Nita et al. Nov 2016 A1
20160338722 Nita et al. Nov 2016 A1
20170065288 Imai et al. Mar 2017 A1
20170354428 Nita et al. Dec 2017 A1
20180177515 Boyle et al. Jun 2018 A1
20180280044 Nita et al. Oct 2018 A1
Foreign Referenced Citations (66)
Number Date Country
2007240154 Jan 2008 AU
2256127 May 1974 DE
2438648 Feb 1976 DE
8910040 Dec 1989 DE
3821836 Jan 1990 DE
4042435 Feb 1994 DE
0005719 Dec 1979 EP
0316789 May 1989 EP
0316796 May 1989 EP
0376562 Jul 1990 EP
0379156 Jul 1990 EP
0394583 Oct 1990 EP
0443256 Aug 1991 EP
0472368 Feb 1992 EP
0541249 May 1993 EP
0820728 Jan 1998 EP
1323481 Jul 2003 EP
1106957 Mar 1968 GB
H2-7150 Oct 1988 JP
01-099547 Apr 1989 JP
6086822 Mar 1994 JP
H07500752 Jan 1995 JP
7116260 May 1995 JP
9-503137 Mar 1997 JP
10-216140 Aug 1998 JP
2000-291543 Oct 2000 JP
2001-104356 Apr 2001 JP
2001-321388 Nov 2001 JP
2002-186627 Jul 2002 JP
2005-253874 Sep 2005 JP
2006-522644 Oct 2006 JP
2007512087 May 2007 JP
2007520255 Jul 2007 JP
8705739 Sep 1987 WO
8705793 Oct 1987 WO
8906515 Jul 1989 WO
9001300 Feb 1990 WO
9004362 May 1990 WO
9107917 Jun 1991 WO
9211815 Jul 1992 WO
9308750 May 1993 WO
9316646 Sep 1993 WO
9412140 Jun 1994 WO
9414382 Jul 1994 WO
9508954 Apr 1995 WO
9509571 Apr 1995 WO
9515192 Jun 1995 WO
9635469 Nov 1996 WO
9705739 Feb 1997 WO
9721462 Jun 1997 WO
9745078 Dec 1997 WO
9827874 Jul 1998 WO
9835721 Aug 1998 WO
9851224 Nov 1998 WO
9852637 Nov 1998 WO
9925412 May 1999 WO
0053341 Sep 2000 WO
0067830 Nov 2000 WO
03039381 May 2003 WO
2004012609 Feb 2004 WO
2004093736 Nov 2004 WO
2004112888 Dec 2004 WO
2005053769 Jun 2005 WO
2006049593 May 2006 WO
2014022716 Feb 2014 WO
2014105754 Jul 2014 WO
Non-Patent Literature Citations (23)
Entry
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008.
Definition of the term “connected”, retrieved on Sep. 21, 2013. <www.thefreedictionary.com/connected> 1 page total.
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931.
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468.
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799.
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378.
Extended European Search Report for Patent Application No. 06718204.8, dated May 30, 2012.
International Search Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
International Preliminary Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Written Opinion dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Supplemental European Search Report dated Apr. 29, 2009 for European Application No. EP 04711207.3.
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012.
Sehgal, et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943.
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351.
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>.
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total.
Definition of the term “coupled”, retrieved on May 18, 2013. <http://www.merriam-webster.com/dictionary/couple> 1 page total.
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total.
Office Action dated May 20, 2010 from Japanese Application No. 2006-541200 filed on Oct. 25, 2004.
Office Action dated Oct. 11, 2012 from Japanese Application No. 2010-181956.
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269.
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by therapeutic ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676.
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC.
Related Publications (1)
Number Date Country
20190029711 A1 Jan 2019 US
Divisions (2)
Number Date Country
Parent 12154349 May 2008 US
Child 14176915 US
Parent 10211418 Aug 2002 US
Child 11014606 US
Continuations (3)
Number Date Country
Parent 15001103 Jan 2016 US
Child 16152632 US
Parent 14176915 Feb 2014 US
Child 15001103 US
Parent 11014606 Dec 2004 US
Child 12154349 US